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AVERAGE OF L-FUNCTIONS OF ARTIN-SCHREIER
EXTENSIONS

HwaNYUP JUNG*

ABSTRACT. Let k = F,(t) be a rational function field over the finite
field F,. In this paper we obtain formulas of average values of L-
functions of some family of Artin-Schreier extensions over k.

1. Introduction

The average of a family of L-functions has been studied by many
authors. This problem was initiated by Gauss who made two famous
conjectures on average values of class numbers of of orders in quadratic
fields. These conjectures were proved by Lipschitz in imaginary qua-
dratic fields case and by Siegel [7] in real quadratic fields case. By the
Dirichlet’s class number formula, these conjectures can be stated as an
average of L-functions at s = 1 associated to orders in quadratic fields.
Takhtadzjan and Vinogradov [8] obtained an average formula for the
L-functions of quadratic fields which holds for all s € C with Re(s) > 1.
They also gave an average formula for the L-functions of quadratic fields
with prime discriminants [9]. Let k = F,(¢) be a rational function field
over the finite field F,, where ¢ is a power of a prime number p, and
A = F,[t] be the polynomial ring. The formulas of average values of
the L-functions associated to orders in quadratic extensions of k are ob-
tained by Hoffstein and Rosen [3] when ¢ is odd and by Chen [2] when
q is even. Hoffstein and Rosen [3] also gave average formulas for the
L-functions associated to maximal orders in quadratic extensions of k.
Prime [5] obtained an average of the L-functions associated to maxi-
mal orders in ramified imaginary quadratic extensions of k with prime
fundamental discriminants. Bae, Jung and Kang [1] obtained averages
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of the L-functions associated to maximal orders of Kummer extensions
K = k(~/P) of k, where where / is a prime divisor of ¢ — 1 and P runs
over monic irreducible polynomials in A. Rosen [6] gave averages of the
L-functions associated to orders of Kummer extensions of k of degree
¢. Bae, Jung and Kang [1] obtained averages of the L-functions asso-
ciated to orders of Artin-Schreier extensions of k. Let K, = k(o) be
the Artin-Schreier extension of k generated by a root «a,, of 2P — x = u,
where u = £ € k is normalized (see §2.1). Then G(K,) = A which is a
monic polynomial in A is uniquely determined by the field K. In [1],
Bae, Jung and Kang gave an average of the L-functions associated to
maximal orders of Artin-Schreier extensions K, of k of degree 2 with
monic irreducible G(K,,). In this paper we study the average of the L-
functions associated to maximal orders of Artin-Schreier extensions K,
of k of general degree p with monic irreducible G(K,). In §2, we recall
some basic facts on the Artin-Schreier extensions of k and L-functions
associated to maximal orders of Artin-Schreier extensions. We also give
two key lemmas and their corollaries which play important roles in the
computations of average of L-functions. The proofs of these lemmas are
given in [1] for p = 2. In §3, we give averages of the L-functions as-
sociated to maximal orders of real/inert imaginary/ramified imaginary
Artin-Schreier extensions K, of k with monic irreducible G(K,,). In ram-
ified imaginary case, for a given monic irreducible polynomial P € A,
there are infinitely many ramified imaginary Artin-Schreier extensions
K, of k with G(K,) = P, so we also need to fix the degree of numerators
of u in the computation of average of L-functions.

2. Preliminaries

2.1. Artin-Schreier extensions

Let k = Fy(t) and A = F,[t], where ¢ is a power of a prime p. Let
ook, = (1/t) be the infinite prime of k. We denote by AT the set of monic
polynomials in A and by P(A) the set of monic irreducible polynomials
in A. Write A, = {N € A : deg(N) =n}, Al =ATNA, and P,(A) =
P(A)NA, (n>0). Forany 0# N € A, let |N| = #(A/NA) = glee),
O(N) = #(A/NA)*, where #X denotes the cardinality of a set X, and
sgn(N) denote the leading coefficient of N. Let p(z) = 2P — x be the
Artin-Schreier operator. For u = % € k with A € A" B € A and
ged(A, B) = 1, we say that u is normalized if it satisfies the following
conditions: (i) if A = [[;_; P{*, then pe; for each 1 < i < r, (ii) if



