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ASYMPTOTIC PROPERTY FOR NONLINEAR

PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS

Dong Man Im* and Yoon Hoe Goo**

Abstract. This paper shows that the solutions to nonlinear per-
turbed functional differential system

y′ = f(t, y) +

∫ t

t0

g(s, y(s), T y(s))ds + h(t, y(t))

have the asymptotic property by imposing conditions on the per-
turbed part

∫ t

t0
g(s, y(s), T y(s))ds, h(t, y(t)), and on the fundamen-

tal matrix of the unperturbed system y′ = f(t, y).

1. Introduction

Elaydi and Farran[8] introduced the notion of exponential asymp-
totic stability(EAS) which is a stronger notion than that of ULS. They
investigated some analytic criteria for an autonomous differential system
and its perturbed systems to be EAS. Brauer [2] studied the asymptotic
behavior of solutions of nonlinear systems and perturbations of nonlinear
systems by means of analogue of the variation of constants formula for
nonlinear systems due to V.M. Alekseev[1]. Pachpatte[14] investigated
the stability and asymptotic behavior of solutions of the functional dif-
ferential equation. Gonzalez and Pinto[9] proved theorems which relate
the asymptotic behavior and boundedness of the solutions of nonlinear
differential systems. Choi et al.[6,7] examined Lipschitz and exponential
asymptotic stability for nonlinear functional systems. Also, Goo[10,11],
Goo et al. [12], and Choi and Goo[4,5] investigated Lipschitz and as-
ymptotic stability for perturbed differential systems.
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In this paper we study the asymptotic property for solutions of the
nonlinear differential systems. The method incorporating integral in-
equalities takes an important place among the methods developed for
the qualitative analysis of solutions to linear and nonlinear system of
differential equations.

2. preliminaries

We consider the nonlinear nonautonomous differential system

x′ = f(t, x), x(t0) = x0,(2.1)

where f ∈ C(R+ × Rn,Rn), R+ = [0,∞) and Rn is the Euclidean n-
space. We assume that the Jacobian matrix fx = ∂f/∂x exists and is
continuous on R+×Rn and f(t, 0) = 0. Also, we consider the perturbed
differential system of (2.1)

(2.2) y′ = f(t, y) +

∫ t

t0

g(s, y(s), Ty(s))ds+ h(t, y(t)), y(t0) = y0,

where g ∈ C(R+ × Rn × Rn,Rn), g(t, 0, 0) = 0, h(t, 0) = 0, and T :
C(R+,Rn)→ C(R+,Rn) is a continuous operator .

For x ∈ Rn, let |x| = (
∑n

j=1 x
2
j )

1/2. For an n × n matrix A, define

the norm |A| of A by |A| = sup|x|≤1 |Ax|.
Let x(t, t0, x0) denote the unique solution of (2.1) with x(t0, t0, x0) =

x0, existing on [t0,∞). Then we can consider the associated variational
systems around the zero solution of (2.1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(2.3)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(2.4)

The fundamental matrix Φ(t, t0, x0) of (2.4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (2.3).
Before giving further details, we give some of the main definitions

that we need in the sequel[8].

Definition 2.1. The system (2.1) (the zero solution x = 0 of (2.1))
is called
(S) stable if for any ε > 0 and t0 ≥ 0, there exists δ = δ(t0, ε) > 0 such
that if |x0| < δ , then |x(t)| < ε for all t ≥ t0 ≥ 0,
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(AS) asymptotically stable if it is stable and if there exists δ = δ(t0) > 0
such that if |x0| < δ , then |x(t)| → 0 as t→∞,
(ULS) uniformly Lipschitz stable if there exist M > 0 and δ > 0 such
that |x(t)| ≤M |x0| whenever |x0| ≤ δ and t ≥ t0 ≥ 0,
(EAS) exponentially asymptotically stable if there exist constantsK > 0,
c > 0, and δ > 0 such that

|x(t)| ≤ K |x0|e−c(t−t0), 0 ≤ t0 ≤ t

provided that |x0| < δ,
(EASV) exponentially asymptotically stable in variation if there exist
constants K > 0 and c > 0 such that

|Φ(t, t0, x0)| ≤ K e−c(t−t0), 0 ≤ t0 ≤ t

provided that |x0| <∞.

Remark 2.2. [9] The last definition implies that for |x0| ≤ δ

|x(t)| ≤ K |x0|e−c(t−t0), 0 ≤ t0 ≤ t.

We give some related properties that we need in the sequel.
We need Alekseev formula to compare between the solutions of (2.1)

and the solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0,(2.5)

where g ∈ C(R+×Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote
the solution of (2.5) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation
of constants formula due to Alekseev [1].

