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SOME GENERALIZATIONS OF WEAKLY
M-SEMI-CONTINUOUS AND WEAKLY

M-PRECONTINUOUS FUNCTIONS

Takashi NOIRI* and Valeriu POPA**

Abstract. As a generalization of (i, j)-weakly m-continuous func-
tions [43], we introduce the notion of weakly M(i, j)-continuous
functions and obtain many characterizations and some properties
of the functions. We show that the function is a unified form of some
functions between m-spaces and certain kinds of weakly continuous
functions in bitopological spaces.

1. Introduction

Semi-open sets, preopen sets, α-open sets and β-open sets play an im-
portant role in the researching of generalizations of continuity in topolog-
ical spaces and bitopological spaces. By using these sets many authors
introduced and studied various types of modifications of continuity in
topological spaces and bitopological spaces. Khedr [18] and the present
authors [42], [46], [51] introduced and studied weakly semi-continuous
functions and weakly precontinuous functions in bitopological spaces.
Irresolute functions in bitopological spaces was defined by Mukherjee
[35]. Khedr and Noiri introduced and studied in [21], [22] the notions
of quasi-irresolute functions and almost s-continuous functions which
are generalizations of weakly continuous functions between topological
spaces due to Levine [23].

In [47]-[50], the present authors introduced and investigated the no-
tions of minimal structures, m-spaces, m-continuous functions, M -conti
nuous functions, weakly m-continuous functions and weakly M -continuous
functions. Recently, in [39], [41] and other papers the present authors
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reduced the study of some forms of continuity between bitological spaces
to the study of m-continuity and M -continuity between m-spaces.

Also Min and Kim [29]-[34] introduced and studied the notions of m-
semi-open, m-preopen, α-m-open, β-m-open sets and M -semi-continuity,
m-semi-continuity, mα-continuity. Quite recently, the notions of weakly
M -semi-continuous functions and weakly M -precontinuous functions have
been introduced in [33] and [34], respectively. And also these notions
are introduced and studied in [8], [52] and other papers.

Quite recently, the first author [38] introduced the notion of bi-
m-spaces which are called bi-minimal structure spaces in [5]. Some
propeties of biminimal structure spaces are studied in [4]-[6] and other
papers. The purpose of this paper is to introduce and investigate the
notion of weakly M(i, j)-continuous functions. This function is a gen-
eralization of weak M -semicontinuty [33], weak M -precontinuity [34],
(i, j)-weak m-continuity [43], (i, j)-weak quasi continuity [18], (i, j)-
weak precontinuity [42], (i, j)-quasi irresoluteness [21] and (i, j)-almost
s-continuity [22].

2. Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of
A and the interior of A are denoted by Cl(A) and Int(A), respectively.
We recall some generalized open sets in topological spaces.

Definition 2.1. Let (X, τ) be a topological space. A subset A of X
is said to be

(1) α-open [37] if A ⊂ Int(Cl(Int(A))),
(2) semi-open [24] if A ⊂ Cl(Int(A)),
(3) preopen [27] if A ⊂ Int(Cl(A)),
(4) β-open [1] or semi-preopen [3] if A ⊂ Cl(Int(Cl(A))).

The family of all α-open (resp. semi-open, preopen, β-open) sets in
(X, τ) is denoted by α(X) (resp. SO(X), PO(X), β(X)).

Definition 2.2. Let (X, τ) be a topological space. A subset A of
X is said to be α-closed [28] (resp. semi-closed [9], preclosed [27], β-
closed [1]) if the complement of A is α-open (resp. semi-open, preopen,
β-open).

Definition 2.3. Let (X, τ) be a topological space and A a subset
of X. The intersection of all α-closed (resp. semi-closed, preclosed,
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β-closed) sets of X containing A is called the α-closure [28] (resp. semi-
closure [9], preclosure [10], β-closure [2]) of A and is denoted by αCl(A)
(resp. sCl(A), pCl(A), βCl(A)).

Definition 2.4. Let (X, τ) be a topological space and A a subset of
X. The union of all α-open (resp. semi-open, preopen, β-open) sets of
X contained in A is called the α-interior [28] (resp. semi-interior [9],
preinterior [10], β-interior [2]) of A and is denoted by αInt(A) (resp.
sInt(A), pInt(A), βInt(A)).

