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CHARACTERIZATIONS OF PARETO, WEIBULL AND
POWER FUNCTION DISTRIBUTIONS BASED ON

GENERALIZED ORDER STATISTICS

Mohammad Ahsanullah* and G.G. Hamedani**

Abstract. Characterizations of probability distributions by dif-
ferent regression conditions on generalized order statistics has at-
tracted the attention of many researchers. We present here, char-
acterization of Pareto and Weibull distributions based on the con-
ditional expectation of generalized order statistics extending the
characterization results reported by Jin and Lee (2014). We also
present a characterization of the power function distribution based
on the conditional expectation of lower generalized order statistics.

1. Introduction

The concept of generalized order statistics (gos) was introduced by
Kamps [8] in terms of their joint pdf (probability density function).
The order statistics, record values, k-record values, Pfifer records and
progressive type II order statistics are special cases of the gos. The
rv′s (random variables) X (1, n, m, k) , X (2, n, m, k) , ..., X (n, n, m, k) ,
k > 0, m ∈ R, are n gos from an absolutely continuous cdf (cumulative
distribution function) F with corresponding pdf f if their joint pdf ,
f1 ,2,...,n (x1, x2, ..., xn) , can be written as

f1 ,2,...,n (x1, x2, ..., xn) = k
(
Π n−1

j = 1 γj

) [
Π n−1

j = 1

(
F (xj)

)m
f (xj)

]
×

(
F (xn)

)k−1
f (xn) , F−1 (0+) < x1 < x2 < ... < xn < F−1 (1−) ,

(1.1)
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where F (x) = 1 − F (x) and γj = k + (n− j) (m + 1) for all j ,
1 ≤ j ≤ n , k is a positive integer and m ≥ −1 .

If k = 1 and m = 0 , then X (r, n,m, k) reduces to the ordinary
rth order statistic and (1.1) will be the joint pdf of order statistics
X1,n ≤ X2,n ≤ ... ≤ Xn,n from F. If k = 1 and m = −1 , then (1.1)
will be the joint pdf of the first n upper record values of the i.i.d.
(independent and identically distributed) rv ′s with cdf F and pdf f .

Integrating out x1, x2, ..., xr−1, xr+1, ..., xn from (1.1) we obtain
the pdf fr,n,m,k of X (r, n, m, k)

(1.2) fr,n,m,k (x) =
cr−1

(r − 1)!
(
F (x)

)γr−1
f (x) g r−1

m (F (x)) ,

where cr−1 = Π r
j = 1 γj and

gm (x) = hm (x)− hm (0) =
1

m + 1

[
1− (1− x)m+1

]
, m 6= −1 ,

= −ln (1− x) , m = −1 , x ∈ (0, 1)

and

hm (x) = − 1
m + 1

(1− x)m+1 , m 6= −1 ,

= −ln (1− x) , m = −1 . x ∈ (0, 1)

Note that, since limm →−1
1

m+1

[
1− (1− x)m+1

]
= −ln (1− x) , we will

write

gm (x) =
1

m + 1

[
1− (1− x)m+1

]
, for all x ∈ (0, 1) and all m with

g −1 (x) = lim
m→−1

gm (x) .

The joint pdf of X (s, n, m, k) and X (r, n,m, k) , r < s , is given
by (see Kamps [8], p.68)

fs,r,n,m,k (x, y) = cs−1

(r−1)!(s−r−1)!

(
F (x)

)m−1
f (x) g r−1

m (F (x))×
[hm (F (y))− hm (F (x))]s−r−1 (

F (y)
)γs−1

f (y) , y ≥ x.

Consequently, the conditional pdf of X (s1, n, m, k) given X (r, n, m, k) =
x, for s1 = s + l, s > 2 and m 6= −1, is

fs1 | r,n,m,k (y|x)

=
cs1−1

cr−1(s1 − r − 1)!
[hm(F (y))− hm(F (x))]s1−r−1 (F (y))γs1−1

(F (x))γr+1
f(y), y > x.

(1.3)
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Burkschat et al. [5] introduced lower generalized order statistics
(lgos) as follows:

The rv ′s X∗ (1, n,m, k) , X∗ (2, n, m, k) , ..., X∗ (n, n,m, k) , k > 0,
m ∈ R , are n lgos from an absolutely continuous cdf F with
corresponding pdf f if their joint pdf f∗ (x1, x2, ..., xn) , can be written
as

f∗ (x1, x2, ..., xn) = k
(
Π n−1

j = 1 γj

) [
Π n−1

j = 1 (F (xj))
m f (xj)

]
×

(F (xn))k−1 f (xn) , F−1 (1−) > x1 > x2 > ... > xn > F−1 (0+) .
(1.4)

The marginal pdf f∗r,n,m,k(x) is

(1.5) f∗r,n,m,k (x) =
cr−1

(r − 1)!
(F (x))γr−1 f (x) q r−1

m (F (x)) ,

where

qm =
1

m + 1
(1− x)m+1, for m 6= −1

= −ln (x) , for m = −1.