Average of L-functions of Artin-Schreier extensions 601

deg(B) > deg(A), then p(deg(B)—deg(A)), and (iii) if deg(B) = deg(A),
then sgn(B) & p(F,). Let K, = k(ay) be the Artin-Schreier extension
of k generated by a root «, of p(Fzx) = u. Let O, be the integral
closure of A in K,. If we write u = f(T) + 5 with f(T) € A and
deg(B1) < deg(A), then one can show that f(7) and A are uniquely
determined by the field K,. Also, if K is an Artin-Schreier extension of
k, then there exists such a normalized u € k such that K = K,. Let
G(K) = A be the denominator of u as above. The discriminant d, of
O, over A is (A -rad(A))P~!, where rad(A) denotes the product of the
distinct monic irreducible divisors of A (see [1, Corollary 2.7]). The local
discriminant ds, at ooy, is oo,(f*l)(deg(f(T))H) if deg(f(T')) > 0 and 1
otherwise. The discriminant dg, of K, is defined to be d,, - d, . We say
that the Artin-Schreier extension K /k is real, inert imaginary or ramified
imaginary according as ooy splits completely, is inert or ramifies in K.
Then, the extension K, /k is real, inert imaginary or ramified imaginary
according as deg(B) < deg(A), deg(A) = deg(B) or deg(A) < deg(B).
(See [1, 4] for details.)

2.2. L-functions of Artin-Schreier extensions

Fix an isomorphism % : I, — u, sending 1 to a primitive p-th root ¢,
of unity, where p, is the group of p-th roots of unity in C. For u € k and
P € P(A) which is prime to the denominator of u, define [u, P) € [, by
(P, Ky/k)(ay) = ay+[u, P), where (P, K, /k) is the Artin automorphism
at P. Extend this to N € AT, which is prime to the denominator of u,
by multiplicativity. For any N € AT, define {#} to be 9([u, N)) if N is
prime to the denominator of u and 0 otherwise. The L-function L(s, x%)
associated to x%,(-) = {¥}* (0 <i < p— 1) is defined by

L(s,x4) = > XL(N)IN|~*.
NeA+
We can write

L(s.x) =Y o (u)g™™ with o(u) = Y xiL(N).
n=0 NeAt

It is well known that L(s, x%,) is a polynomial in ¢~* of degree deg(rad(A))+
deg(B) — 1 or deg(A) + deg(rad(A)) — 1 according as oo ramifies in K,
or otherwise for 1 <¢ <p—1.
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2.3. Two key lemmas

For M,N € A", two sums Tjg/? y and I’g\?  are defined by

TJ(\??M = Z {D/TM}iv Fg\if),M = Z {D/TM}Z

deg(D)<deg(M) deg(D)<deg(M)
ged(D,M)=1
for 1 <i<p-—1. Note that
@  _ (4)
Tvw = 2. Tyw
MeA+ M|M

and by Mobius inversion formula,
(2.1) V=Y wnry o
MeA+ M|M

By definition, we have that T](\?M = 0 if ged(N, M) # 1 and T](\;?M =
O(M) if gcd(N, M) =1 and N is a p-th power.

LEMMA 2.1. Let P € P,,(A) and N € Al with PN. If N is not a
p-th power, then FE\Z,)P =0for1<i<p-—1.

Proof. We first consider the case n < m. The set {B/P : B €
A,deg(B) < m} contains a complete residue system modulo N. So

the map B {B—]CP}" is a surjective additive character from {B € A :
deg(B) < m} onto p,. Hence I’g\lf)P is a multiple of 14-(p+- - -+C£71 =0,
ie, F%)P = 0. Now assume n > m, say n = m + h for some positive

integer h. Since {B/P : B € A, deg(B) < n} contains a complete residue
system modulo N, we have

- X (Y- L ¥ (%)

deg(B)<n =0 BE€A,, 4,

as above. For any B € A,,4;, we can write B = QP + R with Q) € A;
and deg(R) < m. Then,

S - (2 X ) - T {s)
BeA, 41 Qe deg(R)<m Qe

Hence, we get

0= TS S {8) =t X {8))

=0 QeA, deg(Q)<h
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Assume that F%)P # 0. Then Zdeg(Q)<h{%}i = —1. If there exists
Q € A with deg(Q) < h such that {%} # 1, then Zdeg(Q)<h{%}i =0,
which is a contradiction. But, if {%} = 1for all Q € A with deg(Q) < h,

then Zdeg(Q) <h {%}Z = ¢", which is also a contradiction. Therefore, we
have FS\?’P =0. ]
COROLLARY 2.2. Let P € Pp,(A) and N € A} with PN. If N is not
a p-th power, then T](\;)P =—1lfor1<i<p-—1.
Proof. By Lemma 2.1 and (2.2), we have T](\;,)P = —F%{l =—-1. O

For M, N € A" and positive integer ¢, two sums TJ(\?M . and fg\z,) Me
are defined by

GO B A P SR L0

deg(B)=deg(M)+c deg(B)=deg(M)+c
ged(B,M)=1
for 1 <i<p-—1. Note that
p@ 7(4)
F]\7‘[7M7C - Z TN,M,C

MeA+ M|M
and by Mobius inversion formula,
P )
(2:2) Tyae= 2. HODTY,
MeA+ M|M

By definition, we have that T](\;’)Mp = 0 if ged(N, M) # 1 and Tﬁ?M’C =
(¢ — 1)g"®(M) if ged(N, M) =1 and N is p-th power.

