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AVERAGE OF L-FUNCTIONS OF ARTIN-SCHREIER

EXTENSIONS

Hwanyup Jung*

Abstract. Let k = Fq(t) be a rational function field over the finite
field Fq. In this paper we obtain formulas of average values of L-
functions of some family of Artin-Schreier extensions over k.

1. Introduction

The average of a family of L-functions has been studied by many
authors. This problem was initiated by Gauss who made two famous
conjectures on average values of class numbers of of orders in quadratic
fields. These conjectures were proved by Lipschitz in imaginary qua-
dratic fields case and by Siegel [7] in real quadratic fields case. By the
Dirichlet’s class number formula, these conjectures can be stated as an
average of L-functions at s = 1 associated to orders in quadratic fields.
Takhtadzjan and Vinogradov [8] obtained an average formula for the
L-functions of quadratic fields which holds for all s ∈ C with Re(s) ≥ 1.
They also gave an average formula for the L-functions of quadratic fields
with prime discriminants [9]. Let k = Fq(t) be a rational function field
over the finite field Fq, where q is a power of a prime number p, and
A = Fq[t] be the polynomial ring. The formulas of average values of
the L-functions associated to orders in quadratic extensions of k are ob-
tained by Hoffstein and Rosen [3] when q is odd and by Chen [2] when
q is even. Hoffstein and Rosen [3] also gave average formulas for the
L-functions associated to maximal orders in quadratic extensions of k.
Prime [5] obtained an average of the L-functions associated to maxi-
mal orders in ramified imaginary quadratic extensions of k with prime
fundamental discriminants. Bae, Jung and Kang [1] obtained averages
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of the L-functions associated to maximal orders of Kummer extensions
K = k(

√̀
P ) of k, where where ` is a prime divisor of q − 1 and P runs

over monic irreducible polynomials in A. Rosen [6] gave averages of the
L-functions associated to orders of Kummer extensions of k of degree
`. Bae, Jung and Kang [1] obtained averages of the L-functions asso-
ciated to orders of Artin-Schreier extensions of k. Let Ku = k(αu) be
the Artin-Schreier extension of k generated by a root αu of xp − x = u,
where u = B

A ∈ k is normalized (see §2.1). Then G(Ku) = A which is a
monic polynomial in A is uniquely determined by the field Ku. In [1],
Bae, Jung and Kang gave an average of the L-functions associated to
maximal orders of Artin-Schreier extensions Ku of k of degree 2 with
monic irreducible G(Ku). In this paper we study the average of the L-
functions associated to maximal orders of Artin-Schreier extensions Ku

of k of general degree p with monic irreducible G(Ku). In §2, we recall
some basic facts on the Artin-Schreier extensions of k and L-functions
associated to maximal orders of Artin-Schreier extensions. We also give
two key lemmas and their corollaries which play important roles in the
computations of average of L-functions. The proofs of these lemmas are
given in [1] for p = 2. In §3, we give averages of the L-functions as-
sociated to maximal orders of real/inert imaginary/ramified imaginary
Artin-Schreier extensionsKu of k with monic irreducibleG(Ku). In ram-
ified imaginary case, for a given monic irreducible polynomial P ∈ A,
there are infinitely many ramified imaginary Artin-Schreier extensions
Ku of k with G(Ku) = P , so we also need to fix the degree of numerators
of u in the computation of average of L-functions.

2. Preliminaries

2.1. Artin-Schreier extensions

Let k = Fq(t) and A = Fq[t], where q is a power of a prime p. Let
∞k = (1/t) be the infinite prime of k. We denote by A+ the set of monic
polynomials in A and by P(A) the set of monic irreducible polynomials
in A. Write An = {N ∈ A : deg(N) = n}, A+

n = A+ ∩ An and Pn(A) =

P(A) ∩ An (n ≥ 0). For any 0 6= N ∈ A, let |N | = #(A/NA) = qdeg(N),
Φ(N) = #(A/NA)×, where #X denotes the cardinality of a set X, and
sgn(N) denote the leading coefficient of N . Let ℘(x) = xp − x be the
Artin-Schreier operator. For u = B

A ∈ k with A ∈ A+, B ∈ A and
gcd(A,B) = 1, we say that u is normalized if it satisfies the following
conditions: (i) if A =

