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COMPARISON OF NUMERICAL METHODS FOR
OPTION PRICING UNDER THE CGMY MODEL

Ahram Lee* and Younhee Lee**

Abstract. We propose a number of finite difference methods for
the prices of a European option under the CGMY model. These
numerical methods to solve a partial integro-differential equation
(PIDE) are based on three time levels in order to avoid fixed point
iterations arising from an integral operator. Numerical simulations
are carried out to compare these methods with each other for pricing
the European option under the CGMY model.

1. Introduction

Since a geometric Brownian motion in [1] was suggested to price
derivatives in financial markets, a variety of researchers have been inter-
ested in stochastic processes to capture financial phenomena that are not
accounted for by the Black-Scholes model. Lévy models can be widely
used instead of the geometric Brownian motion in order to explain the
stylized facts in the financial markets.

There are two kinds of the Lévy processes. The first one is called
jump-diffusion processes in which sample paths have a finite number
of jumps in a finite time interval. The other type is infinite activity
processes with an infinite number of jumps in the sample paths. The
CGMY process introduced by Carr, Geman, Madan, and Yor [2] is well
known as one of the infinite activity processes.

We focus on a comparison of numerical methods to solve a PIDE
for the prices of a European option when an underlying asset follows
the CGMY model. Salmi and Toivanen [6] proposed implicit-explicit
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(IMEX) methods to solve the PIDE under a jump-diffusion model. The
three IMEX methods are based on a framework using three time levels to
avoid fixed point iterations at each time step and then the derived linear
systems can be resolved with the inverses of trdiagonal matrices. In this
paper we apply the three IMEX methods to option pricing problems
under the infinite activity models. It is remarkable for us to use them
since the PIDE with an infinite Lévy measure is transformed into the
PIDE with a finite Lévy measure. A number of numerical simulations
are performed to compare these IMEX methods and we can figure out
the second-order convergence rate in the time variable.

This paper is organized as follows. In section 2 we introduce suc-
cinctly the CGMY process and the PIDE for pricing the European op-
tion in the financial markets. The three IMEX methods are proposed
to solve the PIDE numerically in section 3. A variety of numerical sim-
ulations are carried out to compare these methods with each other in
section 4. Finally, this paper ends with conclusions in section 5.

2. The CGMY option pricing model

In a risk-neutral world, we assume that an underlying asset St fol-
lows an exponential Lévy model given by St = S0 exp((r − d)t + Xt)
on a probability space (Ω,F ,Ft,P) with filtration F t, where r is the
continuous risk-free interest rate, d is the continuous dividend rate, S0

is an initial price at t = 0. The stochastic process Xt is considered by
the CGMY process in [2] with the Lévy measure νX

(2.1) νX(dx) = C

(
e−G|x|

|x|1+Y
1x<0 +

e−Mx

x1+Y
1x>0

)
dx,

where C > 0, G ≥ 0,M ≥ 0, and 0 ≤ Y < 2. In the Lévy triplet
(σ2

X , γX , νX) of the process Xt, the value γX in the risk-neutral world is
required to satisfy the martingale condition

γX = −1
2
σ2

X −
∫

R
(ex − 1− x1{|x|≤1})νX(dx)

with the indicator function 1A of a set A.
In the option pricing problem, it is not easy to deal with small jumps

in the CGMY process Xt. One of the possibility is in [4] that we
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can transform the infinite activity process Xt into the following jump-
diffusion model Yt with the Lévy triplet (σ2

Y , γY , νY )

σ2
Y = σ2

X +
∫ ε

−ε
x2νX(dx),

γY = −1
2
σ2

Y −
∫

R
(ex − 1− x1{|x|≤1})νY (dx),

νY = νX1|x|≥ε.

Then the prices of the European option under the CGMY process Xt can
be evaluated approximately by solving the initial and boundary valued
PIDE problem

uτ (τ, x) = (D + I − (r + λε))u(τ, x), (τ, x) ∈ (0, T ]× Ω,(2.2)

u(τ, x) = g(τ, x), (τ, x) ∈ (0, T ]× R \ Ω,(2.3)

u(0, x) = h(x), x ∈ Ω,(2.4)

where Ω = (−X,X), h(x) is the initial payoff function, g(τ, x) is the
boundary function, and the differential and integral operator D and I
are respectively given by

Du =
σ2

Y

2
uxx +

(
r − d− σ2

Y

2
− λεζε

)
ux,(2.5)

Iu =
∫

|y|≥ε
u(τ, x + y)νY (dy)(2.6)

with λε =
∫
|y|≥ε νY (dy) and ζε =

∫
|y|≥ε(e

y − 1)νY (dy)/λε.