3. Minimal structures and bi-m-spaces

Definition 3.1. Let X be a nonempty set and P (X) the power set
of X. A subfamily mX of P (X) is called a minimal structure (briefly
m-structure) on X [47], [48] if ∅ ∈ mX and X ∈ mX .

By (X,mX), we denote a nonempty set X with an m-structure mX

on X and call it an m-space. Each member of mX is said to be mX-open
(briefly m-open) and the complement of an mX -open set is said to be
mX-closed (briefly m-closed).

Remark 3.2. Let (X, τ) be a topological space. The families τ , α(X),
SO(X), PO(X) and β(X) are all minimal structures on X.

Definition 3.3. Let X be a nonempty set and mX an m-structure
on X. For a subset A of X, the mX-closure of A and the mX-interior
of A are defined in [26] as follows:

(1) mCl(A) = ∩{F : A ⊂ F, X \ F ∈ mX},
(2) mInt(A) = ∪{U : U ⊂ A,U ∈ mX}.
Remark 3.4. Let (X, τ) be a topological space and A a subset of X.

If mX = τ (resp. SO(X), PO(X), α(X), β(X)), then we have
(1) mCl(A) = Cl(A) (resp. sCl(A), pCl(A), αCl(A), βCl(A)),
(2) mInt(A) = Int(A) (resp. sInt(A), pInt(A), αInt(A), βInt(A)).

Lemma 3.5. (Maki et al. [26]). Let X be a nonempty set and mX

a minimal structure on X. For subsets A and B of X, the following
properties hold:

(1) mCl(X \A) = X \mInt(A) and mInt(X \A) = X \mCl(A),
(2) If (X \A) ∈ mX , then mCl(A) = A and if A ∈ mX , then mInt(A)

= A,
(3) mCl(∅) = ∅, mCl(X) = X, mInt(∅) = ∅ and mInt(X) = X,
(4) If A ⊂ B, then mCl(A) ⊂ mCl(B) and mInt(A) ⊂ mInt(B),
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(5) A ⊂ mCl(A) and mInt(A) ⊂ A,
(6) mCl(mCl(A)) = mCl(A) and mInt(mInt(A)) = mInt(A).

Lemma 3.6. (Popa and Noiri [47]). Let (X, mX) be an m-space and
A a subset of X. Then x ∈ mCl(A) if and only if U ∩ A 6= ∅ for each
U ∈ mX containing x.

Definition 3.7. An m-structure mX on a nonempty set X is said
to have property B [26] if the union of any family of subsets belonging
to mX belongs to mX .

Remark 3.8. If (X, τ) is a topological space, then the m-structures
SO(X), PO(X), α(X) and β(X) have property B.

Lemma 3.9. (Popa and Noiri [49]). Let X be a nonempty set and
mX an m-structure on X satisfying property B. For a subset A of X,
the following properties hold:

(1) A ∈ mX if and only if mInt(A) = A,
(2) A is mX -closed if and only if mCl(A) = A,
(3) mInt(A) ∈ mX and mCl(A) is mX -closed.

Definition 3.10. Let (X, mX) be an m-space. A subset A of X is
said to be

(1) m-α-open [30] if A ⊂ mInt(mCl(mInt(A))),
(2) m-semi-open [29] if A ⊂ mCl(mInt(A)),
(3) m-preopen [31] if A ⊂ mInt(mCl(A)),
(4) m-β-open [6] if A ⊂ mCl(mInt(mCl(A))).

The family of all m-α-open (resp. m-semi-open, m-preopen, m-β-
open) sets in (X, mX) is denoted by mα(X) (resp. mSO(X), mPO(X),
mβ(X)).

Remark 3.11. Similar definitions of m-semi-open sets, m-preopen
sets, m-α-open sets, m-β-open sets are provided in [8] and [52].

Let (X,mX) be an m-space. We denote by mIT(X) the family of
all m-structures on X determined by iterating operators mInt and mCl
([44], [45]). However, in this paper, by mIT(X) we denote mα(X),
mSO(X), mPO(X) or mβ(X).

