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BOUNDEDNESS FOR NONLINEAR PERTURBED
FUNCTIONAL DIFFERENTIAL SYSTEMS VIA
too-SIMILARITY

DoNGg MaAN IMm*

ABSTRACT. This paper shows that the solutions to the nonlinear
perturbed differential system

Y = f(ty) + / o(s,9(3). Tvy(s))ds + hlt, y(t), Toy (1)),

have bounded properties. To show these properties, we impose con-
ditions on the perturbed part f:o g(s,y(s), Tiy(s))ds, h(t,y(t), Toy(t)),
and on the fundamental matrix of the unperturbed system 3’ =
f(t,y) using the notion of h-stability.

1. Introduction

Pachpatte[16,17] investigated the stability, boundedness, and the as-
ymptotic behavior of the solutions of perturbed nonlinear systems under
some suitable conditions on the perturbation term g and on the operator
T. The purpose of this paper is to investigate bounds for solutions of
the nonlinear differential systems further allowing more general pertur-
bations that were previously allowed using the notion of h-stability.

The notion of h-stability (hS) was introduced by Pinto [18,19] with
the intention of obtaining results about stability for a weakly stable
system (at least, weaker than those given exponential asymptotic sta-
bility) under some perturbations. That is, Pinto extended the study
of exponential asymptotic stability to a variety of reasonable systems
called h-systems. Choi, Ryu [7] and Choi, Koo [8] investigated bounds
of solutions for nonlinear perturbed systems. Also, Goo [10,11,12] and
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Im et al. [5,6,14] studied the boundedness of solutions for the perturbed
differential systems.

2. preliminaries

In this paper we study bounds of solutions for a class of the nonlinear
perturbed differential systems of the form
(2.1)

Y = f(t,y) + / 9(s,y(s), Thy(s))ds + h(t, y(t), T2y(t)), y(to) = yo,

to
where f € C(R* x R",R"), g,h € C(R* x R" x R",R") | f(,0) = 0,
g(t,0,0) = h(t,0,0) = 0, R™ is the Euclidean n-space and 717,75 :
C(RT,R") — C(RT,R") are continuous operators. We consider non-
linear unperturbed differential system of (2.1)

(2.2) 2(t) = f(t,2(t), w(to) = o,

where f € C(RT x R",R™), R" = [0,00). We assume that the Jacobian
matrix f, = df/0z exists and is continuous on R x R™ and f(¢,0) = 0.
For z € R™, let |z = (3_)_, a;?)l/Q. For an n X n matrix A, define the
norm |A| of A by [A| = sup, < [Az|.

We let x(t, to, z¢) denote the unique solution of (2.2) passing through
(to, xo), existing on [tp,00). Then we can consider the associated vari-
ational systems around the zero solution of (2.2) and around x(t), re-
spectively,

(2.3) V'(t) = fo(t,0)v(t), v(to) = vo
and
(2.4) 2'(t) = fu(t,z(t, to, 20))2(t), z(to) = 20.

The fundamental matrix ®(t, ¢, zo) of (2.4) is given by
0
P(t,t = —ux(t, ¢
(t, to, z0) 83;0:6(’ 05 %0),

and ®(t,10,0) is the fundamental matrix of (2.3).
We introduce some notions[19] and results to be used in this paper.

DEFINITION 2.1. The system (2.2) (the zero solution z = 0 of (2.2))
is called an h-system if there exist a constant ¢ > 1, and a positive
continuous function h on R* such that

[2(t)] < clwo| A(t) h(to) ™"
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for t > tg > 0 and |zo| small enough (here h(t)™! = ﬁ)

DEFINITION 2.2. The system (2.2) (the zero solution z = 0 of (2.2))
is called (hS) h-stable if there exists 6 > 0 such that (2.2) is an h-system
for |zg| < § and h is bounded.