LEMMA 2.3. Let P € P,,(A) and N € A} with PN. If N is not a
p-th power, then fg\lf)ﬁc =0forl1 <i<p-1.

Proof. Since F%) p = 0, there exists By € A with deg(By) < m such
that {B%P} # 1, say {B%P} = ¢J° for some 1 < jo < p— 1. Let X, be
the set of B € Ay, such that {BT/P}i =(¢ (0<a<p—1). Let j, be
an integer such that (ijo)j, = @ mod p. Then the map B — B + j,By
is a bijection from Xy onto X,. Hence, we have

) p-! i
- 5 () v
a=0 BEX,
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which completes the proof. O
COROLLARY 2.4. Let P € P, (A) and N € A} with PN. If N is not

a p-th power, then ‘
1
- > {%

BeA,
for1 <i<p-—1.

Proof. 1t follows from Lemma 2.3 and (2.2). O

3. Average of L-functions of Artin-Schreier extensions
Let Ca(s) = > - near |IN| 7% be the zeta function of A. Tt is easy to see
that (a(s) = = qll -. In this section we study the averages of L-functions
associated to maximal orders of real/inert imaginary/ramified imaginary

Artin-Schreier extensions K, of k with monic irreducible G(K,), respec-
tively.

3.1. Real case

For P € P(A), let §p ={B € A: B # 0,deg(B) < deg(P)} and Fp
be the set of real Artin-Schreier extensions K of k with G(K) = P. It
is easy to show that for any By, By € §p, Kp,/p = Kp,/p if and only if
Bi = Bs. Hence, the map B — Kp/pisa bijection from §p onto Fp.

THEOREM 3.1. For s € C with Re(s) > % and 1 < i <p-—1, we have

> PeP(a) 2oBesp L(S; XiB/P)

T (- DEPa) )
Proof. Let
L(s, x
fm(s) = Lrepus) Lnesy 15 Xyp) — Ca(ps).

(qm - 1)#Pm(A)
Since L(s, X%/P) is a polynomial in ¢~* of degree 2m —1 for P € P,,(A)
and B € §p, we have

(3.1)
sz ! ZPGPm (A) ZBGEP U" (B/P) o = —ps)n
Jm(s) = ( — 1)#Pm( ) o Z q(l :
Put

fmw="Y D oW(B/P).

PEP,,(A) BEFP
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Then, we have

= ¥ L S {%)- ¥ T 10
PEPm(A) Nea BESP PePm(A) NeA
By definition, we have that T\, = 0 if P|N and T\, = ¢™ — 1 if PN
and N is a p-th power. If PN and N is not a p-th pbwer, by Corollary
2.2, we have T](\i)P = —1. For pn, since any N € A" will never be a p-th
power, we have

q"# P (A if n < m,
—(q" = "™ #P(A)  if m<n<2m—1.

(3'2) fm,n = {

For p|n, we have

(33) fan=@@"=1) > > 1- > Yoo

Per(A) NeAl,PN PePm(A)  NeAfl PN
N:p-th power N:not p-th power

For P € P,,(A) and N € A}, since n < 2m — 1, if N is a p-th power,
then N is not divisible by P. Hence we have

(3.4) o= Y 1=¢r

NeAf PN NeAf
N:p-th power N:p-th power
and
n_ e ifn<m
(8:5) Z L= {q”—qz —qg" ™ ifm<n7< 2m —1
NeAt PN 9 q q - = )

N:not p-th power

For p|n, by inserting (3.4) and (3.5) into (3.3), we have

(3.6)
fn = qz(qm—l)#pm(A)_{(qn —q7)#Pm(A) if n <m,

(@" — g% — "™ H#P(A)  ifm<n<2m—1.