The joint pdf of X∗ (s, n, m, k) and X∗ (r, n, m, k) , r < s, is given
by

fs,r,n,m,k (x, y) =
cs−1

(r − 1)! (s− r − 1)!
(F (x))m−1 f (x) v r−1

m (F (x))×

[h∗m (F (y))− h∗m (F (x))]s−r−1 (
F (y)

)γs−1
f (y) , x ≥ y,

(1.6)

where

h∗m(x) = − 1
m + 1

xm+1, for m 6= −1

= −ln (x) , for m = −1.

Consequently, the conditional pdf of X∗ (s1, n, m, k) given X∗ (r, n,
m, k = x, is

f∗s1 | r,n,m,k (y|x) =
cs1−1

cr−1(s1 − r − 1)!
[h∗m(F (y))− h∗m(F (x))]s1−r−1×

(F (y))γs1−1

(F (x))γr+1
f(y), y < x.

(1.7)
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2. Characterization results

Characterizations of probability distributions by different regression
conditions on generalized order statistics has attracted the attention of
many researchers (e.g., Bieniek and Szynal [4], Cramer et al. [6] and
Bieniek [3]), to name a few. In [4] , the authors consider all cdf ′s F
for which the following linearity of regression holds:

E [ (X (r + l, n, m, k)) | X (r, n, m, k)] = a X (r, n, m, k) + b.

They conclude that only exponential, Pareto and power function dis-
tributions satisfy this equation. Using this result they obtain char-
acterizations of these distributions based on sequential order statistics,
records and progressive type II censored order statistics. Cramer et
al. [6] , point out that characterizations of distributions based on linear
regressions

(2.1) E [ψ (X (r + l, n,m, k)) | X (r, n,m, k) = ·] = ϕ (·)
have been studied extensively for order statistics and record values (r ∈ N,
l = 1. Since gos provide a unifying approach to these models, they
set up a comprehensive solution related to characterization problems.
They started with the case of adjacent gos (l = 1) and then pointed
out that for larger l the calculations become more difficult. In or-
der to obtain an explicit result, they restricted themselves to a linear
function ϕ . They showed that the linearity of the conditional expec-
tation provides a characterization of generalized Pareto distributions.
Ahsanullah and Hamedani [1] presented characterizations of continuous
distributions based on (2.1) for l = 1 but without the assumptions
of monotonicity of ψ (·) and linearity of ϕ (·) . Jin and Lee [7] pre-
sented the characterizations of Pareto and Weibull distributions based
on conditional expectations of the upper record values. Following [7]
we present similar characterization based on conditional expectations of
gos extending the characterization results of Jin and Lee [7]. We also
present a characterization of the power function distribution based on
the conditional expectation of lower generalized order statistics.

Theorem 2.1. Let {Xn , n ≥ 1} be a sequence of i.i.d. random
variables with an absolutely continuous cdf F (x) , corresponding pdf
f (x) and E [Xp] < ∞ , p ∈ N. For l ∈ N and p < θ ∈ R+

(2.2)
(θγs+1 − p)(θγs+2 − p)....(θγs+l − p)

γs+1γs+2....γs+l
E(Xp(s+l, n, m, k) | X(r, n, m, k) = x)
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= θlE(Xp(s + l, n, m, k) | X(r, n, m, k) = x),
if and only if

(2.3) F (x) = 1− x−θ, x ≥ 1.

Proof. Suppose (2.3) holds and as before, let s1 = s + l. Then

fs1 | r,n,m,k (y|x) =
cs1−1

cr−1(s1 − r − 1)!
(

1
m + 1

)s1−r−1×

(− 1
yθ(m+1)

+
1

xθ(m+1)
)s1−r−1(

1
yθ

)γs1−1(xθ)γr+1
θ

yθ+1
,

and

E(Xp(s1, n, m, k) | X(r, n, m, k) = x) =
cs1−1θ(xθ)γr+1

cr−1(s1 − r − 1)!
(

1
m + 1

)s1−r−1×
∫ ∞

x
y−(θγs1−p)−1(− 1

yθ(m+1)
+

1
xθ(m+1)

)s1−r−1dy.