Remark 3.12. (1) It easily follows from Lemma 3.5(3)-(4) that
mα(X), mSO(X), mPO(X) and mβ(X) are minimal structures
with property B. They are also shown in Theorem 3.5 of [29],
Theorem 3.4 of [31] and Theorem 3.4 of [30].
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(2) Let (X, mX) be an m-space and mIT(X) an iterate structure on X.
If mIT(X) = mSO(X) (resp. mPO(X), mα(X), mβ(X)), then we
obtain the following definitions provided in [29] (resp. [31], [30]):

mITCl(A) = msCl(A) (resp. mpCl(A), mαCl(A), mβCl(A)),
mITInt(A) = msInt(A) (resp. mpInt(A), mαInt(A), mβInt(A)).

In Theorem 4.2 of [50] and Theorems 7.4, 8.3 and 8.4 of [40], the au-
thors used first m-spaces with two minimal structures. The first author
[38] called a bi-m-space a nonempty set with two minimal structures on
X. Recently, Boonpok [5] has renamed bi-m-spaces as biminimal struc-
ture spaces. In [4], the author studied some forms of continuity between
two biminimal structure spaces.

Throughout the present paper, (X, τ1, τ2) (resp. (X,m1,m2)) denotes
a bitopological space (resp. bi-m-space). Let (X, τ) be a topological
space and A be a subset of X. Let (X, τ1, τ2) be a bitopological space
and A be a subset of X. The closure of A and the interior of A with
respect to τi are denoted by iCl(A) and iInt(A), respectively, for i = 1, 2.
Similarly, we denote the mX -closure of A and the mX -interior of A with
respect to mi are denoted by mi

XCl(A) and mi
XInt(A), respectively, for

i = 1, 2.

Remark 3.13. A bitopological space is a particular case of a bi-m-
space.

Let (X,mX) be an m-space and (Y, σ1, σ2) be a bitopological space.
In [43], the authors introduced and studied a form of weakly continuous
functions for a function f : (X, mX) → (Y, σ1, σ2).

Definition 3.14. A function f : (X, mX) → (Y, σ1, σ2) is said to be
(i, j)-weakly m-continuous [43] at x ∈ X if for each V ∈ σi containing
f(x), there exists U ∈ mX containing x such that f(U) ⊂ jCl(V ). The
function f is said to be (i, j)-weakly m-continuous if it has this property
at each point x ∈ X.

Recently, as weak forms of M -continuity [47], some functions between
m-spaces are introduced and studied as follows:

Definition 3.15. A function f : (X, mX) → (Y, mY ) is said to be
weakly M-continuous [49] x ∈ X if for each V ∈ mY containing f(x),
there exists U ∈ mX containing x such that f(U) ⊂ mCl(V ). The
function f is said to be weakly M -continuous if it has this property at
each point x ∈ X.

Definition 3.16. A function f : (X, mX) → (Y, mY ) is said to be
weakly M-semicontinuous [33] at x ∈ X if for each V ∈ mY containing
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f(x), there exists U ∈ mSO(X) containing x such that f(U) ⊂ msCl(V ).
The function f is said to be weakly M -semicontinuous if it has this
property at each point x ∈ X.

Definition 3.17. A function f : (X, mX) → (Y, mY ) is said to be
weakly M-precontinuous [34] at x ∈ X if for each V ∈ mY contain-
ing f(x), there exists U ∈ mPO(X) containing x such that f(U) ⊂
mpCl(V ). The function f is said to be weakly M -precontinuous if the
function f has this property at each point x ∈ X.

Now we introduce a new function which is a generalization of the
above four functions.

Definition 3.18. A function f : (X, mX) → (Y, m1
Y ,m2

Y ) is said to
be weakly M(i, j)-continuous at x ∈ X if for each V ∈ mi

Y containing
f(x), there exists U ∈ mX containing x such that f(U) ⊂ mj

YCl(V ).
The function f is said to be weakly M(i, j)-continuous if the function f
has this property at each point x ∈ X.

Remark 3.19. (1) If we set m1
Y = σ1 and m2

Y = σ2 in Definition
3.18, then we obtain the definition of (i, j)-weakly m-continuity
(Definition 3.14).

(2) If we set mY = σ1 = σ2 in Definition 3.18, then we obtain the
definition of weakly M -continuity (Definition 3.6).