Let M denote the set of all n x n continuous matrices A(t) defined on
R* and N be the subset of M consisting of those nonsingular matrices
S(t) that are of class C! with the property that S(t) and S~1(t) are
bounded. The notion of ty-similarity in M was introduced by Conti

[9].

DEFINITION 2.3. A matrix A(t) € M is too-similar to a matrix B(t) €
M if there exists an n x n matrix F(t) absolutely integrable over R,
ie.,

JoS IF(t)]dt < oo
such that

(2.5) S(t)+ S(t)B(t) — A(t)S(t) = F(t)
for some S(t) € N.

The notion of t.-similarity is an equivalence relation in the set of
all n x n continuous matrices on R*, and it preserves some stability
concepts [9, 13].

LEMMA 2.4. [19] The linear system
(2.6) 7' = A(t)z, z(to) = o,

where A(t) is an n X n continuous matrix, is an h-system (respectively
h-stable) if and only if there exist ¢ > 1 and a positive and continuous
(respectively bounded) function h defined on R* such that

(2.7) |®(t,t0, z0)| < ch(t) h(to) ™
for t > to > 0, where ®(t,to,x0) is a fundamental matrix of (2.6).

We need Alekseev formula to compare between the solutions of (2.2)
and the solutions of perturbed nonlinear system

(2.8) y' = f(t,y) + g(t,y), y(to) = o,

where g € C(RT x R",R") and ¢(t,0) = 0. Let y(¢) = y(t, to, yo) denote
the solution of (2.8) passing through the point (¢g,yo) in Rt x R™.
The following result is due to Alekseev [1].
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LEMMA 2.5. [2] Let x and y be a solution of (2.2) and (2.8), re-
spectively. If yo € R™, then for all t > ty such that z(t,tg,y9) € R,
y(tatO)yO) S Rn7

y(t, to, o) = (t,to, yo) + [ ®(t,5,5(s)) 9(s,y(s)) ds.

THEOREM 2.6. [7] If the zero solution of (2.2) is hS, then the zero
solution of (2.3) is hS.

THEOREM 2.7. [8] Suppose that f,(t,0) is ts-similar to f(t,z(t,to, zg))
for t > ty > 0 and |zg| < § for some constant 6 > 0. If the solution
v =0 of (2.3) is hS, then the solution z = 0 of (2.4) is hS.

LEMMA 2.8. (Bihari — type inequality) Let u,A € C(RT), w €
C((0,00)) and w(u) be nondecreasing in u. Suppose that, for some
c>0,

u(t) <c+ t)\(s)w(u(s))ds, t >ty >0.

Then
u(t) < Wt [W(c) + ft’; )\(s)ds}, to <t < by,

where W (u) = [ 45 W =1 (u) is the inverse of W (u) and

up w(s)’

by = sup {t >to: W(e) + ftto A(s)ds € domW_l}.

LEMMA 2.9. [3] Let u, A1, A2, A3, Mg, A5, Ag € C<R+>, w € C((O, OO))
and w(u) be nondecreasing in u, u < w(u). Suppose that for some ¢ > 0,

u(t) <e + /Al(s)u(s)ds—l-/ Ao (s)w(u(s))ds

to to

+ /t As(s) /s A (T)u(T)drds

to to

+ /t A5 () /S X6 (T)w(u(r))drds, 0 <ty <t

to to

Then

u(t) < W [W(c) n / t(Al(s) + ho(s)

to

Fau(s) / () + A (s) / ) No(r)dr)ds].

to to
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where tg <t < by, W, W~ are the same functions as in Lemma 2.8,
and

s

by = sup {t >to: Wie) + /t()\l(s) + Xa(s) + )\3(5)/ Ay(T)dT

to to

+ As(s) / No(T)dr)ds € domW_l}.

to

LEMMA 2.10. [4] Let u, A1, Ao, A3, Mg, A5, Ag € C(R+), w e C((O, 0))
and w(u) be nondecreasing in u, u < w(u). Suppose that for some ¢ > 0,

u(t) <e + /Al(s)u(s)ds—i-/ A2 (s)w(u(s))ds

to to

4 / "Na(s) / () w(u(r))drds

to to
t s

+ / )\5(8)/ Ao (T)w(u(T))drds, 0 <ty <t.
to to

Then
u(t) < WHW(E) + [ (M (s) + Ao(s)