∏r
i=1 P

ei
i , then pei for each 1 ≤ i ≤ r, (ii) if
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deg(B) > deg(A), then p(deg(B)−deg(A)), and (iii) if deg(B) = deg(A),
then sgn(B) 6∈ ℘(Fq). Let Ku = k(αu) be the Artin-Schreier extension
of k generated by a root αu of ℘(Fx) = u. Let Ou be the integral

closure of A in Ku. If we write u = f(T ) + B1
A with f(T ) ∈ A and

deg(B1) < deg(A), then one can show that f(T ) and A are uniquely
determined by the field Ku. Also, if K is an Artin-Schreier extension of
k, then there exists such a normalized u ∈ k such that K = Ku. Let
G(K) = A be the denominator of u as above. The discriminant du of
Ou over A is (A · rad(A))p−1, where rad(A) denotes the product of the
distinct monic irreducible divisors of A (see [1, Corollary 2.7]). The local

discriminant d∞k
at ∞k is ∞(p−1)(deg(f(T ))+1)

k if deg(f(T )) > 0 and 1
otherwise. The discriminant dKu of Ku is defined to be du ·d∞k

. We say
that the Artin-Schreier extension K/k is real, inert imaginary or ramified
imaginary according as ∞k splits completely, is inert or ramifies in K.
Then, the extension Ku/k is real, inert imaginary or ramified imaginary
according as deg(B) < deg(A), deg(A) = deg(B) or deg(A) < deg(B).
(See [1, 4] for details.)

2.2. L-functions of Artin-Schreier extensions

Fix an isomorphism ψ : Fp → µp sending 1 to a primitive p-th root ζp
of unity, where µp is the group of p-th roots of unity in C. For u ∈ k and
P ∈ P(A) which is prime to the denominator of u, define [u, P ) ∈ Fp by
(P,Ku/k)(αu) = αu+[u, P ), where (P,Ku/k) is the Artin automorphism
at P . Extend this to N ∈ A+, which is prime to the denominator of u,
by multiplicativity. For any N ∈ A+, define { uN } to be ψ([u,N)) if N is

prime to the denominator of u and 0 otherwise. The L-function L(s, χiu)
associated to χiu(·) = {u· }

i (0 ≤ i ≤ p− 1) is defined by

L(s, χiu) =
∑
N∈A+

χiu(N)|N |−s.

We can write

L(s, χiu) =
∞∑
n=0

σ(i)
n (u)q−ns with σ(i)

n (u) =
∑
N∈A+

n

χiu(N).

It is well known that L(s, χiu) is a polynomial in q−s of degree deg(rad(A))+
deg(B)− 1 or deg(A) + deg(rad(A))− 1 according as ∞k ramifies in Ku

or otherwise for 1 ≤ i ≤ p− 1.
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2.3. Two key lemmas

For M,N ∈ A+, two sums T
(i)
M,N and Γ

(i)
M,N are defined by

T
(i)
N,M =

∑
deg(D)<deg(M)

gcd(D,M)=1

{
D/M
N

}i
, Γ

(i)
N,M =

∑
deg(D)<deg(M)

{
D/M
N

}i
for 1 ≤ i ≤ p− 1. Note that

Γ
(i)
N,M =

∑
M̄∈A+,M̄ |M

T
(i)

N,M̄

and by Möbius inversion formula,

(2.1) T
(i)
N,M =

∑
M̄∈A+,M̄ |M

µ(M̄)Γ
(i)

N,M/M̄
.

By definition, we have that T
(i)
N,M = 0 if gcd(N,M) 6= 1 and T

(i)
N,M =

Φ(M) if gcd(N,M) = 1 and N is a p-th power.

Lemma 2.1. Let P ∈ Pm(A) and N ∈ A+
n with PN . If N is not a

p-th power, then Γ
(i)
N,P = 0 for 1 ≤ i ≤ p− 1.