(3) If we set mX = mSO(X), m1
Y = mY and m2

Y = mSO(Y ) in Defi-
nition 3.18, then a function f : (X,mX) → (Y, mY ) is weakly M -
semicontinuous if and only if f : (X, mSO(X)) → (Y, mY , mSO(Y ))
is weakly M(1, 2)-continuous.

(4) If we set mX = mPO(X), m1
Y = mY and m2

Y = mPO(Y ) in Defi-
nition 3.18, then a function f : (X,mX) → (Y, mY ) is weakly M -
precontinuous if and only if f : (X, mPO(X)) → (Y, mY ,mPO(Y ))
is weakly M(1, 2)-continuous.

4. Characterizations of weak M(i, j)-continuity

Theorem 4.1. For a function f : (X, mX) → (Y,m1
Y ,m2

Y ), the fol-
lowing properties are equivalent:

(1) f is weakly M(i, j)-continuous at x ∈ X;

(2) for every V ∈ mi
Y containing f(x), x ∈ mXInt(f−1(mj

YCl(V )));
(3) for every mi

Y -closed set F of Y such that x ∈ mXCl(f−1(mj
YInt(F ))),

x ∈ f−1(F ).
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Proof. (1) ⇒ (2): Let V ∈ mi
Y containing f(x). Then, by (1) there

exists U ∈ mX containing x such that f(U) ⊂ mj
YCl(V ). Thus x ∈ U ⊂

f−1(mj
YCl(V )) and hence x ∈ mXInt(f−1(mj

YCl(V ))).
(2) ⇒ (3): Let F be any mj

Y -closed set of Y . Suppose that x /∈
f−1(F ). Then Y \ F ∈ mj

Y and x ∈ X \ f−1(F ) = f−1(Y \ F ). By
(2) and Lemma 3.5, x ∈ mXInt(f−1(mj

YCl(Y \ F ))) = mXInt(f−1(Y \
mj

YInt(F ))) = X \mXCl(f−1(mj
YInt(F ))). Hence

x /∈ mXCl(f−1(mj
YInt(F ))).

(3) ⇒ (1): Let V be any mi
Y -open set containing f(x). Then x /∈

f−1(Y \ V ) and Y \ V is mi
Y -closed. By (3), x /∈ mXCl(f−1(mj

YInt(Y \
V ))) = mXCl(f−1(Y \mj

YCl(V ))) = mXCl(X \ f−1(mj
YCl(V ))) = X \

mXInt(f−1(mj
YCl(V ))). Therefore, there exists U ∈ mX containing x

such that U ⊂ f−1(mj
YCl(V )); hence f(U) ⊂ mj

YCl(V )).

Corollary 4.2. For a function f : (X, mX) → (Y,mY ), the follow-
ing properties are equivalent:

(1) f is weakly M -semicontinuous at x ∈ X;
(2) for every V ∈ mY containing f(x), x ∈ msInt(f−1(msCl(V )));
(3) for every mY -closed set F of Y such that x ∈ msCl(f−1(msInt(F ))),

x ∈ f−1(F ).

Remark 4.3. By Remark 3.19, we can obtain a quite similar char-
actrizations of weak M -precontinuity from Theorem 4.1.

Definition 4.4. A subset B of a bi-m-space (Y, m1
Y , m2

Y ) is said to
be mij-regular closed [4] if B = mi

YCl(mj
yInt(B)).

Theorem 4.5. For a function f : (X, mX) → (Y, m1
Y ,m2

Y ), where
m1

Y and m2
Y have property B, the following properties are equivalent:

(1) f is weakly M(i, j)-continuous at x ∈ X;

(2) for every subset B of Y with x ∈ mXCl(f−1(mj
YInt(mi

YCl(B)))),
x ∈ f−1(mi

YCl(B));
(3) for every mij-regular closed set F of Y such that

x ∈ mXCl(f−1(mj
YInt(F ))), x ∈ f−1(F );

(4) for every mj
Y -open set V of Y with x ∈ mXCl(f−1(V )), x ∈

f−1(mi
YCl(V )).

Proof. (1) ⇒ (2): Let B be any subset of Y with
x ∈ mXCl(f−1(mj

YInt(mi
YCl(B)))). Since mi

Y has property B, by Lemma
3.9, mi

YCl(B) is mi
Y -closed. Then, by Theorem 4.1,
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x ∈ mXCl(f−1(mj
YInt(mi

YCl(B)))) implies x ∈ f−1(mi
YCl(B)).