By inserting (3.2) and (3.6) into (3.1) and rearranging the terms, we have

oo

fuls) == > gt

n=[2m=1141

2 1
[ m— ] 2m—1

<2m21q1 s)n Z (1— PS)”,q*m Z q(ls)n).

n=0
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For s € C with 0 = Re(s) > %, since 1 — po < 0, we have

0 0 (1—po)([22-2]+1)
(1—ps)n < (1—po)n _ 4 v
q < q = —0
n=(2m=11 41 n=(2m=1141
and o
(1—ps)n [mTi] (1—po)n 2m—1 +1
_ qm —
as m — oo. Now, for s € C with o = Re(s) > 3, we have
2m 1 —s)n 2m—1 —o)n
‘Z < Zn:O q(l ) .
= " —1
Ifo #1,
sz()_l q(l—a)n g™ — qm(172a) 0
n= _ N
qgm —1 (I—g ™)1 —q1=9)
and if o =1,
Eiﬁgl q(l—cr)n m
m _ 1 - gm —1 —0

as m — oo. Finally, for s € C with o = Re(s) > %, we have
2m=1 (1- 2m—1 (1— 2m—1 (1_
‘Z m— n anm q(l o)n ano q(l o)n

< —0
qm™ (g™ —1) g™ —1

1)

as m — oo. Therefore, for s € C with Re(s) > 3, we get fn(s) — 0 as m — oo,

which completes the proof.

3.2. Inert imaginary case

Let {0,&1,...,&—1} be a set of representatives of F,/p(F,). For P €
P(A), let &p = {(,P+ B : B € §p,1 < a < p— 1} and Gp be the
set of inert imaginary Artin-Schreier extensions K of k with G(K) = P.
It is easy to show that, for any Bi,Bs € §p and 1 < a,b < p—1,
K(faPJrBl)/P = K(EbP+BQ)/P if and only if @ = b and Bl = BQ. ThllS,

the map §, P + B — K, p4p)/p is a bijection from &p onto Gp.

THEOREM 3.2. For s € C with Re(s) > § and 1 <i < p—1, we have

lim ZBGSPZ L(S Xg +B/P)
m—oe  (p—1)(¢™ — 1)#Pm(A)

Proof. Let

> =Calps).

PePm(A)

(s) = ZBGSP Z L(S Xg +B/P)
gm (p— (¢ — D#Pm(A)

> —Calps).

PePm(A)
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Since L(s,XéﬁB/P) is a polynomial in ¢~° of degree 2m — 1 for any
P e Pn(A) and §,P + B € &p, we have

S pepa) Spese net o0 (6o + B/P)g™ &
gmie) = b D" - DEPE) P

Put

Gmn =Y ZZU (éa+ B/P).

PEP.,(A) BEFp a=1
Then we have

o= T S5 5 {lerjpir

PEPm(A) BEFp a=1 Necat
p—l i
> > S sy
PePm(A) Nead a=1

Since p(F,) is contained in the kernel of Trg_p, : Fg — Fp, we have
{Tre,/x, () : 1 < a < p—1} = F,\{0}. Note that {5} = (Trg, g, (€a)"

for N € Af. If pn, then Zg;}{%"}’ =G+ + ¢ = 1, 50
gmn = —fmn. I pln, then {%} =1, 50 gmn = (p — 1)fm,n For
the rest of proof, we can now follow a similar procedure in the proof of
Theorem 3.1 to show g, (s) — 0 as m — oo. O

3.3. Ramified imaginary case

For P € P(A) and positive integer ¢ with pe, let Hp. = {B € A :
PB,deg(B) = deg(P)+c} and Hp, be the set of ramified Artin-Schreier
extensions K of k with G(K) = P and whose discriminant dg is P21
oo,(ep_l)(cﬂ). It is easy to show that, for any B,B’ € $p., we have
that Kp/p = Kpip if and only if B’ = B + P(DP — D) for some
D € A. We say that B, B’ € p,. are equivalent, denoted by B ~ B’ if
B’ = B+ P(DP — D) for some D € A. Let [B] be the equivalence class
of B € §, . with respect to ~, and 5;)]376 ={[B]: B € Hp}. Then, the
map [B] — Kpg/p is a bijection from S%P,C onto Hp.. For B € Hp., we
have a surjective map

(37)  {DeA:deg(D) < [¢/p]} — [B], D — B+ P(D" - D).

For D, FE € A with deg(D),deg(F) < [c¢/p], we have that B + P(DP —
D) =B+ P(EP—FE) if and only if D — E € F,,. Hence, the map in (3.7)
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is p to 1, so we have #[B] = ! Since #9pe = #Ddeg(P)+e — #A =

q“(q — 1)(qdeg(P) — 1), we have
#9pe = pg° P (g — 1)(¢?=P) —1).

