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OPTIMALITY AND DUALITY FOR
NONDIFFERENTIABLE FRACTIONAL

PROGRAMMING WITH GENERALIZED INVEXITY

Gwi Soo Kim* and Moon Hee Kim**

Abstract. We establish necessary and sufficient optimality con-
ditions for a class of generalized nondifferentiable fractional opti-
mization programming problems. Moreover, we prove the weak
and strong duality theorems under (V, ρ)-invexity assumption.

1. Introduction and preliminaries

Many authors have introduced various concepts of generalized con-
vexity and have obtained optimality and duality results for optimiza-
tion programming problem ([1]-[4], [6]-[12]). Many practical problems
encountered in economics, engineering design, and management science,
and so forth can be described by nonsmooth functions. The theory of
nonsmooth optimization using locally Lipschitz functions was introduced
by Clarke [5].

We consider the following generalized nondifferentiable fractional op-
timization problem (GFP):

(GFP) Minimize max
{

fi(x)
gi(x)

| i = 1, · · · , p

}

subject to hj(x) ≤ 0, j = 1, · · · ,m,

where f := (f1, · · · , fp) : Rn → Rp, g := (g1, · · · , gp) : Rn → Rp and
h := (h1, · · · , hm) : Rn → Rm are locally Lipschitz function. We assume
that fi(x) = 0 and gi(x) > 0, i = 1, · · · , p. Let X0 := {x ∈ Rn | hj(x) 5
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0, j = 1, · · · , m} be the feasible set of (GFP). Let J = {1, 2, · · · ,m}
and J(x0) = {j ∈ J | hj(x0) = 0}.

We consider the following fractional optimization problem (FP):

(FP) Minimize max
{

fi(x) + s(x|Ci)
gi(x)

| i = 1, · · · , p

}

subject to hj(x) ≤ 0, j = 1, · · · ,m,

where f := (f1, · · · , fp) : Rn → Rp, g := (g1, · · · , gp) : Rn → Rp and
h := (h1, · · · , hm) : Rn → Rm are continuously differentiable function.
For each i = 1, · · · , p, Ci is compact convex set of Rn and s(x|Ci) :=
max{〈x, yi〉 | yi ∈ Ci}.

Recently, Kim and Kim [7] consider the nondifferentiable fractional
optimization problem (FP), in which each component of the objective
function contains a term involving the support function of a compact
convex set. They established necessary and sufficient optimality condi-
tions for fractional optimization problem (FP). And they formulated a
Mond-Weir type dual problem for (FP) and showed that the weak and
strong duality.

In this paper, we apply the approach of Kim and Kim[7] to the gen-
eralized nondifferentiable fractional optimization problem (GFP), we es-
tablish necessary and sufficient optimality conditions for a nondifferen-
tiable fractional optimization programming involving locally Lipschitz
functions. Moreover, we prove the weak and strong duality theorems
under (V, ρ)-invexity assumption.

Now we give some notations for our results in this section;
Let a function f : Rn → R be given. We shall suppose that f is locally

Lipschitz, that is, for each x ∈ Rn, there exist an open neighborhood U
and a constant L > 0 such that for all y and z in U,

|f(y)− f(z)| ≤ L‖y − z‖.
Let g : Rn → R ∪ {+∞} be a convex function. The subdifferential of g
at a ∈ domg is defined by

∂g(a) := {v ∈ Rn | g(x) = g(a) + 〈v, x− a〉 ∀x ∈ domg},
where 〈·, ·〉 is the inner product on Rn and domg := {x ∈ Rn : g(x) <
+∞}.

Definition 1.1. A vector function f : Rn → Rp is said to be (V, ρ)-
invex at u ∈ Rn with respect to the function η and θi : Rn → Rn if there
exists αi : Rn×Rn → R+\{0} and ρi ∈ R, i = 1, . . . , p such that for any
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ξi ∈ ∂fi(u), i = 1, . . . , p and any x ∈ Rn, and for all i = 1, . . . , p,

αi(x, u)[fi(x)− fi(u)] ≥ ξT
i η(x, u) + ρi‖θi(x, u)‖2.