Lemma 2.3. [2] Let x and y be a solution of (2.1) and (2.5), re-
spectively. If y0 ∈ Rn, then for all t ≥ t0 such that x(t, t0, y0) ∈ Rn,
y(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +

∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Lemma 2.4. [3] Let u, λ1, λ2, λ3, λ4, λ5, λ6 ∈ C(R+), w ∈ C((0,∞))
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)w(u(s))ds+

∫ t

t0

λ3(s)

∫ s

t0

λ4(τ)w(u(τ))dτds

+

∫ t

t0

λ5(s)

∫ s

t0

λ6(τ)w(u(τ))dτds, 0 ≤ t0 ≤ t.
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Then

u(t) ≤W−1
[
W (c) +

∫ t

t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ

+ λ5(s)

∫ s

t0

λ6(τ)dτ
)
ds
]
,

where t0 ≤ t < b1, W (u) =
∫ u
u0

ds
w(s) , W

−1(u) is the inverse of W (u) ,

and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ

+ λ5(s)

∫ s

t0

λ6(τ)dτ
)
ds ∈ domW−1

}
.

For the proof we need the following corollary from Lemma 2.4.

Corollary 2.5. Let u, λ1, λ2, λ3, λ4 ∈ C(R+), w ∈ C((0,∞)) and
w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0 and
0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)w(u(s))ds

+

∫ t

t0

λ3(s)

∫ s

t0

λ4(τ)w(u(τ))dτds.

Then

u(t) ≤W−1
[
W (c) +

∫ t

t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ
)
ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.4,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(
λ1(s) + λ2(s)

∫ s

t0

λ3(τ)dτ
)
ds ∈ domW−1

}
.

Lemma 2.6. [5] Let k, u, λ1, λ2, λ3, λ4 ∈ C(R+), w ∈ C((0,∞)), u ≤
w(u) and w(u) be nondecreasing in u. Suppose that for some c ≥ 0,

u(t) ≤ c+

∫ t

t0

λ1(s)
(∫ s

t0

(λ2(τ)u(τ) + λ3(τ)

∫ τ

t0

k(r)w(u(r))dr)dτ + λ4(s)u(s)
)
ds,

for t ≥ t0 ≥ 0 and for some c ≥ 0. Then

u(t) ≤W−1
[
W (c) +

∫ t

t0

λ1(s)
(∫ s

t0

(λ2(τ) + λ3(τ)

∫ τ

t0

k(r)dr)dτ + λ4(s)
)
ds
]
,
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where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.4,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

λ1(s)
(∫ s

t0

(λ2(τ) + λ3(τ)

∫ τ

t0

k(r)dr)dτ

+ λ4(s)
)
ds ∈ domW−1

}
.

Lemma 2.7. [11] Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8 ∈ C(R+), w ∈
C((0,∞)), and w(u) be nondecreasing in u, u ≤ w(u). Suppose that
for some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)w(u(s))ds+

∫ t

t0

λ3(s)

∫ s

t0

(λ4(τ)u(τ)

+ λ5(τ)

∫ τ

t0

λ6(r)w(u(r))dr)dτds+

∫ t

t0

λ7(s)

∫ s

t0

λ8(τ)w(u(τ))dτds.

Then

u(t) ≤W−1
[
W (c) +

∫ t

t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s

t0

(λ4(τ)

+ λ5(τ)

∫ τ

t0

λ6(r)dr)dτ + λ7(s)

∫ s

t0

λ8(τ)dτ
)
ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.4,
and

b1 = sup
{
t ≥ t0 :W (c) +

∫ t

t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s

t0

(λ4(τ)

+ λ5(τ)

∫ τ

t0

λ6(r)dr)dτ + λ7(s)

∫ s

t0

λ8(τ)dτ
)
ds ∈ domW−1

}
.

For the proof we need the following corollary from Lemma 2.7.

Corollary 2.8. Let u, λ1, λ2, λ3, λ4, λ5 ∈ C(R+), w ∈ C((0,∞)),
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0
and 0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ1(s)

∫ s

t0

(
λ2(τ)u(τ) + λ3(τ)w(u(τ))

+ λ4(τ)

∫ τ

t0

λ5(r)w(u(r))dr
)
dτds.

Then

u(t) ≤W−1
[
W (c) +

∫ t

t0

λ1(s)

∫ s

t0

(
λ2(τ) + λ3(τ) + λ4(τ)

∫ τ

t0

λ5(r)dr
)
dτds

]
,



6 Dong Man Im and Yoon Hoe Goo

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.4,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

λ1(s)

∫ s

t0

(
λ2(τ) + λ3(τ)

+ λ4(τ)

∫ τ

t0

λ5(r)dr
)
dτds ∈ domW−1

}
.

3. Main results

In this section, we investigate the asymptotic property for solutions
of nonlinear perturbed functional differential systems.