Proof. We first consider the case n ≤ m. The set {B/P : B ∈
A,deg(B) < m} contains a complete residue system modulo N . So

the map B 7→ {B/PN }
i is a surjective additive character from {B ∈ A :

deg(B) < m} onto µp. Hence Γ
(i)
N,P is a multiple of 1+ζp+· · ·+ζp−1

p = 0,

i.e, Γ
(i)
N,P = 0. Now assume n > m, say n = m + h for some positive

integer h. Since {B/P : B ∈ A, deg(B) < n} contains a complete residue
system modulo N , we have

0 =
∑

deg(B)<n

{
B/P
N

}i
= Γ

(i)
N,P +

h−1∑
l=0

∑
B∈Am+l

{
B/P
N

}i
as above. For any B ∈ Am+l, we can write B = QP + R with Q ∈ Al
and deg(R) < m. Then,∑
B∈Am+l

{
B/P
N

}i
=
( ∑
Q∈Al

{
Q
N

}i )( ∑
deg(R)<m

{
R/P
N

}i )
= Γ

(i)
N,P

∑
Q∈Al

{
Q
N

}i
.

Hence, we get

0 = Γ
(i)
N,P + Γ

(i)
N,P

h−1∑
l=0

∑
Q∈Al

{
Q
N

}i
= Γ

(i)
N,P

(
1 +

∑
deg(Q)<h

{
Q
N

}i )
.
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Assume that Γ
(i)
N,P 6= 0. Then

∑
deg(Q)<h{

Q
N }

i = −1. If there exists

Q ∈ A with deg(Q) < h such that {QN } 6= 1, then
∑

deg(Q)<h{
Q
N }

i = 0,

which is a contradiction. But, if {QN } = 1 for all Q ∈ A with deg(Q) < h,

then
∑

deg(Q)<h

{
Q
N

}i
= qh, which is also a contradiction. Therefore, we

have Γ
(i)
N,P = 0.

Corollary 2.2. Let P ∈ Pm(A) and N ∈ A+
n with PN . If N is not

a p-th power, then T
(i)
N,P = −1 for 1 ≤ i ≤ p− 1.

Proof. By Lemma 2.1 and (2.2), we have T
(i)
N,P = −Γ

(i)
N,1 = −1.

For M,N ∈ A+ and positive integer c, two sums T̃
(i)
N,M,c and Γ̃

(i)
N,M,c

are defined by

T̃
(i)
N,M,c =

∑
deg(B)=deg(M)+c

gcd(B,M)=1

{
B/M
N

}i
, Γ̃

(i)
N,M,c =

∑
deg(B)=deg(M)+c

{
B/M
N

}i
for 1 ≤ i ≤ p− 1. Note that

Γ̃
(i)
N,M,c =

∑
M̄∈A+,M̄ |M

T̃
(i)

N,M̄,c

and by Möbius inversion formula,

(2.2) T̃
(i)
N,M,c =

∑
M̄∈A+,M̄ |M

µ(M̄)Γ̃
(i)

N,M/M̄,c
.

By definition, we have that T̃
(i)
N,M,c = 0 if gcd(N,M) 6= 1 and T̃

(i)
N,M,c =

(q − 1)qhΦ(M) if gcd(N,M) = 1 and N is p-th power.

Lemma 2.3. Let P ∈ Pm(A) and N ∈ A+
n with PN . If N is not a

p-th power, then Γ̃
(i)
N,P,c = 0 for 1 ≤ i ≤ p− 1.

Proof. Since Γ
(i)
N,P = 0, there exists B0 ∈ A with deg(B0) < m such

that {B0/P
N } 6= 1, say {B0/P

N } = ζj0p for some 1 ≤ j0 ≤ p− 1. Let Xa be

the set of B ∈ Am+c such that {B/PN }
i = ζap (0 ≤ a ≤ p− 1). Let ja be

an integer such that (ij0)ja ≡ a mod p. Then the map B 7→ B + jaB0

is a bijection from X0 onto Xa. Hence, we have

Γ̃
(i)
N,P,c =

p−1∑
a=0

∑
B∈Xa

{
B/P
N

}i
= |X0|(1 + ζp + · · ·+ ζp−1

p ) = 0,
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which completes the proof.

Corollary 2.4. Let P ∈ Pm(A) and N ∈ A+
n with PN . If N is not

a p-th power, then

T̃
(i)
N,P,c = −

∑
B∈Ac

{
B
N

}i
for 1 ≤ i ≤ p− 1.

Proof. It follows from Lemma 2.3 and (2.2).