Lemma 1.2. [5] Let f and g be Lipschitz near x and suppose that

g(x) 6= 0. Then f
g is Lipschitz near x, and one has

∂

(
f

g

)
(x) ⊂ g(x)∂f(x)− f(x)∂g(x)

{g(x)}2
.

If in addition f(x) = 0, g(x) > 0 and if f and −g are regular at x, then

equality holds and f
g is regular at x.

Theorem 1.3. Assume that f and g are vector-valued differentiable
functions defined on Rn and f(x) ≥ 0, g(x) > 0 for all x ∈ Rn. If f and

−g are regular and (V, ρ)-invex at x0, then f
g is (V, ρ)-invex at x0, where

ᾱi(x, x0) =
gi(x)
gi(x0)

αi(x, x0), θ̄i(x, x0) =
(

1
gi(x0)

) 1
2

θi(x, x0).

Proof. Let x, x0 ∈ X0. Then, by the (V, ρ)-invexity of f and −g,
there exists αi : Rn × Rn → R+\{0} and ρi ∈ R, i = 1, . . . , p such that
for any ξi ∈ ∂fi(x0), ζi ∈ ∂gi(x0), i = 1, . . . , p and x ∈ Rn, and for all
i = 1, . . . , p,

αi(x, x0)[fi(x)− fi(x0)] ≥ ξT
i η(x, x0) + ρi‖θi(x, x0)‖2,

αi(x, x0)[gi(x)− gi(x0)] ≥ ζT
i η(x, x0) + ρi‖θi(x, x0)‖2.

So, we have for any ξi ∈ ∂fi(x0), ζi ∈ ∂gi(x0), i = 1, . . . , p and x ∈ Rn,
and for all i = 1, . . . , p,

αi(x, x0)
(

fi(x)
gi(x)

− fi(x0)
gi(x0)

)

= αi(x, x0)
(

fi(x)− fi(x0)
gi(x)

− fi(x0)
gi(x)− gi(x0)
gi(x)gi(x0)

)

= ξT
i η(x, x0) + ρi‖θi(x, x0)‖2

gi(x)
− fi(x0)

gi(x)gi(x0)
(
ζT
i η(x, x0) + ρi‖θi(x, x0)‖2

)
.

Since gi(x) > 0, i = 1, . . . , p for all x ∈ X0, we have for any ξi ∈ ∂fi(x0),
ζi ∈ ∂gi(x0), i = 1, . . . , p and x ∈ Rn, and for all i = 1, . . . , p,
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αi(x, x0)
(

fi(x)
gi(x)

− fi(x0)
gi(x0)

)

= gi(x0)
gi(x)gi(x0)

[
ξT
i η(x, x0) + ρi‖θi(x, x0)‖2

]

− gi(x0)
gi(x)

(
fi(x0)ζT

i η(x, x0)
(gi(x0))2

+ ρi‖
(

fi(x0)
(gi(x0))2

) 1
2

θi(x, x0)‖2

)
.

Thus, from Lemma 1.2, for any ωi ∈ ∂
(

fi
gi

)
(x0), ξi ∈ ∂fi(x0), ζi ∈

∂gi(x0), i = 1, . . . , p and x ∈ Rn, and for all i = 1, . . . , p,

αi(x, x0)
(

fi(x)
gi(x)

− fi(x0)
gi(x0)

)

= gi(x0)
gi(x)

[(ξigi(x0)− ζifi(x0)
(gi(x0))2

)T

η(x, x0) + ρi‖
(

1
gi(x0)

) 1
2

θi(x, x0)‖2

+ ρi‖
(

fi(x0)
(gi(x0))2

) 1
2

θi(x, x0)‖2
]

=
gi(x0)
gi(x)

[
ωT

i η(x, x0) + ρi‖
(

1
gi(x0)

) 1
2

θi(x, x0)‖2

+ ρi‖
(

fi(x0)
(gi(x0))2

) 1
2

θi(x, x0)‖2
]

= gi(x0)
gi(x)

[
ωT

i η(x, x0) + ρi‖
((

1
gi(x0)

) 1
2

+

(
(fi(x0))

1
2

gi(x0)

))
θi(x, x0)‖2

]

=
gi(x0)
gi(x)

[
ωT

i η(x, x0) + ρi‖
(

(gi(x0))
1
2 + (fi(x0))

1
2

gi(x0)

)
θi(x, x0)‖2

]

=
gi(x0)
gi(x)

[
ωT

i η(x, x0) + ρi‖




1 +
(

fi(x0)
gi(x0)

) 1
2

(gi(x0))
1
2


 θi(x, x0)‖2

]
.