THEOREM 3.3. For s € C with Re(s) > %, positive integer ¢ with pc
and 1 <1i <p—1, we have

ZPer(A) Z[Blefap,c L(s, XB/P)

1 =
Jim 7, (m,c) = Ca(ps),
where I;(m, c) = pg®1/P)(q — 1)(¢™ — 1)#Pm(A).
Proof. Let
& L(S, X’L )
hinse(s) = 2uPePn () 2Bl BE Ca(ps).

fq(m,c)

Since L(s,x’é/P) is a polynomial in ¢—* of degree 2m + ¢ — 1 for P €
Pm(A) and B € Hp., we have

hm;C(S)
(3.8) Soamaer IZPGPm(A)Z[B]ef)PC o) (B/P)g™™ &

- fq(m, c) a Z )

Put

PEPm( ) [B}Gf)p‘c
Then, we have

frm e = [c/p )DEDIDIRE S I q[c/p > 2 Tipe

PePm(A) NeAl BEHP.e PePm(A) Neat

If PN, then T\, . = 0 by definition. If PN and N is a p-th power, then
TJ(\?PC = q¢°(q— 1)( ™—1). If PN and N is not a p-th power, by Corollary

2.4, we have TNP ZBeA{ Y. Put aNC_ZBeA{ }e. If pn,
since any N € A* will never be a p-th power, we have

(39) hm,n;c = q[c/p] Z Z ON,c-

PePm(A) Nea
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If p|n, we have

hm,n;c = _ﬁ Z Z QN ¢

PePm(A)  NeAf,PN
N:not p-th power

N e VR VU VI SR W ¢

PePm(A) Neal,PN

N:p-th power
Since
qr if 2 <m
SEEEIED SIS £y <m
qp(l_q_m) if & Zm7
NeAf PN NieAf PN P
N:p-th power P
we have
(3.1())
hm,n;c

\:

p ¢+ I,(m.c) f,, <m,

= — aN n s

qle/) Pe%(A) NeAEPN ¢ {qp (1—q ™) I;(m,c) lf n
N:not p—y‘éfl power

By inserting (3.9) and (3.10) into (3.8) and rearranging the terms, we
have

[2m+cfl} o
he(s) = =™ Y P - Y
n=m n:[2m2071]+1

2m—+c—1

1 p —ns
e & a2, 2 e

n=0 PePm(A)  NeAl,PN
N:not p-th power

For s € C with o = Re(s) > %, as m — 0o, we have

[2m+c—1] [2m+c—1]
p p
q—m Z qn(l—ps) < q—m Z qn(l—po)
n=m n=m
< q_mpaqw} Cma+ 1) 0
p

and
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o0 (1-po) q(lpr)([zm%fl]H)
n(l—po) __
= Z 4 1 —¢(-po) -0

n:[Qm-;c—l ]+1

Z qn(lfps)

' o0
n:[Zm-;c—l]_i_l

Note that
S oammi- Y - Y
NeA} PN NeAl,PIN NeAt PN
N:mot p-th power N:p-th power
where
Z 1 — 0 if n < m,
N "™ fm<n<2m+c—1.
NeAf,PIN

Since ¢ will be fixed and we will take m — oo, without loss of generality,
we may assume m > ¢, so that n < 2m +c¢—1 < 3m — 1. Since the
proof of theorem for p = 2 is already given in [1], we will assume that p
is odd, so that n < pm. If N is a p-th power and P|N, then PP|N, so
pm < n. Then, we have

Z 1 Z 1 {On if pn,

» if p|n.
NeAL,PN NeAt 4 rl
N:p-th power N:p-th power

Hence, we have

q", if n < m, pn,

n_gp if n <m, pln

1) R
NEA:{,PN q —q ) N lfan, n,

N:not p-th power qn — qnfm — q;, if n Z m, p\n.

For 0 = Re(s) > %, by using the fact that |ay,| < #A. = (¢ —1)¢° and
(3.11), we have

2m+c—1

1 p —ns
fq(m’ c) Z W Z Z QN cq

n=0 PEPm(A)  NeAl,PN
N:not p-th power

2m+c—1

1 p —no
< Fmo 2 e 2 2. lawea

n=0 PePm(A)  NeAl,PN
N:not p-th power
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1 2m~+c—1 2m~+c—1 L 2m+c—1
< g (5 e TS e oS )
q n=0 n=0 n=m
pln
1 2m—4c—1
<1 2 ¢,
n=0

If 0 =1, we have

22m+c—1 q(l—a)n B 2m + ¢

n=0
—0
qm —1 qm —1
and if o # 1, we have
2721728-0—1 q(l—a)n 1 g™ — qm(1—20)+c(1—a)
gm —1 _1_q—m. 1_q(1—cr) —0
as m — oo. This completes the proof. O
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