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PERIODICITIES OF SOME CHARACTERISTIC

MATRICES OF CELLULAR AUTOMATA WITH RULE

60 AND INTERMEDIATE BOUNDARY CONDITION

Jae Gyeom Kim*

Abstract. We characterize periodicities of some characteristic ma-
trices of cellular automata configured with rule 60 and intermediate
boundary condition.

1. Introduction

Boundary conditions of cellular automata greatly influence properties
of the cellular automata. Properties of cellular automata with interme-
diate boundary condition have been studied some researchers [1,2,4,5,7].
Recently, periodicities of some characteristic matrices of cellular au-
tomata configured with rule 60 and intermediate boundary condition
was partially investigated [3].

In this note, we will characterize periodicities of some characteristic
matrices of cellular automata configured with rule 60 and intermediate
boundary condition.

2. Preliminaries

A cellular automaton (CA) is an array of sites (cells) where each
site is in any one of the permissible states. At each discrete time step
(clock cycle) the evolution of a site value depends on some rule (the
combinational logic) which is a function of the present states of its k
neighbors for a k-neighborhood CA. For a 2-state 3-neighborhood CA,
the evolution of the (i)th cell can be represented as a function of the
present states of (i − 1)th, (i)th, and (i + 1)th cells as: xi(t + 1) =
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f{xi−1(t), xi(t), xi+1(t)}, where f represents the combinational logic.
For such a CA, the modulo-2 logic is always applied.

For a 2-state 3-neighborhood CA there are 23 distinct neighborhood

configurations and 22
3

distinct mappings from all these neighborhood
configurations to the next states, each mapping representing a CA rule.
The CA, characterized by a rule known as rule 60, specifies an evolution
from the neighborhood configurations to the next states as;

111 110 101 100 011 010 001 000
0 0 1 1 1 1 0 0 .

The rule name 60 comes from that 00111100 in binary system is 60 in
decimal system. The corresponding combinational logic of rule 60 is

xi(t + 1) = xi−1(t)⊕ xi(t),

that is, the next state of (i)th cell depends on the present states of its
left and self neighbors.

If in a CA the same rule applies to all cells, then the CA is called
a uniform CA; otherwise the CA is called a hybrid CA. There can be
various boundary conditions; namely, null (where extreme cells are con-
nected to logic ‘0’), intermediate (where the 2nd right cell of the leftmost
cell of a 3-neighborhood CA is assumed to be the left neighbor of the
leftmost cell of the CA and the 2nd left cell of the rightmost cell of the
CA is assumed to be the right neighbor of the rightmost cell of the CA),
periodic (where extreme cells are adjacent), etc. The number of cells of
a CA is called the length of a CA.

The characteristic matrix T of a CA is the transition matrix of the
CA. The next state ft+1(x) of a linear CA is given by ft+1(x) = T×ft(x),
where ft(x) is the current state and t is the time step. If all the states
of the CA form a single or multiple cycles, then it is referred to as a
group CA. One of basic characterizations of periodicities of characteristic
matrices of cellular automata is Lemma 2.1.

Lemma 2.1 ([6]). Let H be a uniform CA of length n configured with
rule 60 and null boundary condition. If 2t−1 < n ≤ 2t for some positive
integer t, then the group order of H is 2t.

From Lemma 2.1, Lemma 2.2 could be derived. And Theorem 2.3
was proved based on Lemma 2.2.

Lemma 2.2 ([3]). Let T be the characteristic matrix of a uniform
CA of length n with 3 + 2t−1 < n ≤ 3 + 2t for some positive integer t
configured with rule 60 and intermediate boundary condition. If Tm+1 =
T for some positive integer m, then m is a multiple of 2t.
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Theorem 2.3 ([3]). Let T be the characteristic matrix of a uniform
CA of length n with 3 + 2t−1 < n ≤ 3 + 2t for some positive integer t
configured with rule 60 and intermediate boundary condition. If Tm+1 =
T for some positive integer m, then m is a multiple of 2t · 3.

