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STOCHASTIC DIFFERENTIAL EQUATION FOR
WHITE NOISE FUNCTIONALS

Un Cig Ji*

Abstract. Within white noise approach, we study the existence
and uniqueness of the solution of an initial value problem for gener-
alized white noise functionals, and then as a corollary we discuss the
linear stochastic differential equation associated with a convolution
of white noise functionals.

1. Introduction

The stochastic calculus has been developing extensively with appli-
cations to a wide range of research areas with random phenomena. The
randomness is represented by deterministic terms in the white noise the-
ory initiated by Hida [4] and so stochastic analysis is translated into an
infinite dimensional calculus. The white noise approach to stochastic
calculus has been studied by many authors, see e.g., [5, 6, 15], and ref-
erences cited therein.

On the other hand, convolution products play important roles in
many areas, infinite dimensional (harmonic) analysis, signal analysis
and quantum mechanics, etc, and so, in general, there are several kinds
of convolution products. In the white noise theory, convolution prod-
ucts have been studied by several authors, e.g., [15, 19, 9, 8, 9, 10], and
references cited therein. Recently, in [11], the author introduced a new
type of convolution product to give a unifying definition of well-known
convolutions in the white noise theory.

Motivated by the study in [1], we are interested in the study of linear
stochastic differential equations associated with the convolution intro-
duced in [11]. We first study the existence and uniqueness of the solution
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of an initial value problem for generalized white noise functionals, and
then as a corollary we examine the existence and uniqueness of the so-
lution of the linear stochastic differential equation associated with the
convolution.

This paper is organized as follows: In section 2, we briefly review the
basic notions of white noise functionals (see [2, 12]), which are necessary
for our study. In Section 3, we introduce the convolution, introduced in
[11], of generalized white noise functionals. In Section 4, we study basic
properties of generalized stochastic processes and examine the existence
and uniqueness of the solution of an initial value problem for generalized
white noise functionals.

2. White noise functionals

Let H be a (complex) separable Hilbert space with the norm | · |0 and
let A be a positive self-adjoint operator on H such that

∥∥A−1
∥∥

OP
< 1

and
∥∥A−1

∥∥2

HS
< ∞. Then by the standard construction from H and A

(see [15, 16]), we have a Gelfand triple E ⊂ H ⊂ E∗, where E∗ is the
strong dual space of the nuclear space E. The canonical bilinear form
on E∗ × E is denoted by 〈·, ·〉. By the Bochner-Minlos theorem, there
exists a Gaussian measure µ on E∗

R (subspace of E∗ consisting of real
elements) such that its characteristic function is given by

∫

E∗R
exp{i〈x, ξ〉}dµ(x) = exp

{
−1

2
|ξ|20

}
, ξ ∈ ER.

Then (E∗
R, µ) is called the white noise space or Gaussian space. We

denote by L2(E∗
R, µ) the complex Hilbert space of all µ-square integrable

functions on E∗
R. Then the celebrated Wiener-Itô-Segal isomorphism

gives the unitary isomorphism between L2(E∗
R, µ) and the Boson Fock

space Γ(H) which is uniquely determined by the correspondence:

φξ(x) = e〈x,ξ〉− 1
2
〈ξ,ξ〉 ↔ φξ =

(
1, ξ,

ξ⊗2

2!
, · · · ,

ξ⊗n

n!
, · · ·

)
,

where φξ is called an exponential vector (or coherent state) associated
with ξ ∈ H. Here the (Boson) Fock space Γ(H) over H is defined by

Γ(H) =

{
φ = (fn)∞n=0 ; fn ∈ H⊗̂n, ‖φ‖2 =

∞∑

n=0

n! |fn|20 < ∞
}

,

where H⊗̂n is the n-fold symmetric tensor product of H and H⊗̂0 = C.
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Let α = {α(n)}∞n=0 be a sequence of positive numbers satisfying the
following five conditions:

(A1) α(0) = 1 ≤ α(1) ≤ α(2) ≤ · · · ;
(A2) the generating function Gα(t) =

∞∑

n=0

α(n)
n!

tn has an infinite radius

of convergence;

(A3) the power series G̃α(t) =
∞∑

n=0

n2n

n!α(n)

{
inf
s>0

Gα(s)
sn

}
tn has a positive

radius of convergence;
(A4) there exists a constant C1α > 0 such that for any n, m,

α(n)α(m) ≤ Cn+m
1α α(n + m);

(A5) there exists a constant C2α > 0 such that for any n, m,

α(n + m) ≤ Cn+m
2α α(n)α(m).