F2s(s) [2 Ma(r)dr + As(s) [ Aﬁ(f)dT)ds},

where tog <t < by, W, W~ are the same functions as in Lemma 2.8,
and

by = sup {t >to: W(e) + /t()q(s) + A2(s) + A3(s) /S Aa(T)dT

to to

o As(s) / No(T)dr)ds € domW_l}.
to
LEMMA 2.11. [11] Let u, A1, Ao, A3, Mg, As, Ag, A7, Ag € C(R+), w €
C((0,00)), and w(u) be nondecreasing in u, u < w(u). Suppose that for
some ¢ >0 and 0 < ty <,

u(t) <ec + / Al(s)w(u(s))ds—F/ Aa2($) /S(Ag(r)u(T)+)\4(T)w(u(7'))

to to to

+oas(r) / " Ao(r)u(r)dr)drds + / A (s) / () w(u(r))drds.

to to to
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Then

u(t) < Wt [W(c) + /tt(Al(s) + Aa(s) /8(/\3(7) + (1)

to

+ As(7) /tT Xe(r)dr)dT + A7(s) /S Ag(T)dT)ds|,

to
where tyg < t < by, W, W~ are the same functions as in Lemma 2.8
and

b= sup {£ > 1o : W(e) + /t()\l(s) + Aos) /S(A3<7) ()

to to

+As5(7) /tT Xo(r)dr)dT + A7(s) /S Ag(T)dT)ds € domW_l}.

to

COROLLARY 2.12. Let u, A1, A2, A3, A1, A5, Ag € C(RT), w € C((
u

0,00))
) ) )
and w(u) be nondecreasing in u, u < w(u). Suppose that for some ¢ > 0
and 0 < tg <t,

u(t) < e+ fi M(s)w(u(s))ds + [y Ma(s) [ (As(7)u(r) + Xa(T)w(u(r))
+5(7) ftg Ao (r)u(r)dr)drds.
Then

u(t) < Wﬁl[ )+ ft (A1(s) + Az( )ﬁs(/\3(7

FA(T) + X5 (7) Ji7 Ao(r)dr)dr)ds|,

where tg < t < by, W, W~ are the same functions as in Lemma 2.8
and

blzsup{tzto () + [ (M () + Aa(8) [ (As(r) + Aa(7)
F5(7) fi Ao(r)dr)dr € domW ! |

LEMMA 2.13. [12] Let u, A1, A2, A3, Mg, As, Ag, A7, Ag € C(R+), w <

C((0,00)), and w(u) be nondecreasing in u, u < w(u). Suppose that for
some ¢ >0 and 0 <ty <t,

u(t) <c+ f;;; A1 (s)w(u(s))ds + ftl; Aa(s) [ (Na(T

) + Aa(r)w(u(r))
+As5(7) [ Xo(r)w(u(r))dr)drds + fto (s fto As

(T)w(u(r))drds.
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Then
u(t) S WHW(E) + [ (Aals) + Aals) fi) (a(7) + Aa(7)

FA(7) fip Ao(r)dr)dr + Ar(s) f; As(r)dr)ds|

where tg < t < by, W, W™ are the same functions as in Lemma 2.8,
and

by = sup {t >t W(C) + f;(Al(S) + )\2 j; )\3 —|— )\4( )
F25(7) 7 As(r)dr)dr + Ma(s) fi As(7)dr)ds € domW !},

COROLLARY 2.14. Let u, A1, A2, A3, A1, A5, Ag, A7, Ag € C(RT), w €
C((0,00)), and w(u) be nondecreasing in u, u < w(u). Suppose that for
some ¢ >0 and 0 < ty <,

u(t) <c+ ftz A1(s)w(u(s))ds + ftt Aa(s fts )\3
+Ai(T)w(u(r)) + As(T ft e (T ))dr)des
Then

u(t) < Wt [ () + [y (M) + Aa(s) [ (Na(7)
FAa(r) + As(7) [T A(r dr)df}

where tg < t < by, W, W~ are the same functions as in Lemma 2.8,
and

by = sup {t > to: W(e)+ [ (M(s) + Xals) f2 (As(7)

FA(T) + A (7) [i7 Ao(r)dr)dr € domW .