Since 1 +
(

fi(x0)
gi(x0)

) 1
2 = 1, i = 1, . . . , p, we have for any ωi ∈ ∂

(
fi

gi

)
(x0),

αi(x, x0)
(

fi(x)
gi(x)

− fi(x0)
gi(x0)

)
= gi(x0)

gi(x)

[
ωT

i η(x, x0)+ρi‖
(

1

(gi(x0))
1
2

)
θi(x, x0)‖2

]
.
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Thus, the function f
g is (V, ρ)-invex at x0, where

ᾱi(x, x0) =
gi(x)
gi(x0)

αi(x, x0), θ̄i(x, x0) =
1

(gi(x0))
1
2

θi(x, x0).

2. Optimality theorems

Now, we establish the Kuhn-Tucker necessary and sufficient condi-
tions for a solution of (GFP).

Theorem 2.1. (Kuhn-Tucker Necessary Optimality Theorem)
Assume that f and −g are regular. If x0 is a solution of (GFP), and
assume that 0 /∈ co{∂hj(x0) | j ∈ J(x0)}, then there exist λi ≥ 0,

i ∈ I(x0) := {i | max
{

fi(x0)
gi(x0) | i = 1, . . . , p

}
= fi(x0)

gi(x0)},
∑

i∈I(x0)

λi = 1 and

µj ≥ 0, j = 1, . . . ,m such that

0 ∈
∑

i∈I(x0)

λi∂

(
fi

gi

)
(x0) +

m∑

j=1

µj∂hj(x0)

and
m∑

j=1

µjhj(x0) = 0.

Proof. Let φi(x) = fi(x)
gi(x) , i = 1, . . . , p. Let x0 be a solution of (GFP)

and let I(x0) = {i | max{φi(x0) | i = 1, . . . , p} = φi(x0)}. Then by
Proposition 2.3.12 in [5] and Corollary 5.1.8 in [11], there exist µj = 0,
j = 1, . . . , m,

0 ∈ co{∂φi(x0) | i ∈ I(x0)}+
m∑

j=1

µj∂hj(x0)(2.1)

and µjhj(x0) = 0,

where coA is the convexhull of the set A. By Lemma 1.2,

∂φi(x0) =
gi(x0)∂fi(x0)− ∂gi(x0)fi(x0)

(gi(x0))2

=∂

(
fi

gi

)
(x0),
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and hence from (2.1), there exist λi ≥ 0, i ∈ I(x0),
∑

i∈I(x0) λi = 1 and
µj ≥ 0, j = 1, . . . ,m such that

0 ∈
∑

i∈I(x0)

λi∂

(
fi

gi

)
(x0) +

m∑

j=1

µj∂hj(x0)

and
m∑

j=1

µjhj(x0) = 0.

Corollary 2.2. Let f := (f1, · · · , fp) : Rn → Rp, g := (g1, · · · , gp) :
Rn → Rp and h := (h1, · · · , hm) : Rn → Rm are continuously differen-
tiable. If x0 is a solution of (GFP), and assume that 0 /∈ co{∇hj(x0) | j ∈
J(x0)}, then there exist λi ≥ 0, i ∈ I(x0) := {i | max

{
fi(x0)
gi(x0) | i = 1, · · · , p

}

= fi(x0)
gi(x0)},

∑
i∈I(x0) λi = 1 and µj ≥ 0, j = 1, . . . , m such that

∑

i∈I(x0)

λi∇
(

fi(x0)
gi(x0)

)
+

m∑

j=1

µj∇hj(x0) = 0,

m∑

j=1

µjhj(x0) = 0.