3. Average of L-functions of Artin-Schreier extensions

Let ζA(s) =
∑

N∈A+ |N |−s be the zeta function of A. It is easy to see

that ζA(s) = 1
1−q1−s . In this section we study the averages of L-functions

associated to maximal orders of real/inert imaginary/ramified imaginary
Artin-Schreier extensions Ku of k with monic irreducible G(Ku), respec-
tively.

3.1. Real case

For P ∈ P(A), let FP = {B ∈ A : B 6= 0,deg(B) < deg(P )} and FP
be the set of real Artin-Schreier extensions K of k with G(K) = P . It
is easy to show that for any B1, B2 ∈ FP , KB1/P = KB2/P if and only if
B1 = B2. Hence, the map B 7→ KB/P is a bijection from FP onto FP .

Theorem 3.1. For s ∈ C with Re(s) > 1
2 and 1 ≤ i ≤ p− 1, we have

lim
m→∞

∑
P∈Pm(A)

∑
B∈FP

L(s, χiB/P )

(qm − 1)#Pm(A)
= ζA(ps).

Proof. Let

fm(s) =

∑
P∈Pm(A)

∑
B∈FP

L(s, χiB/P )

(qm − 1)#Pm(A)
− ζA(ps).

Since L(s, χiB/P ) is a polynomial in q−s of degree 2m−1 for P ∈ Pm(A)

and B ∈ FP , we have

fm(s) =

∑2m−1
n=0

∑
P∈Pm(A)

∑
B∈FP

σ
(i)
n (B/P )q−ns

(qm − 1)#Pm(A)
−
∞∑
n=0

q(1−ps)n.

(3.1)

Put
fm,n =

∑
P∈Pm(A)

∑
B∈FP

σ(i)
n (B/P ).
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Then, we have

fm,n =
∑

P∈Pm(A)

∑
N∈A+

n

∑
B∈FP

{
B/P
N

}i
=

∑
P∈Pm(A)

∑
N∈A+

n

T
(i)
N,P .

By definition, we have that T
(i)
N,P = 0 if P |N and T

(i)
N,P = qm − 1 if PN

and N is a p-th power. If PN and N is not a p-th power, by Corollary

2.2, we have T
(i)
N,P = −1. For pn, since any N ∈ A+

n will never be a p-th
power, we have

fm,n =

{
−qn#Pm(A) if n < m,

−(qn − qn−m)#Pm(A) if m ≤ n ≤ 2m− 1.
(3.2)

For p|n, we have

(3.3) fm,n = (qm − 1)
∑

P∈Pm(A)

∑
N∈A+

n ,PN
N :p-th power

1−
∑

P∈Pm(A)

∑
N∈A+

n ,PN
N :not p-th power

1.

For P ∈ Pm(A) and N ∈ A+
n , since n ≤ 2m − 1, if N is a p-th power,

then N is not divisible by P . Hence we have

(3.4)
∑

N∈A+
n ,PN

N :p-th power

1 =
∑
N∈A+

n
N :p-th power

1 = q
n
p

and ∑
N∈A+

n ,PN
N :not p-th power

1 =

{
qn − q

n
p if n < m,

qn − q
n
p − qn−m if m ≤ n ≤ 2m− 1.

(3.5)

For p|n, by inserting (3.4) and (3.5) into (3.3), we have
(3.6)

fm,n = q
n
p (qm−1)#Pm(A)−

{
(qn − q

n
p )#Pm(A) if n < m,

(qn − q
n
p − qn−m)#Pm(A) if m ≤ n ≤ 2m− 1.

By inserting (3.2) and (3.6) into (3.1) and rearranging the terms, we have

fm(s) = −
∞∑

n=[ 2m−1
p ]+1

q(1−ps)n

− 1

qm − 1

( 2m−1∑
n=0

q(1−s)n −
[ 2m−1

p ]∑
n=0

q(1−ps)n − q−m
2m−1∑
n=m

q(1−s)n
)
.
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For s ∈ C with σ = Re(s) > 1
p , since 1− pσ < 0, we have∣∣∣∣ ∞∑

n=[ 2m−1
p ]+1

q(1−ps)n
∣∣∣∣ ≤ ∞∑

n=[ 2m−1
p ]+1

q(1−pσ)n =
q(1−pσ)([

2m−1
p ]+1)