There are some typical examples of such sequences, e.g., α(n) ≡ 1,
α(n) = (n!)β (0 ≤ β < 1) and an interesting example of the weighted
sequence α is given by the k-th order Bell numbers {Bk(n)} defined by

GBell(k)(t) =

k−times︷ ︸︸ ︷
exp(exp(· · · (exp t) · · · ))
exp(exp(· · · (exp 0) · · · )) =

∞∑

n=0

Bk(n)
n!

tn.

We review some properties of the generating function Gα whose
proofs are straightforward.

Lemma 2.1. Let α = {α(n)} be a positive sequence satisfying (A1)
and (A2), and Gα(t) the generating function defined therein. Then,

(1) Gα(0) = 1 and Gα(s) ≤ Gα(t) for 0 ≤ s ≤ t;
(2) esGα(t) ≤ Gα(s + t) and et ≤ Gα(t) for s, t ≥ 0;
(3) c[Gα(t)− 1] ≤ Gα(ct)− 1 for any c ≥ 1 and t ≥ 0.

Lemma 2.2. Let α = {α(n)} be a positive sequence and Gα(t) the
generating function defined therein. If α satisfies conditions (A1), (A2)
and (A4), then

Gα(s)Gα(t) ≤ Gα(C1α(s + t)), s, t ≥ 0.

If conditions (A1), (A2) and (A5) are fulfilled, then

Gα(s + t) ≤ Gα(C2αs)Gα(C2αt), s, t ≥ 0.



340 Un Cig Ji

Given such a positive sequence α, we define a weighted Fock space:

Γα(Ep) =

{
φ = (fn)∞n=0 ; fn ∈ E⊗̂n

p , ‖φ‖2
p ≡

∞∑

n=0

n! α(n) |fn|2p < ∞
}

,

where Ep =
{

ξ ∈ H ; |ξ|p ≡ |Apξ|0 < ∞
}

. We then define

Wα = proj lim
p→∞

Γα(Ep).

It is easily proved that Wα is a nuclear space whose topology is given
by the family of norms:

‖φ‖2
p,+ =

∞∑

n=0

n! α(n) |fn|2p , φ = (fn), p ≥ 0.

Then we obtain a Gelfand triple:

(2.1) Wα ⊂ Γ(HC) ∼= L2(E∗, µ) ⊂ W∗
α

which is called the Cochran-Kuo-Sengupta space [2] associated with α.
If there is no danger of confusion, we simply setW = Wα. The canonical
bilinear form on W∗ ×W is denoted by 〈〈·, ·〉〉. Then

〈〈Φ, φ〉〉 =
∞∑

n=0

n! 〈Fn, fn〉 , Φ = (Fn) ∈ W∗, φ = (fn) ∈ W,

and it holds that

| 〈〈Φ, φ〉〉 | ≤ ‖Φ‖−p,− ‖φ‖p,+ , ‖Φ‖2
−p,− =

∞∑

n=0

n!
α(n)

|Fn|2−p .

Example 2.3. The Gelfand triples given as in (2.1) with α(n) ≡ 1
and α(n) = (n!)β (0 ≤ β < 1) are called the Hida–Kubo–Takenaka space
[14] and Kondratiev–Streit space [13], respectively.

Proposition 2.4. Let α, β be sequences of positive numbers. If
α ≺ β (if and only if α(n) ≤ β(n) for all n ∈ N), then it holds that

(2.2) Wβ ⊂ Wα ⊂ Γ(H) ⊂ W∗
α ⊂ W∗

β,

where all inclusions are continuous.