Theorem 2.3. (Kuhn-Tucker Sufficient Optimality Theorem)
Assume that f and −g are regular. Let x0 be a feasible solution of
(GFP). Suppose that there exist λi = 0, i ∈ I(x0),

∑
i∈I(x0) λi = 1 and

µj = 0, j = 1, . . . ,m such that

0 ∈
∑

i∈I(x0)

λi∂

(
fi

gi

)
(x0) +

m∑

j=1

µj∂hj(x0)(2.2)

and
m∑

j=1

µjhj(x0) = 0.

If f(·) and −g(·) are (V, ρ)-invex at x0, and h is η-invex at x0 with
respect to the same η, and

∑
i∈I(x0) λiρi‖θ̄i(x, x0)‖2 = 0, then x0 is a

solution of (GFP).

Proof. Suppose that x0 is not a solution of (GFP). Then there exist
a feasible solution x of (GFP) such that

max
15i5p

fi(x0)
gi(x0)

> max
15i5p

fi(x)
gi(x)

.
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Then

fi(x0)
gi(x0)

>
fi(x)
gi(x)

, for all i ∈ I(x0),

and hence ᾱi(x, x0) > 0,

ᾱi(x, x0)
[
fi(x)
gi(x)

− fi(x0)
gi(x0)

]
< 0.

Since f(·) and −g(·) are (V, ρ)-invex and regular at x0, by Theorem 1.3,
we have for any wi ∈ ∂

(
fi
gi

)
(x0), i ∈ I(x0)

wiη(x, x0) + ρi‖θ̄(x, x0)‖2 < 0.

Hence, there exist λi = 0, i ∈ I(x0),
∑

i∈I(x0) λi = 1 such that

∑

i∈I(x0)

λiwiη(x, x0) +
∑

i∈I(x0)

λiρi‖θ̄(x, x0)‖2 < 0.

Since
∑

i∈I(x0) λiρi‖θ̄(x, x0)‖2 = 0,

∑

i∈I(x0)

λiwiη(x, x0) < 0,

and so, it follows from (2.2) that there exist νj ∈ ∂hj(x0), j = 1, . . . ,m
such that

m∑

j=1

µjνjη(x, x0) > 0.

Then, by the η-invexity of h, we have

m∑

j=1

µjhj(x) >
m∑

j=1

µjhj(x0).

Since
∑m

j=1 µjhj(x0) = 0, we have
∑m

j=1 µjhj(x) > 0, which is a contra-
diction since µj = 0, j = 1, . . . , m and x is a feasible solution of (GFP).
Consequently, x0 is a solution of (GFP).
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3. Duality theorems

Now, we propose the following Mond-Weir type dual problem (DGFP):

(DGFP) Maximize max
{

fi(u)
gi(u)

| i = 1, . . . , p

}

subject to 0 ∈
∑

i∈I(u)

λi∂

(
fi

gi

)
(u) +

m∑

j=1

µj∂hj(u)(3.1)

m∑

j=1

µjhj(u) = 0,

λi = 0, i ∈ I(u),
∑

i∈I(u)

λi = 1, µj = 0, j = 1, . . . , m.

Now we show that the following weak duality theorem holds between
(GFP) and (DGFP).

Theorem 3.1. (Weak Duality) Assume that f and −g are regular.
Let x be a feasible for (GFP) and let (u, λ, µ) be feasible for (DGFP).
Assume that f(·) and −g(·) are (V, ρ)-invex at u, and let h is η-invex at
u with respect to the same η, and

∑
i∈I(u) λiρi‖θ̄i(x, u)‖2 > 0. Then the

following holds:

max
{

fi(x)
gi(x)

| i = 1, . . . , p

}
= max

{
fi(u)
gi(u)

| i = 1, . . . , p

}
.

Proof. Let x be any feasible for (GFP) and let (u, λ, µ) be any feasible
for (DGFP). Then we have

m∑

j=1

µjhj(x) 5 0 5
m∑

j=1

µjhj(u).