3. Characteristic matrices of cellular automata

In this section, we deal with characteristic matrices of uniform CA of
sufficiently large length configured with rule 60 and intermediate bound-
ary condition. Such a matrix T of the CA is given by

Ti,j =


1, if i = j or i = j + 1,

1, if i = 1 and j = 3,

0, otherwise

or T =



1 0 1
1 1 0

1 1
1 1

1 1
· ·
· ·
· ·


where all the values of the blank entries are zero. From now on, all the
values of the blank entries in matrix representation will always be zero
unless otherwise specified.

And we can have T 3 as follows;

T 3 =



0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
1 1 1 1 0 0
0 1 1 1 1 0
0 0 1 1 1 1

· · · ·
· · · ·
· · · ·


.

Now we are interested in the matrices (T 3)2
t

with non-negative inte-

ger t. In fact, (T 3)2
0

= T 3 and (T 3)2
1

and (T 3)2
2

are as follows;
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(T 3)2
1

= T 6 =



0 1 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 0
0 1 1 1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0
0 0 1 0 1 0 1 0 1 0 0
0 0 0 1 0 1 0 1 0 1 0
0 0 0 0 1 0 1 0 1 0 1

· · · · · · ·
· · · · · · ·
· · · · · · ·



,

(T 3)2
2

= T 12 =

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·



.

To calculate (T 3)2
t+1

inductively, for each non-negative integer t let

At
i,j be the submatrices partitioning (T 3)2

t
such that the size of At

1,1 is
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3 × 3, the size of At
1,j is 3 × 2t where j > 1, the size of At

i,1 is 2t × 3

where i > 1, the size of At
i,j is 2t× 2t where i > 1 and j > 1, and (T 3)2

t

is partitioned as follows;
At

1,1 At
1,2 At

1,3 At
1,4 · · ·

At
2,1 At

2,2 At
2,3 At

2,4 · · ·
At

3,1 At
3,2 At

3,3 At
3,4 · · ·

At
4,1 At

4,2 At
4,3 At

4,4 · · ·
...

...
...

...
...

 .

Then we can easily have Lemma 3.1.

Lemma 3.1. Let T be the characteristic matrix of a uniform CA of
sufficiently large length configured with rule 60 and intermediate bound-
ary condition. And let At

i,j be the submatrices partitioning (T 3)2
t

as

above for each non-negative integer t. Then the submatrices At+1
i,j par-

titioning (T 3)2
t+1

as above can be calculated as follows;

At+1
i,j =



∑
k A

t
1,k ·At

k,1 if i = 1 and j = 1,( ∑
k A

t
1,k ·At

k,2j−2

∑
k A

t
1,k ·At

k,2j−1

)
if i = 1 and j > 1,( ∑

k A
t
2i−2,k ·At

k,1∑
k A

t
2i−1,k ·At

k,1

)
if i > 1 and j = 1,( ∑

k A
t
2i−2,k ·At

k,2j−2

∑
k A

t
2i−2,k ·At

k,2j−1∑
k A

t
2i−1,k ·At

k,2j−2

∑
k A

t
2i−1,k ·At

k,2j−1

)
if i > 1 and j > 1.

If t is an even non-negative integer, then 2t the column size of At
i,1

with i > 1 is 3m+ 1 for some non-negative integer m. And if t is an odd
non-negative integer, then 2t the column size of At

i,1 with i > 1 is 3m+2
for some non-negative integer m. Let I and O denote the identity and
zero matrices, respectively.

Lemma 3.2. Let T be the characteristic matrix of a uniform CA of
sufficiently large length configured with rule 60 and intermediate bound-
ary condition. And let At

i,j be the submatrices partitioning (T 3)2
t

as

above for each non-negative integer t. Then the following (1), (2), (3), (4),
(5) and (6) hold:
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(1) At
1,1 =

 0 1 1
1 0 1
1 1 0

 .

(2) All entries of At
2,1 are 1 so that At

2,1 =

 1 1 1
...

...
...

1 1 1

 .

(3) If t is even or odd, then At
3,1 is an iteration of At

1,1 =

 0 1 1
1 0 1
1 1 0


with truncation in the bottom so that

At
3,1 =


0 1 1
1 0 1
1 1 0
...