3. Main results

In this section, we investigate boundedness for solutions of the non-
linear perturbed differential systems via t.o-similarity.

To obtain the bounded result, the following assumptions are needed:

(H1) fu(t,0) is too-similar to f, (¢, x(t,tg,x0)) for t > tg > 0 and
|xg| < 0 for some constant § > 0.

(H2) The solution z = 0 of (1.1) is hS with the increasing function
h.

(H3) w(u) be nondecreasing in u such that v < w(u) and tw(u) <
w(%) for some v > 0.
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THEOREM 3.1. Let a,b,c,d,k € C(R"). Suppose that (H1), (H2),
(H3) and g in (2.1) satisfies

(3.1) 9ty Try) < aly(®)] +bEw(ly®)]) + Ty,
T < bt) / K(s)w(ly(s)))ds

to
and

(32)  |h(ty(t). To(®)| < / (5)[y(5)|ds + [ Tay(®)),

to

Tay(®)] < d)w(ly()]),

where a,b,c,d, k,w € LY(RY), w € C((0,00)), Ty, Ty are continuous
operators. Then, any solution y(t) = y(t,to,yo) of (2.1) is bounded on
on [tg,00) and it satisfies

A

[y(®)] < AW LW () + ez . [d(s) + f: (alr) +b(7) + e(7)
ft r)dr)dr] ds]

where W, W~ are the same functions as in Lemma 2.8, and

by = sup {t >to: W(c) + e ff [d(s) + fts (a(T) +b(7) + (1)
ft r)dr)dr|ds € domW ™~ }
Proof. Let x(t) = =(t, to,yo) and y(t) = y(¢,t0,y0) be solutions of
(2.2) and (2.1), respectively. By Theorem 2.6, since the solution z = 0
of (2.2) is hS, the solution v = 0 of (2.3) is hS. Therefore, from (H1), by
Theorem 2.7, the solution z = 0 of (2.4) is hS. Applying the nonlinear
variation of constants formula due to Lemma 2.5, Lemma 2.4 together
with (3.1) and (3.2), we have
()] < lz@)] + [, 10t s, y(s)I ([, lg(r,y(r), Tiy(r)) dr
+|h(8,y S), Qy(s))‘)ds
< calyolh() hlto) " + [, eoh(®)h(s) ! (d(s)w(ly(s)]
+ftf)((a( (T)|y(7)] + b(r)w(ly(7)]

)
)
ft (rw(|y(r) \)dr)ah-)d

S.
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By the assumptions (H2) and (H3), we obtain
[y(t)] < ealyolh(t) h(to) ™ + [y, exh(t) (d(s)w( )
+fjo a(r) +c7'))| ng' +b( yw(Dl)
(7) i k(ryw( ) drdr ) ds.
Set u(t) = |y(t)|h(t)~t. Then, by Corollary 2.14, we have
ly(t)] < h(t)W ! [W(C) + 2 ffo [d(s) + [ (a(7) + b(7) + c(7)

™) i, k(r)dr)dr]ds|

y(s)

- 2|

where ¢ = c1|yo| h(to)~'. The above estimation yields the desired result
since the function A is bounded, and so the proof is complete. O

REMARK 3.2. Letting ¢(t) = d(t) = 0 in Theorem 3.1, we obtain the
same result as that of Theorem 3.5 in [10].