1− q1−pσ
→ 0

and ∣∣∣∣∑[ 2m−1
p ]

n=0 q(1−ps)n

qm − 1

∣∣∣∣ ≤ ∑[ 2m−1
p ]

n=0 q(1−pσ)n

qm − 1
<

[ 2m−1p ] + 1

qm − 1
→ 0

as m→∞. Now, for s ∈ C with σ = Re(s) > 1
2 , we have∣∣∣∣∑2m−1

n=0 q(1−s)n

qm − 1

∣∣∣∣ ≤ ∑2m−1
n=0 q(1−σ)n

qm − 1
.

If σ 6= 1, ∑2m−1
n=0 q(1−σ)n

qm − 1
=

q−m − qm(1−2σ)

(1− q−m)(1− q(1−σ))
→ 0

and if σ = 1, ∑2m−1
n=0 q(1−σ)n

qm − 1
=

2m

qm − 1
→ 0

as m→∞. Finally, for s ∈ C with σ = Re(s) > 1
2 , we have∣∣∣∣∑2m−1

n=m q(1−s)n

qm(qm − 1)

∣∣∣∣ ≤ ∑2m−1
n=m q(1−σ)n

qm(qm − 1)
≤
∑2m−1
n=0 q(1−σ)n

qm − 1
→ 0

as m→∞. Therefore, for s ∈ C with Re(s) > 1
2 , we get fm(s)→ 0 as m→∞,

which completes the proof.

3.2. Inert imaginary case

Let {0, ξ1, . . . , ξp−1} be a set of representatives of Fq/℘(Fq). For P ∈
P(A), let GP = {ξaP + B : B ∈ FP , 1 ≤ a ≤ p − 1} and GP be the
set of inert imaginary Artin-Schreier extensions K of k with G(K) = P .
It is easy to show that, for any B1, B2 ∈ FP and 1 ≤ a, b ≤ p − 1,
K(ξaP+B1)/P = K(ξbP+B2)/P if and only if a = b and B1 = B2. Thus,
the map ξaP +B 7→ K(ξaP+B)/P is a bijection from GP onto GP .

Theorem 3.2. For s ∈ C with Re(s) > 1
2 and 1 ≤ i ≤ p− 1, we have

lim
m→∞

∑
B∈FP

∑p−1
a=1 L(s, χiξa+B/P )

(p− 1)(qm − 1)#Pm(A)

∑
P∈Pm(A)

= ζA(ps).

Proof. Let

gm(s) =

∑
B∈FP

∑p−1
a=1 L(s, χiξa+B/P )

(p− 1)(qm − 1)#Pm(A)

∑
P∈Pm(A)

−ζA(ps).



Average of L-functions of Artin-Schreier extensions 607

Since L(s, χiξa+B/P ) is a polynomial in q−s of degree 2m − 1 for any

P ∈ Pm(A) and ξaP +B ∈ GP , we have

gm(s) =

∑2m−1
n=0

∑
P∈Pm(A)

∑
B∈FP

∑p−1
a=1 σ

(i)
n (ξa +B/P )q−ns

(p− 1)(qm − 1)#Pm(A)
−
∞∑
n=0

q(1−ps)n.

Put

gm,n =
∑

P∈Pm(A)

∑
B∈FP

p−1∑
a=1

σ(i)
n (ξa +B/P ).

Then we have

gm,n =
∑

P∈Pm(A)

∑
B∈FP

p−1∑
a=1

∑
N∈A+

n

{
(ξaP+B)/P

N

}i

=
∑

P∈Pm(A)

∑
N∈A+

n

p−1∑
a=1

{
ξa
N

}i
T

(i)
N,P .

Since ℘(Fq) is contained in the kernel of TrFq/Fp
: Fq → Fp, we have

{TrFq/Fp
(ξa) : 1 ≤ a ≤ p−1} = Fp\{0}. Note that { ξaN } = ψ(TrFq/Fp

(ξa))
n

for N ∈ A+
n . If pn, then

∑p−1
a=1{

ξa
N }

i = ζp + · · · + ζp−1
p = −1, so

gm,n = −fm,n. If p|n, then { ξaN } = 1, so gm,n = (p − 1)fm,n. For
the rest of proof, we can now follow a similar procedure in the proof of
Theorem 3.1 to show gm(s)→ 0 as m→∞.