Proof. The proof is straightforward.

From the fact that {φξ ; ξ ∈ E} spans a dense subspace of W, an
element Φ ∈ W∗ is uniquely determined by the S-transform SΦ of Φ
which is a function on E defined by

SΦ(ξ) = 〈〈Φ, φξ〉〉 , ξ ∈ E.
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Theorem 2.5 ([2]). A function F : E → C is the S-transform of a
white noise functional Φ ∈ W∗, i.e., F = SΦ, if and only if the following
two conditions are satisfied:

(S1) for any ξ, η ∈ E, the function z 7→ F (zξ + η) is entire holomorphic
on C;

(S2) there exist constant numbers C ≥ 0 and p ≥ 0 such that

|F (ξ)|2 ≤ CGα(|ξ|2p) ξ ∈ E.

3. Convolutions of generalized white noise functionals

For each given Φ, Ψ ∈ W∗, by applying Theorem 2.5, we prove that
there exists a unique white noise functional in W∗, denoted by Φ ¦ Ψ
and called the Wick product, such that

S(Φ ¦Ψ)(ξ) = S(Φ)(ξ)S(Ψ)(ξ), ξ ∈ E.

Let U, V ∈ L(E∗, E∗). For each given F ∈ W∗, we define a convolu-
tion ∗U,V ;F (see [11]) of generalized white noise functionals by

Φ ∗U,V ;F Ψ = Γ(U)Φ ¦ Γ(V )Ψ ¦ F, Φ, Ψ ∈ W∗,

where Γ(U) ∈ L(W∗,W∗) (the space of all continuous linear operators
from W∗ into itself) is the second quantization of U defined by

Γ(U)Φ = (U⊗nFn), Φ = (Fn) ∈ W∗.

Example 3.1 ([11]). (1) For any Φ, Ψ ∈ W∗ and the vacuum vector
φ0, we have

Φ ∗U,V ;φ0 Ψ = Γ(U)Φ ¦ Γ(V )Ψ ¦ φ0 = Γ(U)Φ ¦ Γ(V )Ψ = Φ ∗l
U∗,V ∗ Ψ,

where U∗ is the adjoint operator of the given linear operator U with
respect to the canonical bilinear form 〈·, ·〉. The convolution ∗l

U∗,V ∗ has
been studied in [10].

(2) For any Φ, Ψ ∈ W∗, we have

Φ ∗U,V ;F Ψ = Γ(U)Φ ¦ Γ(V )Ψ ¦ F = Γ(U)Φ ∗F Γ(V )Ψ.

The convolution ∗F has been studied in [8].
(3) For any Φ, Ψ ∈ W∗, we have

Φ ∗ 1√
2
I,− 1√

2
I;φ0

Ψ = Γ
(

1√
2
I

)
Φ ¦ Γ

(
− 1√

2
I

)
Ψ.

The convolution ∗ 1√
2
I,− 1√

2
I;φ0

has been studied in [20] (see also [9, 10])

and it is called the Yeh convolution.
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(4) For any Φ, Ψ ∈ W∗, we have

Φ ∗I,I;φ0 Ψ = Φ ¦Ψ.

The convolution has been studied by Obata and Ouerdiane in [19].

Lemma 3.2. Let F ∈ W∗ and U, V ∈ L(E∗, E∗) be given. If U = V ,
then it holds that

Φ ∗U,V ;F Ψ = Ψ ∗U,V ;F Φ

for any Φ, Ψ ∈ W∗.

Proof. The proof is straightforward.

Lemma 3.3. Let F ∈ W∗ and U, V ∈ L(E∗, E∗) be given. Suppose
that UV = V U , U2 = U , V 2 = V and Γ(U)F = Γ(V )F . Then it holds
that

(Φ1 ∗U,V ;F Φ2) ∗U,V ;F Φ3 = Φ1 ∗U,V ;F (Φ2 ∗U,V ;F Φ3)

for any Φ1, Φ2, Φ3 ∈ W∗.

Proof. The proof is straightforward.