THEOREM 3.3. Let a,b,c,d, k,q € C(RT). Suppose that (H1), (H2),
(H3), and g in (2.1) satisfies

(33) [ l9(s,y(s), Tuy(s))|ds < a(t)|y(?)| +b( Jw(ly@®)]) + [Try(2)],

|Tyy(t)| < b(t) ft s)|ds
and
(3.4) |h(t,y(t), Tay(t))] < b(t) [,; c(s)] |ds+ Toy(t)],
!T2y | <d )ftto q(s s)|)ds

where a,b,c,d,k,q,w € LY R"), w € C(( )) T1,Ts are continuous
operators. Then, any solution y(t) = y(t, to,yo) of (2.1) is bounded on
[to, 00) and it satisfies
[y(t)] < h()W! [W( + e J) (als) + b(s) + ()
(s) J;2 k(r)dr + d(s ft 7)dr)ds|.

where tyg < t < by, W, W~ are the same functions as in Lemma 2.8,
and

blzsup{tZto:W +@ft s) +b(s) + c(s)

(s) Jy, k(r)dr + d(s) [;2 a(r)dr)ds € domW 1},
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Proof. Let x(t) = x(t,to,yo) and y(t) = y(t,to,y0) be solutions of
(2.2) and (2.1), respectively. By the same argument as in the proof in
Theorem 3.1, the solution z = 0 of (2.4) is hS. Using Lemma 2.4, the
nonlinear variation of constants formula due to Lemma 2.5, together
with (3.3) and (3.4), we have

[w(t)] < exlyol(t) hlto) ™ + f;; esh(t)h(s)™! (a<s>|y<s>\ +b(s)w(ly(s)])
() Jys (elr) + R(T))y(r)ldr +d(s) [} a(r)w(ly(r)])dr ) ds.
It follows from (H2) and (H3) that
[y(®)] < exlyol () Alto) " + [, e2h(t) (als) ‘;122;‘ - b(s)w( el
s) Jo (e(r) + k(r)WDlar + d(s) [ g al

Set u(t) = |y(t)|h(t)~!. Then, by Lemma 2.9, we have

—)dr ) ds.

ry(t>|Sh<t>W—1[W )+ 2 fi lals) + b(s) + c(s)
(s) [ k(r)dr + d(s ft (r)drlds|,

where ¢ = c1|yo|h(t) h(tg)~!. Thus, any solution y(t) = y(t,to,yo) of

(1.2) is bounded on [tg, 00), and so the proof is complete. O

REMARK 3.4. Letting c(t) = d(t) = 0 in Theorem 3.3, we obtain the
same result as that of Theorem 3.3 in [10].

THEOREM 3.5. Let a,b,c,d,k € C(R"). Suppose that (H1), (H2),
(H3), and g in (2.1) satisfies

(3.5) lg(t,y, Tay)l < a(®)]y(®)] + b w((y®)]) + [Try(t)],

a(t)y(
Ty < b() / k(s)ly(s)]ds
and

(3.6) h(t,y(1), Tay(t))] < /tC(S)Iy(S)IdSHsz(t)I,
Tay(®)] < d)w(ly(®)]),

where a,b,c,d,k,w € LY(RT), w € C((0,00)), Ty, Ty are continuous
operators. Then, any solution y(t) = y(¢,to,y0) of (2.1) is bounded on
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on [tg,00) and it satisfies
[y(t)] < h(H)W ! {W(c) to ) [f:; (a(r) + b(7)
™) Ji, k(r)dr)dr + d(s) [ a(r)drlds|
where W, W1 are the same functions as in Lemma 2.8, and
by = sup {t >to: W(e)+ e ftz [ft‘z (a(T) +b(1) + c(7)
™) fiy K(r)dr)dr + c(s) [;; a(r)drds € domW! }.