...
...

0 1 1

 or At
3,1 =


0 1 1
1 0 1
1 1 0
...

...
...

1 0 1

 ,

respectively.

(4) If t is even or odd, then At
4,1 is an iteration of

 0 0 1
1 0 0
0 1 0

 or 0 1 0
0 0 1
1 0 0

 with truncation in the bottom so that

At
4,1 =


0 0 1
1 0 0
0 1 0
...

...
...

0 0 1

 or At
4,1 =


0 1 0
0 0 1
1 0 0
...

...
...

0 0 1

 ,

respectively.
(5) If i > 1 and j ≤ i ≤ j + 3, then At

i,j = I.

(6) If i < j or i > j + 3, then At
i,j = O.

Proof. We will use an induction on t. For t = 0, 1, 2, the lemma holds

by the explicit formulas for (T 3)2
0

= T 3, (T 3)2
1

= T 6 and (T 3)2
2

= T 12

above. Let t > 2. For (1),

At
1,1 =

∑
k

At−1
1,k ·A

t−1
k,1 (by Lemma 3.1)

= At−1
1,1 ·A

t−1
1,1 (by the induction hypothesis for (6))
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=

 0 1 1
1 0 1
1 1 0

 0 1 1
1 0 1
1 1 0


(by the induction hypothesis for (1))

=

 0 1 1
1 0 1
1 1 0

 .

The upper half part of At
2,1 is

∑
k

At−1
2,k ·A

t−1
k,1 (by Lemma 3.1)

= At−1
2,1 ·A

t−1
1,1 + I ·At−1

2,1

(by the induction hypothesis for (5) and (6))

=

 1 1 1
...

...
...

1 1 1


 0 1 1

1 0 1
1 1 0

+

 1 1 1
...

...
...

1 1 1


(by the induction hypothesis for (1) and (2))

= O +

 1 1 1
...

...
...

1 1 1

 =

 1 1 1
...

...
...

1 1 1

 .

Now we have

At−1
1,1 + I =

 0 1 1
1 0 1
1 1 0

+

 1 0 0
0 1 0
0 0 1

 =

 1 1 1
1 1 1
1 1 1


by the induction hypothesis for (1). The lower half part of At

2,1 is

∑
k

At−1
3,k ·A

t−1
k,1 (by Lemma 3.1)

= At−1
3,1 ·A

t−1
1,1 + I ·At−1

2,1 + I ·At−1
3,1

(by the induction hypothesis for (5) and (6))

= At−1
3,1 (At−1

1,1 + I) + At−1
2,1
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=




0 1 1

1 0 1

1 1 0
...

...
...

0 1 1


 1 1 1

1 1 1

1 1 1

+


1 1 1
...

...
...

1 1 1

 where t is odd,


0 1 1

1 0 1

1 1 0
...

...
...

1 0 1


 1 1 1

1 1 1

1 1 1

+


1 1 1
...

...
...

1 1 1

 where t is even

(by the induction hypothesis for (2) and (3))

= O +

 1 1 1
...

...
...

1 1 1

 =

 1 1 1
...

...
...

1 1 1

 .

Thus (2) holds. The upper half part of At
3,1 is∑

k

At−1
4,k ·A

t−1
k,1 (by Lemma 3.1)

= At−1
4,1 ·A

t−1
1,1 + I ·At−1

2,1 + I ·At−1
3,1 + I ·At−1

4,1

(by the induction hypothesis for (5) and (6))

= At−1
4,1 (At−1

1,1 + I) + At−1
2,1 + At−1

3,1

=




0 0 1

1 0 0

0 1 0
...

...
...

0 0 1


 1 1 1

1 1 1

1 1 1

+ At−1
2,1 + At−1

3,1 where t is odd,


0 1 0

0 0 1

1 0 0
...

...
...

0 0 1


 1 1 1

1 1 1

1 1 1

+ At−1
2,1 + At−1

3,1 where t is even

(by the induction hypothesis for (4))
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=

 1 1 1
...