3. Numerical schemes for option pricing

We apply three numerical methods similar to those in [6] to option
pricing problems under the infinite activity Lévy models. It is possible to
use them since the CGMY process is transformed into the jump-diffusion
model with the PIDE problem (2.2)–(2.4). The implicit-explicit (IMEX)
method with Crank-Nicolson and leapfrog (CNLF) scheme is given by

Un+1
m − Un−1

m

2∆τ
= (D∆ − (1− c)(r + λε))

(
Un+1

m + Un−1
m

2

)
(3.1)

+ (I∆ − c(r + λε))Un
m,

where D∆ and I∆ are discretizations of the differential and integral oper-
ators D and I respectively, Un

m is an approximate solution of u(τn, xm),
and c is an extra parameter to control the zeroth-order term (r + λε)u.
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We refer to [5] for more details of the discrete operators D∆ and I∆. The
following two schemes are concerned with the extrapolation to approx-
imate the integral term Iu. The IMEX method with Crank-Nicolson
and Adams-Bashforth (CNAB) scheme is

Un+1
m − Un

m

∆τ
= (D∆ − (1− c)(r + λε))

(
Un+1

m + Un
m

2

)
(3.2)

+ (I∆ − c(r + λε))
(

3
2
Un

m − 1
2
Un−1

m

)

and the IMEX method based on the two-step backward differentiation
formula (BDF2) is

3Un+1
m − 4Un

m + Un−1
m

2∆τ
= (D∆ − (1− c)(r + λε))Un+1

m(3.3)

+ (I∆ − c(r + λε))(2Un
m − Un−1

m ).

These numerical methods are constructed to avoid any fixed point itera-
tion techniques arising from the integral term Iu at each time step. The
IMEX-CNLF method with c = 1 formulated in [5] has the second-order
accuracy when the underlying asset follows the CGMY model. There-
fore we expect that the above three IMEX methods converge with the
second-order in the time and spatial variables.

4. Numerical simulations

In this section we performed numerical simulations with MATLAB
on a computer with Intel(R) Core(TM) i7-5820K CPU 3.30GHz to price
a European call option when the underlying asset follows the CGMY
model. The parameters used in the simulation are

σ = 0, r = 0.1, d = 0, C = 16.97, G = 7.08,

M = 29.97, Y = 0.6442, T = 0.25, K = 98, ε = 0.01171875,

which are also given in [2, 7], and X = 3 in the truncated boundary
domain Ω. We used the number of spatial steps M = 8192 to obtain
more accurately the rate of convergence. The prices of the European call
option on the first four time levels are computed by applying the explicit-
implicit method in [4]. The reference values evaluated by using the FFT
method in [3] are approximately 16.564028 at S1 = 90, 21.438990 at
S2 = 98, and 26.781630 at S3 = 106.
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Figure 1. RMSEs for the European call option with the
IMEX-CNLF scheme (left), IMEX-CNAB scheme (cen-
ter), and IMEX-BDF2 scheme (right).
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Figure 2. RMSEs for the European call option with the
c=0 (left), c=0.5 (center), and c=1 (right).

In Figures 1 and 2, we present the root mean square errors (RMSEs)
for the IMEX-CNLF, IMEX-CNAB, and IMEX-BDF2 schemes with c =
0, c = 0.5, and c = 1, where the RMSE is given by

(4.1) RMSE =
√

((U1 − u∗1)2 + (U2 − u∗2)2 + (U3 − u∗3)2) /3

for the computed price Ui and the reference value u∗i at the stock price
Si with i = 1, 2, and 3. We observe that the described IMEX methods
have the second-order convergence rate with respect to the time variable
except for the IMEX-CNLF scheme with c = 1. It is unstable in the
case of the IMEX-CNLF scheme with c = 1. The RMSEs for the IMEX-
CNLF scheme tend to be smaller than those for the IMEX-CNAB and
IMEX-BDF2 schemes provided that they are stable.

5. Conclusion

In this paper we considered the stability for the three IMEX methods
when the underlying asset follows the CGMY model. These numerical
methods for pricing the European option are designed to avoid any fixed
point iteration techniques at each time step. A variety of simulations are
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carried out to study the stability and to price the European option under
the CGMY model. The numerical results show that the IMEX-CNLF
scheme has the smaller RMSEs than those obtained by the IMEX-CNAB
and IMEX-BDF2 schemes except for c = 1. Moreover, we can observe
that these schemes have the second-order convergence rate since the
slopes of the lines in Figures 1 and 2 are almost equal to 2.
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