To obtain the asymptotic property, the following assumptions are
needed:

(H1) The solution x = 0 of (2.1) is EASV.
(H2) w(u) is nondecreasing in u, u ≤ w(u).

Theorem 3.1. Assume that (H1), (H2), and the perturbing term g
in (2.2) satisfies

(3.1) |g(t, y(t), Ty(t))| ≤ e−αt
(
a(t)|y(t)|+ |Ty(t)|

)
,

and

(3.2) |Ty(t)| ≤ b(t)
∫ t

t0

k(s)w(|y(s)|)ds, |h(t, y(t))| ≤ c(t)|y(t)|

where α > 0, a, b, c, k, w ∈ C(R+), a, b, c, k, w ∈ L1(R+). If

M(t0) = W−1
[
W (c) +

∫ ∞
t0

Meαs
(∫ s

t0

(a(τ) + b(τ)

∫ τ

t0

k(r)dr)dτ

+ c(s)
)
ds
]
<∞,

(3.3)

where t ≥ t0 and c = |y0|Meαt0 , then all solutions of (2.2) approach zero
as t→∞.

Proof. Let x(t) = x(t, t0, y0) be the solution of (2.1)with x(t0, t0, y0) =
y0, existing on [t0,∞). By Lemma 2.3, any solution y(t) = y(t, t0, y0) of
(2.2) passing through (t0, y0) is given by
(3.4)

y(t, t0, y0) = x(t, t0, y0)+

∫ t

t0

Φ(t, s, y(s))

(∫ s

t0

g(τ, y(τ), T y(τ))dτ+h(s, y(s))

)
ds.
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From the assumption (H1), the solution x = 0 of (2.1) is EASV, and so
it is EAS by Remark 2.2. Applying (3.1), (3.2), and (3.4), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
(∫ s

t0

|g(τ, y(τ), T y(τ))|dτ + h(s, y(s))
)
ds

≤M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)
(
c(s)|y(s)|+

∫ s

t0

e−ατ (a(τ)|y(τ)|

+ b(τ)

∫ τ

t0

k(r)w(|y(r)|)dr)dτ
)
ds.

It follows from (H2) that

|y(t)| ≤M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)
(
c(s)|y(s)|eαs +

∫ s

t0

(a(τ)|y(τ)|eατ

+ b(τ)

∫ τ

t0

k(r)w(|y(r)|eαr)dr)dτ
)
ds.

Set u(t) = |y(t)|eαt. By Lemma 2.6 and (3.3) we obtain

|y(t)|

≤ e−αtW−1
[
W (c) +

∫ t

t0

Meαs
(
c(s) +

∫ s

t0

(a(τ) + b(τ)

∫ τ

t0

k(r)dr)dτ
)
ds
]

≤ e−αtM(t0),

where t ≥ t0 and c = M |y0|eαt0 . The above estimation yields the
desired result.

Remark 3.2. Letting b(t) = c(t) = 0 in Theorem 3.1, we obtain the
similar result as that of Corollary 3.8 in [5].

Theorem 3.3. Assume that (H1), (H2), and the perturbing term g
in (2.2) satisfies

(3.5) |g(t, y(t), T y(t))| ≤ e−αt
(
a(t)w(|y(t)|) + |Ty(t)|

)
,

and

(3.6) |Ty(t)| ≤ b(t)
∫ t

t0

k(s)w(|y(s)|)ds, |h(t, y(t))| ≤
∫ t

t0

c(s)|y(s)|ds

where α > 0, a, b, c, k, w ∈ C(R+), a, b, c, k, w ∈ L1(R+). If
(3.7)

M(t0) = W−1
[
W (c)+

∫ ∞
t0

Meαs
∫ s

t0

(
a(τ)+c(τ)+b(τ)

∫ τ

t0

k(r)dr
)
dτds

]
<∞,
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where t ≥ t0 and c = |y0|Meαt0 , then all solutions of (2.2) go to zero as
t→∞.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. By the assumption (H1), the solution x = 0
of (2.1) is EASV. Therefore, it is EAS by Remark 2.2. Using (3.4), (3.5),
and (3.6), we have

|y(t)| ≤M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)
∫ s

t0

e−ατ
(
a(τ)w(|y(τ)|)

+ b(τ)

∫ τ

t0

k(r)w(|y(r)|)dr + c(τ)|y(τ)|
)
dτds.

It follows from (H2) that

|y(t)| ≤M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)
∫ s

t0

(
c(τ)|y(τ)|eατ

+ a(τ)w(|y(τ)|eατ ) + b(τ)

∫ τ

t0

k(r)w(|y(r)|eαr)dr
)
dτds.

Set u(t) = |y(t)|eαt. By Corollary 2.8 and (3.7) we obtain

|y(t)|

≤ e−αtW−1
[
W (c) +

∫ t

t0

Meαs
∫ s

t0

(
a(τ) + c(τ) + b(τ)

∫ τ

t0

k(r)dr
)
dτds

]
≤ e−αtM(t0),

where t ≥ t0 and c = M |y0|eαt0 . This completes the proof.