By the η-invexity of hj(u), j = 1, . . . , m, there exists ν∗j ∈ ∂hj(u), j =
1, · · · ,m such that

m∑

j=1

µjν
∗
j η(x, u) 5 0.

Using (3.1), we have there exists w∗i ∈ ∂
(

fi

gi

)
(u), i ∈ I(u),

(3.2)
∑

i∈I(u)

λi w∗i η(x, u) = 0.

Now suppose that
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max
{

fi(x)
gi(x)

| i = 1, . . . , p

}
< max

{
fi(u)
gi(u)

| i = 1, . . . , p

}
.

Then
fi(x)
gi(x)

<
fi(u)
gi(u)

, for all i ∈ I(u).

By Theorem 1.3, we have there exists w∗i ∈ ∂
(

fi

gi

)
(u), i ∈ I(u) such

that

0 > ᾱi(x, u)
[
fi(x)
gi(x)

− fi(u)
gi(u)

]

= w∗i η(x, u) + ρi‖θ̄i(x, u)‖2.

By using λi = 0, i ∈ I(u), we have,
∑

i∈I(u)

λiw
∗
i η(x, u) +

∑

i∈I(u)

λiρi‖θ̄i(x, u)‖2 < 0.

Since
∑

i∈I(u) λiρi‖θ̄i(x, u)‖2 = 0, we have
∑

i∈I(u)

λiw
∗
i η(x, u) < 0,

which contradicts (3.2). Hence the result holds.

Now we give a strong duality theorem which holds between (GFP)
and (DGFP).

Theorem 3.2. (Strong Duality) If x̄ is a solution of (GFP) and
suppose that 0 /∈ co{∂hj(x0) | j ∈ J(x0)}. Then there exist λ̄ ∈ Rp and
µ̄ ∈ Rm such that (x̄, λ̄, µ̄) is feasible for (DGFP). Moreover if the weak
duality holds, then (x̄, λ̄, µ̄) is a solution of (DGFP).

Proof. By Theorem 2.1, there exist λ̄i ≥ 0, i ∈ I(x̄) := {i | max{ f(x̄)

gi(x̄) | i =

1, . . . , p} = f(x̄)

gi(x̄)},
∑

i∈I(x̄)

λ̄i = 1 and µ̄j ≥ 0, j = 1, . . . , m such that

0 ∈
∑

i∈I(x̄)

λ̄i∂

(
fi

gi

)
(x̄) +

m∑

j=1

µ̄j∂hj(x̄)

and
m∑

j=1

µ̄jhj(x̄) = 0.
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Thus (x̄, λ̄, µ̄) is a feasible for (DGFP). On the other hand, by weak
duality (Theorem 3.1),

max
{

fi(x̄)
gi(x̄)

| i = 1, · · · , p

}
≥ max

{
fi(u)
gi(u)

| i = 1, · · · , p

}

for any (DGFP) feasible solution (u, λ, µ). Hence (x̄, λ̄, µ̄) is a solution
of (DGFP).

4. Conclusions

This paper is concerned with optimality conditions and duality the-
orems for fractional optimization problems involving locally Lipschitz
functions. Using Clarke’s generalized subdifferential, we gave necessary
and sufficient optimality theorems for the problems. The sufficient opti-
mality conditions were verified under generalized invexity conditions on
involved functions. The Mond-Weir dual problems were formulated, and
then duality theorems were established, that is, weak and strong duality
theorems for the nondifferentiable fractional optimization problems.
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[11] M. M. Mäklelä and P. Neittaanmäki, Nonsmooth Optimization: Analysis and
Algorithms with Applications to Optimal Control, World Scientific Publishing
Co. Pte. Ltd. 1992.

[12] Z. Y. Peng and S. S. Chang, Some properties of semi-G-preinvex functions,
Taiwan Journal of Mathematics 17 (2013), no. 3, 873-884.

*
Department of Applied Mathematics
Pukyong National University
Busan 48513, Republic of Korea
E-mail : gwisoo1103@hanmail.net

**
Department of Refrigeration Engineering
Tongmyong University
Busan 608-711, Republic of Korea
E-mail : mooni@tu.ac.kr