Since θ − p > 0 , γs1 > 1 , then θγs1 − p > 0 and using integration
by parts on the right hand side of the above equality, we arrive at

E(Xp(s1, n, m, k) | X(r, n, m, k) = x)

=
cs1−1θ

2(xθ)γr+1

cr−1(s1 − r − 2)!
1

(θγs1 − p)
(

1
m + 1

)s1−r−2×
∫ ∞

x
y−(θγs1−p)−θ(m+1)−1(− 1

yθ(m+1)
+

1
xθ(m+1)

)s1−r−2dy.

Observing that (θγs1 − p) + θ (m + 1) = θγs1−1 − p , we have
E(Xp(s1, n,m, k) | X(r, n,m, k) = x)

=
cs1−1θ

2(xθ)γr+1

cr−1(s1 − r − 2)!
1

(θγs1 − p)
(

1
m + 1

)s1−r−2×
∫ ∞

x
y−(θγs1−1−p)−1(− 1

yθ(m+1)
+

1
xθ(m+1)

)s1−r−2dy.

Employing integration by parts on the right hand side of the above
equality, results in

E(Xp(s1, n,m, k) | X(r, n,m, k) = x)

=
cs1−1θ

3(xθ)γr+1

cr−1(s1 − r − 3)!
1

(θγs1 − p) (θγs1−1 − p)
(

1
m + 1

)s1−r−3×
∫ ∞

x
y−(θγs1−1−p)−θ(m+1)−1(− 1

yθ(m+1)
+

1
xθ(m+1)

)s1−r−3dy.

Continuing in this manner, we arrive at
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E(Xp(s1, n, m, k) | X(r, n, m, k) = x)

=
cs1−1θ

l(xθ)γr+1

cr−1(s1 − r − l)!
1

Πl
i=1 (θγs1−i − p)

(
1

m + 1
)s1−r−l×

∫ ∞

x
y−(θγs1−−l−p)−1(− 1

yθ(m+1)
+

1
xθ(m+1)

)s1−r−ldy.

=
θlΠs+l

i=s+1γi

Πl
i=1 (θγs1−i − p)

E(Xp(s, n,m, k) | X(r, n,m, k) = x),

which is now (2.2) .

Now assume (2.2) holds. Then

(θγs+1 − p)(θγs+2 − p)....(θγs+l − p)
γs+1γs+2....γs+l(s1 − r − 1)!

×
∫ ∞

x
yp[hm(F (y))− hm(F (x))]s1−r−1(1− F (y))γs1−1f(y)dy

=
θl

(s− r − 1)!

∫ ∞

x
yp[hm(F (y))− hm(F (x))]s−r−1(1− F (y))γs−1f(y)dy.

(2.4)

Differentiating both sides of (2.4) (s− r) times with respect to x,
we obtain

∫ ∞

x
yp[hm(F (y))− hm(F (x))]l−1(1− F (y))γs1−1f(y)dy

=
θlγs+1γs+2....γs+l

(θγs+1 − p)(θγs+2 − p)....(θγs1 − p)
xp (1− F (x))γs+1 .

(2.5)

Letting u =
(

1−F (y)
1−F (x)

)γs

in (2.5), we arrive at

∫ 1

0

(
F
−1

(
u1/γsF (x)

))p
[(

F (x)
)m+1 − (

F (x) u1/γs
)m+1

m + 1

]l−1

×
(
u1/γsF (x)

)γs1−1
(

1
γs

u
1−γs

γs F (x)
)

du

=
θlγs+1γs+2....γs+l

(θγs+1 − p)(θγs+2 − p)....(θγs1 − p)
xp (1− F (x))γs+1 ,

or
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(θγs+1 − p)(θγs+2 − p)....(θγs1 − p)
γs+1γs+2....γs+l

×
∫ 1

0

(
F
−1

(
u1/γsF (x)

))p
(

1− u
m+1
γs

m + 1

)l−1

du = θlxp,

and letting v = u1/γs and F (x) = t , we have

(θγs+1 − p)(θγs+2 − p)....(θγs1 − p)
γs+1γs+2....γs+l

×
∫ 1

0

(
F
−1 (vt)

)p
(

1− vm+1

m + 1

)l−1

vγs−1dv = θl
(
F
−1 (t)

)p
.

(2.6)

Putting v = e−u and t = e−w in (2.6) , we obtain, upon simplifi-
cation

(θγs+1 − p)(θγs+2 − p)....(θγs1 − p)
γs+1γs+2....γs+l

×
∫ ∞

0

(
F
−1

(
e−(u+w)

))p
(

1− e(m+1)u

m + 1

)l−1

e−γsudu = θl
(
F
−1 (

e−w
))p

,

for 0 < w < ∞.