In general, the convolution ∗U,V ;F is not commutative and not asso-
ciative.

4. Stochastic differential equations

In general, a one-parameter family {Φt}t∈[0,T ] ⊂ W∗ of generalized
white noise functionals is called a generalized stochastic process. In
this paper, motivated by the study of [17] (see also [12]), a general-
ized stochastic process is always assumed to be continuous, i.e., the map
[0, T ] 3 t → Φt ∈ W∗ is continuous.

Lemma 4.1. A function t 7→ Φt ∈ W∗ defined on an interval is con-
tinuous if and only if for any t0 in the interval, there exist K ≥ 0, p ≥ 0
and an open neighborhood U0 of t0 such that

|SΦt(ξ)|2 ≤ KGα(|ξ|2p), ξ ∈ E, t ∈ U0,

and

lim
t→t0

SΦt(ξ) = SΦt0(ξ), ξ ∈ E.

Proof. The proof is a modification of the argument used in the proof
of Theorem 1.8 in [18] (see also Lemma 5 in [12]).
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Example 4.2. Let H = L2(R, dt). For each ζ ∈ H, there exists
a sequence {ζn}∞n=1 ⊂ E such that {ζn}∞n=1 converges to ζ in H. Note
that for each n ∈ N, Xζn = 〈·, ζn〉 is a Gaussian random variable defined
on E∗

R and {Xζn}∞n=1 is a Cauchy sequence in L2(E∗
R, µ). We define the

random variable Xζ = limn→∞Xζn in L2(E∗
R, µ). Then Xζ is a Gaussian

random variable with mean 0 and variance |ζ|20. For each t ≥ 0, put Bt =
X1[0,t]

. Then {Bt}t≥0 is called a realization of Brownian motion and by
applying Lemma 4.1, we can see that the map [0,∞) 3 t → Bt ∈ W∗

α is
continuous, where α ≡ 1.

Proposition 4.3. Let U ∈ L(E∗, E∗) and {Φt}t∈[0,T ] ⊂ W∗ be a gen-
eralized stochastic process. Then {Γ(U)Φt}t∈[0,T ] ⊂ W∗ is a generalized
stochastic process

Proof. The proof is a simple application of Lemma 4.1.

Theorem 4.4. Let {Φ1,t}t∈[0,T ], {Φ2,t}t∈[0,T ] ⊂ W∗ be two general-
ized stochastic processes. Then {Φ1,t ¦Φ2,t}t∈[0,T ] ⊂ W∗ is a generalized
stochastic process.

Proof. Let t0 ∈ [0, T ]. By assumption, there exist K ≥ 0, p ≥ 0 and
an open neighborhood U0 of t0 such that

|SΦi,t(ξ)|2 ≤ KGα(|ξ|2p), ξ ∈ E, t ∈ U0, i = 1, 2.

Therefore, for any ξ ∈ E and t ∈ U0, by Lemma 2.2, we obtain that

|S(Φ1,t ¦ Φ2,t)(ξ)| ≤ K2
(
Gα(|ξ|2p)

)2
≤ K2Gα(2C1αρ2q |ξ|2p+q)

≤ K2Gα(|ξ|2p+q)

for any q ≥ 0 with 2C1αρ2q ≤ 1. On the other hand, for any ξ ∈ E, we
have

lim
t→t0

S(Φ1,t ¦ Φ2,t)(ξ) = lim
t→t0

SΦ1,t(ξ)SΦ2,t(ξ) = S(Φ1,t0 ¦ Φ2,t0)(ξ).

Hence by Lemma 4.1, the map t → Φ1,t ¦ Φ2,t ∈ W∗ is continuous.

Corollary 4.5. Let U, V ∈ L(E∗, E∗) and F ∈ W∗. Let {Φ1,t}t∈[0,T ]

and {Φ2,t}t∈[0,T ] be two generalized stochastic processes in W∗. Then
{Φ1,t ∗U,V ;F Φ2,t}t∈[0,T ] ⊂ W∗ is a generalized stochastic process.