3.3. Ramified imaginary case

For P ∈ P(A) and positive integer c with pc, let HP,c = {B ∈ A :
PB, deg(B) = deg(P )+c} and HP,c be the set of ramified Artin-Schreier

extensions K of k with G(K) = P and whose discriminant dK is P 2(p−1) ·
∞(p−1)(c+1)
k . It is easy to show that, for any B,B′ ∈ HP,c, we have

that KB/P = KB′/P if and only if B′ = B + P (Dp − D) for some
D ∈ A. We say that B,B′ ∈ HP,c are equivalent, denoted by B ∼ B′, if
B′ = B + P (Dp −D) for some D ∈ A. Let [B] be the equivalence class

of B ∈ Hp,c with respect to ∼, and H̃P,c = {[B] : B ∈ HP,c}. Then, the

map [B] 7→ KB/P is a bijection from H̃P,c onto HP,c. For B ∈ HP,c, we
have a surjective map

(3.7) {D ∈ A : deg(D) ≤ [c/p]} → [B], D 7→ B + P (Dp −D).

For D,E ∈ A with deg(D),deg(E) ≤ [c/p], we have that B + P (Dp −
D) = B+P (Ep−E) if and only if D−E ∈ Fp. Hence, the map in (3.7)
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is p to 1, so we have #[B] = q[c/p]

p . Since #HP,c = #Adeg(P )+c −#Ac =

qc(q − 1)(qdeg(P ) − 1), we have

#H̃P,c = pqc−[c/p](q − 1)(qdeg(P ) − 1).

Theorem 3.3. For s ∈ C with Re(s) > 1
2 , positive integer c with pc

and 1 ≤ i ≤ p− 1, we have

lim
m→∞

∑
P∈Pm(A)

∑
[B]∈H̃P,c

L(s, χiB/P )

Ĩq(m, c)
= ζA(ps),

where Ĩq(m, c) = pqc−[c/p](q − 1)(qm − 1)#Pm(A).

Proof. Let

hm;c(s) =

∑
P∈Pm(A)

∑
[B]∈H̃P,c

L(s, χiB/P )

Ĩq(m, c)
− ζA(ps).

Since L(s, χiB/P ) is a polynomial in q−s of degree 2m + c − 1 for P ∈
Pm(A) and B ∈ HP,c, we have

hm;c(s)

=

∑2m+c−1
n=0

∑
P∈Pm(A)

∑
[B]∈H̃P,c

σ
(i)
n (B/P )q−ns

Ĩq(m, c)
−
∞∑
n=0

qn(1−ps).
(3.8)

Put

hm,n;c =
∑

P∈Pm(A)

∑
[B]∈H̃P,c

σ(i)
n (B/P ).

Then, we have

hm,n;c =
p

q[c/p]

∑
P∈Pm(A)

∑
N∈A+

n

∑
B∈HP,c

{
B/P
N

}i
=

p

q[c/p]

∑
P∈Pm(A)

∑
N∈A+

n

T̃
(i)
N,P,c.

If P |N , then T̃
(i)
N,P,c = 0 by definition. If PN and N is a p-th power, then

T̃
(i)
N,P,c = qc(q−1)(qm−1). If PN and N is not a p-th power, by Corollary

2.4, we have T̃
(i)
N,P,c = −

∑
B∈Ac

{BN }
i. Put αN,c =

∑
B∈Ac

{BN }
i. If pn,

since any N ∈ A+
n will never be a p-th power, we have

(3.9) hm,n;c = − p

q[c/p]

∑
P∈Pm(A)

∑
N∈A+

n

αN,c.



Average of L-functions of Artin-Schreier extensions 609

If p|n, we have

hm,n;c = − p

q[c/p]

∑
P∈Pm(A)

∑
N∈A+

n ,PN
N :not p-th power

αN,c

+ pqc−[c/p](q − 1)(qm − 1)
∑

P∈Pm(A)

∑
N∈A+

n ,PN
N :p-th power

1.