...
...

1 1 1

+ At−1
2,1 + At−1

3,1

=

 1 1 1
...

...
...

1 1 1

+

 1 1 1
...

...
...

1 1 1

+ At−1
3,1 = At−1

3,1

(by the induction hypothesis for (2)).

Thus, by the induction hypothesis for (3), the upper half part of At
3,1 is

0 1 1
1 0 1
1 1 0
...

...
...

1 0 1

 or


0 1 1
1 0 1
1 1 0
...

...
...

0 1 1


where t is even or odd, respectively. The lower half part of At

3,1 is∑
k

At−1
5,k ·A

t−1
k,1 (by Lemma 3.1)

= I ·At−1
2,1 + I ·At−1

3,1 + I ·At−1
4,1

(by the induction hypothesis for (5) and (6))

=




1 1 1
...

...
...

1 1 1

+


0 1 1

1 0 1

1 1 0
...

...
...

1 0 1

+


0 1 0

0 0 1

1 0 0
...

...
...

0 0 1

where t is even,


1 1 1
...

...
...

1 1 1

+


0 1 1

1 0 1

1 1 0
...

...
...

0 1 1

+


0 0 1

1 0 0

0 1 0
...

...
...

0 0 1

where t is odd

(by the induction hypothesis for (2), (3) and (4)).

Thus the lower half part of At
3,1 is
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
1 1 0
0 1 1
1 0 1
...

...
...

0 1 1

 or


1 0 1
1 1 0
0 1 1
...

...
...

1 0 1


where t is even or odd, respectively. So (3) holds. The upper half part
of At

4,1 is∑
k

At−1
6,k ·A

t−1
k,1 (by Lemma 3.1)

= I ·At−1
3,1 + I ·At−1

4,1 (by the induction hypothesis for (5) and (6))

=




0 1 1

1 0 1

1 1 0
...

...
...

1 0 1

+


0 1 0

0 0 1

1 0 0
...

...
...

0 0 1

 =


0 0 1

1 0 0

0 1 0
...

...
...

1 0 0

where t is even,


0 1 1

1 0 1

1 1 0
...

...
...

0 1 1

+


0 0 1

1 0 0

0 1 0
...

...
...

0 0 1

 =


0 1 0

0 0 1

1 0 0
...

...
...

0 1 0

where t is odd

(by the induction hypothesis for (3) and (4)).

And the lower half part of At
4,1 is

∑
k A

t−1
7,k ·A

t−1
k,1 = I · At−1

4,1 = At−1
4,1 by

Lemma 3.1 and the induction hypothesis for (5) and (6). So (4) holds
by the induction hypothesis for (4). And (5) and (6) hold obviously.

Let Tn be the characteristic matrix of a uniform CA of length n ≥ 3
configured with rule 60 and intermediate boundary condition. For a
positive integer s, let Ms be the matrix of size s× 3 with all entries are
1. For an integer n ≥ 4, let Pn be the matrix of size n × n partitioned

by 4 matrices T3, O,Mn−3 and I so that Pn =

(
T3 O

Mn−3 I

)
. And

let P3 = T3. Then we can have (Pn)2 = Pn and TnPn = Tn for all
integers n ≥ 3 with direct computation. And if 3 ≤ n ≤ 3 + 2t for some
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non-negative integer t then (Tn)2
t·3 = Pn by Lemma 3.2. Thus we have

Theorem 3.3.

Theorem 3.3. Let T be the characteristic matrix of a uniform CA of
length n with 3 ≤ n ≤ 3 + 2t for some non-negative integer t configured
with rule 60 and intermediate boundary condition. Then (T 2t·3)2 = T 2t·3

and T 1+2t·3 = T .

Combining this theorem with Theorem 2.3, we have Theorem 3.4.

Theorem 3.4. Let T be the characteristic matrix of a uniform CA of
length n with 3+2t−1 < n ≤ 3+2t for some positive integer t configured
with rule 60 and intermediate boundary condition. Then T 1+m = T for
some positive integer m if and only if m is a multiple of 2t · 3.
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