Proof. The proof is obvious from Proposition 4.3 and Theorem 4.4.
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For general theory, we now study the initial value problem:

(4.1)
dΦ
dt

= F (t,Φ), Φ|t=0 = Φ0, 0 ≤ t ≤ T,

where F : [0, T ] × W∗ → W∗ is a continuous function and Φ0 is a
generalized white noise functional.

We need to consider two weight sequences α = {α(n)} and ω =
{ω(n)} with conditions (A1)–(A5) and the generating functions related
in such a way that

(4.2) Gα(t) = exp γ{Gω(t)− 1},
where γ > 0 is a certain constant. In this case, (2.2) holds.

Theorem 4.6. Let α = {α(n)} and ω = {ω(n)} be two weight se-
quences with conditions (A1)–(A5), and assume that their generating
functions are related as in (4.2). Let F : [0, T ]×W∗

α →W∗
α be a contin-

uous function satisfying the conditions:

(i) there exist p ≥ 0 and a nonnegative function K ∈ L1[0, T ] such
that

|SF (s,Φ)(ξ)− SF (s,Ψ)(ξ)|2 ≤ K(s)Gω(|ξ|2p)|SΦ(ξ)− SΨ(ξ)|2,
for all ξ ∈ E, Φ, Ψ ∈ W∗

ω, and s ∈ [0, T ];
(ii) there exist p ≥ 0 and a nonnegative function K ∈ L1[0, T ] such

that

|SF (s,Φ)(ξ)|2 ≤ K(s)Gω(|ξ|2p)(1 + |SΦ(ξ)|2),
for all ξ ∈ E, Φ ∈ W∗

ω, and s ∈ [0, T ].
Then, for any Φ0 ∈ W∗

ω, the initial value problem (4.1) has a unique
solution Φt ∈ W∗

α, t ∈ [0, T ].

Proof. In principle, the proof is based on the standard Picard–Lindelöf
method of successive approximations (see e.g., [3]) applied to the S-
transforms. We define

Φ(0)
t = Φ0,

Φ(n)
t = Φ0 +

∫ t

0
F

(
s,Φ(n−1)

s

)
ds, n ≥ 1.

Then by applying Theorem 2.5 we can see that for each n ∈ N, the map
t → Φ(n)

t ∈ W∗
ω is continuous and {Φ(n)

t } converges to a Φt in W∗
α, and

then we can see that Φt is the unique solution of the initial value problem
(4.1). The details of the above sketch are simple modifications of the
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proof of Theorem 9 in [12] (see also Theorem 13.43 in [15]). Therefore,
we skip the detailed computations.

Let {Lt}, {Mt} ⊂ W∗
ω be two generalized stochastic processes, where

t runs over [0, T ]. Consider the initial value problem:

(4.3)
d

dt
Φt = Lt ∗U,V ;F Φt + Mt, Φ|t=0 = Φ0 ∈ W∗

ω.

Corollary 4.7. Let α = {α(n)} and ω = {ω(n)} be two weight
sequences with conditions (A1)–(A5), and assume that their generating
functions are related as in (4.2). For each Φ0 ∈ W∗

ω, the initial value
problem (4.3) has a unique solution Φt ∈ W∗

α, t ∈ [0, T ].

Proof. The proof is a simple application of Theorem 4.6.

A special type of the stochastic differential equation given as in (4.3)
was studied in [1]. By taking U = V = I and F = φ0 the vacuum vector,
the convolution ∗U,V ;F coincides with the Wick product ¦. Hence we have
the following corollary.

Corollary 4.8. Let α = {α(n)} and ω = {ω(n)} be two weight
sequences with conditions (A1)–(A5), and assume that their generating
functions are related as in (4.2). For each Φ0 ∈ W∗

ω, the initial value
problem

d

dt
Φt = Lt ¦ Φt + Mt, Φ|t=0 = Φ0 ∈ W∗

ω

has a unique solution Φt ∈ W∗
α, t ∈ [0, T ].

A study of a quantum analogue of the differential equation given as
in (4.3) is now in progress and will be reported in a separate paper.
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