Since ∑
N∈A+

n ,PN
N :p-th power

1 =
∑

N1∈A+
n/p

,PN1

1 =

{
q

n
p if n

p < m,

q
n
p (1− q−m) if n

p ≥ m,

we have

hm,n;c

= − p

q[c/p]

∑
P∈Pm(A)

∑
N∈A+

n ,PN
N :not p-th power

αN,c +

{
q

n
p Ĩq(m, c) if n

p < m,

q
n
p (1− q−m)Ĩq(m, c) if n

p ≥ m.

(3.10)

By inserting (3.9) and (3.10) into (3.8) and rearranging the terms, we
have

hm;c(s) = −q−m
[ 2m+c−1

p
]∑

n=m

qn(1−ps) −
∞∑

n=[ 2m+c−1
p

]+1

qn(1−ps)

− 1

Ĩq(m, c)

2m+c−1∑
n=0

p

q[c/p]

∑
P∈Pm(A)

∑
N∈A+

n ,PN
N :not p-th power

αN,cq
−ns.

For s ∈ C with σ = Re(s) > 1
p , as m→∞, we have

∣∣∣∣q−m
[ 2m+c−1

p
]∑

n=m

qn(1−ps)
∣∣∣∣ ≤ q−m

[ 2m+c−1
p

]∑
n=m

qn(1−pσ)

≤ q−mpσ
([2m+ c− 1

p

]
−m+ 1

)
→ 0

and
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∣∣∣∣ ∞∑
n=[ 2m+c−1

p
]+1

qn(1−ps)
∣∣∣∣ ≤ ∞∑

n=[ 2m+c−1
p

]+1

qn(1−pσ) =
q

(1−pσ)([ 2m+c−1
p

]+1)

1− q(1−pσ)
→ 0.

Note that ∑
N∈A+

n ,PN
N :not p-th power

1 = #A+
n −

∑
N∈A+

n ,P |N

1−
∑

N∈A+
n ,PN

N :p-th power

1,

where ∑
N∈A+

n ,P |N

1 =

{
0 if n < m,

qn−m if m ≤ n ≤ 2m+ c− 1.

Since c will be fixed and we will take m→∞, without loss of generality,
we may assume m > c, so that n ≤ 2m + c − 1 < 3m − 1. Since the
proof of theorem for p = 2 is already given in [1], we will assume that p
is odd, so that n < pm. If N is a p-th power and P |N , then P p|N , so
pm ≤ n. Then, we have∑

N∈A+
n ,PN

N :p-th power

1 =
∑
N∈A+

n
N :p-th power

1 =

{
0 if pn,

q
n
p if p|n.

Hence, we have

∑
N∈A+

n ,PN
N :not p-th power

1 =


qn, if n < m, pn,

qn − q
n
p , if n < m, p|n,

qn − qn−m, if n ≥ m, pn,

qn − qn−m − q
n
p , if n ≥ m, p|n.

(3.11)

For σ = Re(s) > 1
2 , by using the fact that |αN,c| ≤ #Ac = (q− 1)qc and

(3.11), we have∣∣∣∣ 1

Ĩq(m, c)

2m+c−1∑
n=0

p

q[c/p]

∑
P∈Pm(A)

∑
N∈A+

n ,PN
N :not p-th power

αN,cq
−ns
∣∣∣∣

≤ 1

Ĩq(m, c)

2m+c−1∑
n=0

p

q[c/p]

∑
P∈Pm(A)

∑
N∈A+

n ,PN
N :not p-th power

|αN,c|q−nσ
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≤ 1

qm − 1

( 2m+c−1∑
n=0

qn(1−σ) −
2m+c−1∑
n=0
p|n

q
n( 1

p
−σ) − q−m

2m+c−1∑
n=m

qn(1−σ)

)

<
1

qm − 1

2m+c−1∑
n=0

qn(1−σ).

If σ = 1, we have ∑2m+c−1
n=0 q(1−σ)n

qm − 1
=

2m+ c

qm − 1
→ 0

and if σ 6= 1, we have∑2m+c−1
n=0 q(1−σ)n

qm − 1
=

1

1− q−m
· q
−m − qm(1−2σ)+c(1−σ)

1− q(1−σ)
→ 0

as m→∞. This completes the proof.
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