Remark 3.4. Letting b(t) = c(t) = 0 in Theorem 3.3, we obtain the
similar result as that of Theorem 3.5 in [5].

Theorem 3.5. Suppose that (H1), (H2), and the perturbing term g
in (2.2) satisfies

(3.8)

∫ t

t0

|g(s, y(s), T y(s))|ds ≤ e−αt
(
a(t)|y(t)|+ |Ty(t)|

)
,

and

(3.9) |Ty(t)| ≤ b(t)
∫ t

t0

k(s)w(|y(s)|)ds, |h(t, y(t))| ≤ e−αtc(t)w(|y(t)|)

where α > 0, a, b, c, k, w ∈ C(R+), a, b, c, k, w ∈ L1(R+). If
(3.10)

M(t0) = W−1
[
W (c) +M

∫ ∞
t0

(
a(s) + c(s) + b(s)

∫ s

t0

k(τ)dτ
)
ds
]
<∞, b1 =∞,
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where c = M |y0|eαt0 , then all solutions of (2.2) approach zero as t→∞.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. From the assumption (H1), the solution
x = 0 of (2.1) is EASV, and so it is EAS. By (3,4), (3.8), and (3.9), we
have

|y(t)| ≤M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)
(
e−αsa(s)|y(s)|+ e−αsc(s)w(|y(s)|)

+ e−αsb(s)

∫ s

t0

k(τ)w(|y(τ)|)dτ
)
ds.

Using the assumption (H2), we obtain

|y(t)| ≤M |y0|e−α(t−t0) +

∫ t

t0

Me−αt
(
a(s)|y(s)|eαs + c(s)w(|y(s)|eαs)

)
ds

+

∫ t

t0

Me−αtb(s)

∫ s

t0

k(τ)w(|y(τ)|eατ )dτds.

Set u(t) = |y(t)|eαt. Then, it follows from Corollary 2.5 and (3.10) that

|y(t)| ≤ e−αtW−1
[
W (c) +M

∫ t

t0

(
a(s) + c(s) + b(s)

∫ s

t0

k(τ)dτ
)
ds
]

≤ e−αtM(t0),

where t ≥ t0 and c = M |y0|eαt0 . From the above estimation, we obtain
the desired result.

Remark 3.6. Letting b(t) = c(t) = 0 in Theorem 3.5, we obtain the
similar result as that of Corollary 3.8 in [5].

Theorem 3.7. Suppose that (H1), (H2), and the perturbing term g
in (2.2) satisfies

(3.11)

∫ t

t0

|g(s, y(s), T y(s))|ds ≤ e−αt
(
a(t)w(|y(t)|) + |Ty(t)|

)
,

and

(3.12) |Ty(t)| ≤ b(t)
∫ t

t0

k(s)w(|y(s)|)ds, |h(t, y(t))| ≤ e−αtc(t)|y(t)|,

where α > 0, a, b, c, k, w ∈ C(R+), a, b, c, k, w ∈ L1(R+). If
(3.13)

M(t0) = W−1
[
W (c) +M

∫ ∞
t0

(
a(s) + c(s) + b(s)

∫ s

t0

k(τ)dτ
)
ds
]
<∞,
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where b1 = ∞ and c = M |y0|eαt0 , then all solutions of (2.2) go to zero
as t→∞.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. By the assumption (H1), the solution x = 0
of (2.1) is EASV. Hence, it is EAS. Applying (3,4), (3.11), and (3.12),
we have

|y(t)| ≤M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)
(
e−αsc(s)|y(s)|+ e−αsa(s)w(|y(s)|)

+ e−αsb(s)

∫ s

t0

k(τ)w(|y(τ)|)dτ
)
ds.

From the assumption (H2), we obtain

|y(t)| ≤M |y0|e−α(t−t0) +

∫ t

t0

Me−αt
(
c(s)|y(s)|eαs + a(s)w(|y(s)|eαs)

)
ds

+

∫ t

t0

Me−αtb(s)

∫ s

t0

k(τ)w(|y(τ)|eατ )dτds.

Set u(t) = |y(t)|eαt. Then, it follows from Corollary 2.5 and (3.13) that

|y(t)| ≤ e−αtW−1
[
W (c) +M

∫ t

t0

(
a(s) + c(s) + b(s)

∫ s

t0

k(τ)dτ
)
ds
]

≤ e−αtM(t0),

where t ≥ t0 and c = M |y0|eαt0 , and so the proof is complete.

Remark 3.8. Letting c(t) = 0 in Theorem 3.7, we obtain the same
result as that of Theorem 3.7 in [12].
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