Proof. Let x(t) = x(t,to,yo) and y(t) = y(t,to,y0) be solutions of
(2.2) and (2.1), respectively. By the same argument as in the proof in
Theorem 3.1, the solution z = 0 of (2.4) is hS. Applying Lemma 2.4,
the nonlinear variation of constants formula due to Lemma 2.5, together
with (3.5) and (3.6), we have

@] < =)+ [;, 10t s, y(s)I (S 1g(r y(r), Tiy(s))|dr
+h(s, y(s), Tay(s))|)ds
< c1lyol (1) (o) +ft cah(t)h(s) " (d(s)w(ly(s)])
+ fi((alr < Dly(r >|+b<f>w<|y< ))
™) fi k()ly(r)|dr)dr ) ds.
By the assumptions (H2) and (H3), we obtain
ly(®)] < e1lyol () h(to) +ft eah(t) (d(s)w(
+b(7)w(| 2ly + fto alr )+c(r))',z§;§'
7) Jin ¥ r)
Set u(t) = |y(t)|h(t)~t. Then, by Corollary 2.12, we have
w(®)] < h(Hyw ! [w<c> +e f,f i (a(r) + b(r) + e(7)
™) fiy k(r)dr)dr + d(s) [ a(7)dr]ds]

where ¢ = c1|yo| h(tp)~!. The above estimation yields the desired result
since the function A is bounded, and so the proof is complete. O

REMARK 3.6. Letting ¢(t) = d(t) = 0 in Theorem 3.5, we obtain the
same result as that of Theorem 3.1 in [10].
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THEOREM 3.7. Let a,b,c,d,k,q € C(RT). Suppose that (H1), (H2),
(H3), and g in (2.1) satisfies

t

B.7) [ lg(s,y(s), Tay(s))lds < a(®)[y()| + b(t)w(ly(®)]) + [Try(D)],

to

Ty(®)] < b(t)/ k(s)w(ly(s)|)ds

to

and

(3.8)  |h(t,y(), Tay(t))| < C(t)/tQ(S)w(!y(S)l)dS+!sz(t)h

Tay(t)] < d()w(ly(®)])

where a,b,c,d,k,q,w € L} R"), w € C((0,00)), Ty, T» are continuous
operators. Then, any solution y(t) = y(t,to,yo) of (2.1) is bounded on
[to, 00) and it satisfies

MMMSMQW*ﬁW +@ﬁ )+ b(s) + c(s)
(s) Jis b(r)dr +d(s) [} a(7)dr)ds]

where tg <t < by, W, W~ are the same functions as in Lemma 2.8,
and

blzsup{tZtO:W +02j; s) + b(s) + ¢(s)
(s) Jy, k(7)dr -+ d(s) [}2 a(r)dr)ds € domW 1},
Proof. Let x(t) = x(t, to,yo) and y(t) = y(¢,t0,y0) be solutions of
(2.2) and (2.1), respectively. By the same argument as in the proof in
Theorem 2.2, the solution z = 0 of (2.4) is hS. Using Lemma 2.4, the

nonlinear variation of constants formula due to Lemma 2.5, together
with (3.7) and (3.8), we have

wwmquWMm*+ﬁ@Mh@*@®wﬂ
+(b(s) + d()wly(s)]) + bls) 3 k()w(ly(r)])dr
(s ftoq 7)w(|y( T)|)d7')ds.
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It follows from (H2) and (H3) that
[y(1)] < exlyolh(t) hlto) " + f: cah(t) (als) 4
+(b(s) + d(s)w( %) +b(s) [ k() gDhdr
) J;O a(ryw (4
Set u(t) = |y(t)|h(t)~L. Then, by Lemma 2.10, we have
y(t)] < h(t)W—l[m +cht )+ b(s) + c(s)

(s) Jys K(r)dr + d(s) [ a(r)drlds|,

where ¢ = c1|yo|h(t) h(to)*l. Thus, any solution y(t) = y(t,to,yo) of
(1.2) is bounded on [tg,00), and so the proof is complete. O

REMARK 3.8. Letting ¢(t) = d(t) = 0 in Theorem 3.7, we obtain the
same result as that of Theorem 3.7 in [10].
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