Now, the rest follows from the proof of Theorem 2.1 of Jin and Lee
([7], page 245).

We need the following definition for our characterization of the Weibull
distribution.

Definition 2.2. The random variable X with cdf F belongs to the
class C if for some δ > 0 , either (F (x + y))1/δ ≥ (F (x))1/δ(F (y))1/δ,
for all x, y ≥ 0, or (F (x+ y))1/δ ≤ (F (x))1/δ(F (y))1/δ, for all x, y ≥ 0.

Theorem 2.3. Let {Xn , n ≥ 1} be a sequence of i.i.d. random
variables with an absolutely continuous cdf F (x) , corresponding pdf
f (x) and E

[
Xδ

]
< ∞ , δ > 0. We assume that F (0) = 0 and

F (x) > 0 for all x > 0. For l ∈ N, the following statements are
equivalent:

(i) F (x) = 1− e−xδ
, x ≥ 0.
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(ii) The random variable X belongs to the class C and

E
[
(X(s + l,m.n.k))δ | (X(r,m.n.k) = x

]

=
1

γs+l
+

1
γs+l−1

+ ... +
1

γs+1
+ E

[
(X(s,m.n.k))δ | (X(r,m.n.k) = x

]
.

(2.7)

Proof. Suppose (i) holds and let Y = Xδ , then Y has an exponential
distribution with parameter 1. We know that (see, [2], page 71)

Y (r, n, m, k) d=
r∑

j=1

Yj

γj
,

Y (s, n,m, k) d=
s∑

j=1

Yj

γj
and Y (s + l, n, m, k) d=

s+l∑

j=1

Yj

γj
,

where Yj , j = 1, 2, ..., s + l are i.i.d with cdf FY (y) = 1− e−y, y ≥ 0,

and

E(Y (s, n, m, k)) =
s∑

j=1

1
γj

and E(Y (s + l, n,m, k)) =
s+l∑

j=1

1
γj

.

Thus,

E(Y (s + l, n,m, k)|E(r, n, m, k) = t)

=
s+l∑

j=s+1

1
γj

+ E(Y (s, n, m, k)|Y (r, n,m, k) = t), s > r.

Writing the above equation in terms of X, we have (2.7) .

Now, assume (ii) holds. Then, the left hand side of (2.7) can be
expressed as

E
[
(X(s + l, m.n.k))δ | (X(r,m.n.k) = x

]

=
cs+l−1

cr−1

1
(s + l − r − 1)!

∫ ∞

x

yδ(hm(y)− hm(x))s+l−r−1 (F (y))γs+l−1

(F (x))γr+1
f(y)dy.

Thus,
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cs+l−1

cr−1

1
(s + l − r − 1)!

∫ ∞

x
yδ(hm(y)− hm(x))s+l−r−1(F (y))γs+l−1f(y)dy

=
(

1
γs+l

+
1

γs+l−1
+ ... +

1
γs+1

)
(F (x))γr+1

+
cs−1

cr−1

1
(s− r − 1)!

∫ ∞

x
yδ(hm(y)− hm(x))s−r−1(F (y))γs−1f(y)dy.

(2.8)

Now, differentiating both sides of (2.8) with respect to x, (s− r)
times, we arrive at

cs+l−1

cr−1

1
(l − 1)!

∫ ∞

x
yδ(hm(y)− hm(x))l−1(F (y))γs+l−1f(y)dy

= γr+1γr+2...γs(
1

γs+l
+

1
γs+l−1

+ ... +
1

γs+1
)(F (x))γr+1 +

cs−1

cr−1
xδ(F (x))γr+1 .

We can write the above equation as

1
(l − 1)!

∫ ∞

x
yδ

(
hm(y)− hm(x)

F (x)

)l−1 (
F (y)
F (x)

)γs+l−1
f(y)
F (x)

dy

=
cs−1

cs+l−1
(

1
γs+l

+
1

γs+l−1
+ ... +

1
γs+1

) +
cs−1

cs+l−1
xδ.

(2.9)

Putting u = F (y)

F (x)
in (2.9), we obtain

1
(l − 1)!

∫ 1

0

(
F
−1(uF (x))

)δ
(1− um+1)l−1uγs+l−1du

=
cs−1

cs+l−1
(

1
γs+l

+
1

γs+l−1
+ ... +

1
γs+1

) +
cs−1

cs+l−1
xδ.

(2.10)

Substituting u = e−v and F (x) = e−w in (2.10), we have

1
(l − 1)!

∫ ∞

0

(
F
−1(e−(w+v))

)δ
(1− e−(m+1)v)l−1(e−v)γs+ldv

− cs−1

cs+l−1

(
F
−1(e−w)

)δ
=

cs−1

cs+l−1
(

1
γs+l

+
1

γs+l−1
+ ... +

1
γs+1

).

(2.11)
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We observe that the right hand side of (2.11) is independent of w ,
so letting w = 0 in (2.11) and noting that F

−1(1) = 0 , we arrive at

1
(l − 1)!

∫ ∞

0

(
F
−1(e−v)

)δ
(1− e−(m+1)v)l−1(e−v)γs+ldv

=
cs−1

cs+l−1
(

1
γs+l

+
1

γs+l−1
+ ... +

1
γs+1

).
(2.12)

Now, in view of (2.11) and (2.12), we have

1
(l − 1)!

∫ ∞

0

(
F
−1(e−(w+v))

)δ
(1− e−(m+1)v)l−1(e−v)γs+ldv

− 1
(l − 1)!

∫ ∞

0

(
F
−1(e−v)

)δ
(1− e−(m+1)v)l−1(e−v)γs+ldv

=
cs−1

cs+l−1

(
F
−1(e−w)

)δ
.

(2.13)

Let H =
∫∞
0 (1− e−(m+1)v)l−1(e−v)γs+ldv. Putting z = (m + 1)v ,

we have

H =
∫ ∞

0
(1− e−(m+1)v)l−1(e−v)γs+ldv

=
1

m + 1

∫ ∞

0
(1− e−z)l−1e−

γs+l
m+1

zdz.

(2.14)

Upon integration by parts on the right hand side of (2.14) , l time
and substituting v = (m+1)

z , we have

1
(l − 1)!

∫ ∞

0

(
F
−1(e−v)

)δ
(1− e−(m+1)v)l−1(e−v)γs+ldv

=
cs−1

cs+l−1

(
F
−1(e−w)

)δ
.

(2.15)

In view of (2.13) and (2.15) , we obtain
∫ ∞

0

(
F
−1(e−(w+v))

)δ
(1− e−(m+1)v)l−1(e−v)γs+ldv

−
∫ ∞

0

(
F
−1(e−v)

)δ
(1− e−(m+1)v)l−1(e−v)γs+ldv

=
∫ ∞

0

(
F
−1(e−w)

)δ
(1− e−(m+1)v)l−1(e−v)γs+ldv.
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Upon simplification of the above equality, we arrive at∫ ∞

0

[(
F
−1(e−(w+v))

)δ
−

(
F
−1(e−v)

)δ
−

(
F
−1(e−w)

)δ
]
×

(1− e−(m+1)v)l−1(e−v)γs+ldv

= 0.

(2.16)

In view of the fact that X belongs to the class C , we must have

(
F
−1(e−(w+v))

)δ
=

(
F
−1(e−v)

)δ
+

(
F
−1(e−w)

)δ
, for all v and w ≥ 0.

(2.17)

Putting G (u) =
(
F
−1(e−u)

)δ
, we can write (2.17) as

G (x + y) = G (x) + G (y) , for all x and y ≥ 0.(2.18)

Equation (2.18) is the well-known Cauchy functional equation whose
solution is G (x) = x

θ , for all x ≥ 0 where θ is a constant. Thus(
F
−1(e−x)

)δ
= x

θ from which we have F (x) = 1− e−θx. In view of the
boundary conditions F (0) = 0 and limx→∞ F (x) = 1 , we must have

F (x) = 1− e−θxδ
, x ≥ 0, θ > 0, δ > 0.(2.19)

Note that we can assume without loss of generality θ = 1.

Remark 2.4. For δ = 1 , Theorem 2.2 gives a characterization of
the exponential distribution based on the generalized order statistics.

The following theorem gives characterization of power function dis-
tribution using lgos.

Theorem 2.5. Let {Xn , n ≥ 1} be a sequence of i.i.d. random
variables with an absolutely continuous cdf F (x) , corresponding pdf
f (x) and E [Xp] < ∞. For θ > 0 and l ∈ N

(θγs+1 + p)(θγs+2 + p)....(θγs+l
+ p)

γs+1γs+2....γs+l
×

E(((X∗(s + l, n,m, k))p |(X(r, n,m, k) = x)

= θlE((X∗(s, n, m, k))p | X(r, n, m, k) = x),

(2.20)

if and only if

(2.21) F (x) = xθ, 0 ≤ x ≤ 1.
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Proof. Is similar to that of Theorem 2.1.
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