(2) ⇒ (3): Let F be any mij-regular closed set of Y such that x ∈
mXCl(f−1(mj

Y Int(F ))). By (2), x ∈ f−1(mi
YCl(mj

yInt(B))) = f−1(F ).
(3) ⇒ (4): Let V be any mj

Y -open set of Y with x ∈ mXCl(f−1(V )).
Then mi

YCl(V ) = mi
YCl(mj

YInt(V )) and mi
YCl(V ) is mij-regular closed.

By assumption, x ∈ mXCl(f−1(V )) = mXCl(f−1(mj
YInt(V )))

⊂ mXCl(f−1(mj
YInt(mi

YCl(V )))). By (3), x ∈ f−1(mi
YCl(V )).

(4)⇒ (1): Let V be any mi
Y -open set of Y containing f(x). Since mj

Y

has property B, mj
YCl(V ) is mj

Y -closed and Y \mj
YCl(V ) is mj

Y -open.
Suppose that x /∈ mXInt(f−1(mj

YCl(V ))). Then
x ∈ X \mXInt(f−1(mj

YCl(V ))) = mXCl(X \ f−1(mj
YCl(V ))

= mXCl(f−1(Y \ mj
YCl(V ))). Since Y \ mj

YCl(V ) is mj
Y -open, by (4)

x ∈ f−1(mi
YCl(Y \mj

YCl(V ))) = f−1(Y \mi
YInt(mj

YCl(V ))) ⊂ f−1(Y \
mi

YInt(V )) = f−1(Y \ V )) = X \ f−1(V ). Hence x /∈ f−1(V ) and
f(x) /∈ V . This is a contradiction. Therefore, we obtain that x ∈
mXInt(f−1(mj

YCl(V ))). By Theorem 4.1, f is weakly M(i, j)-continuous
at x.

Corollary 4.6. For a function f : (X, mX) → (Y, mY ), where mY

has property B, the following properties are equivalent:

(1) f is weakly M -semicontinuous at x ∈ X;
(2) for every subset B of Y with x ∈ msCl(f−1(msInt(mCl(B)))),

x ∈ f−1(mCl(B));
(3) for every mij-regular closed set F of Y such that

x ∈ msCl(f−1(msInt(F ))), x ∈ f−1(F );
(4) for every ms-open set V of Y with x ∈ msCl(f−1(V )),

x ∈ f−1(mCl(V )).

Remark 4.7. By Remark 3.19, we can obtain a quite similar char-
actrizations of weak M -precontinuity from Theorem 4.5.

For a function f : (X, mX) → (Y, m1
Y ,m2

Y ), we define DM(i,j)(f) as
follows:

DM(i,j)(f) = {x ∈ X : f is not weakly M(i, j)-continuous at x}.
Theorem 4.8. For a function f : (X, mX) → (Y,m1

Y ,m2
Y ), the fol-

lowing properties hold:

DM(i,j)(f) =
⋃

G∈mi
Y
{f−1(G) \mXInt(f−1(mj

YCl(G)))}
=

⋃
F∈F {mXCl(f−1(mj

YInt(F )) \ f−1(F )},
where F is the family of mi

Y -closed sets of Y .
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Proof. We show only the first equality because the proof of the other
is similar to the first one. Let x ∈ DM(i,j)(f). By Theorem 4.1, there ex-
ists V ∈ mi

Y such that f(x) ∈ V and x /∈ mXInt(f−1(mj
YCl(V ))). There-

fore, we have x ∈ f−1(V ) \mXInt(f−1(mj
YCl(V ))) ⊂ ⋃

G∈mi
Y
{f−1(G) \

mXInt(f−1(mj
YCl(G)))}. Conversely, let

x ∈ ⋃
G∈mi

Y
{f−1(G) \ mXInt(f−1(mj

YCl(G)))}. There exists V ∈ mi
Y

such that x ∈ f−1(V ) \ mXInt(f−1(mj
YCl(V ))). By Theorem 4.1, x ∈

DM(i,j)(f).

For a function f : (X,mX) → (Y, mY ), we define DMs(f) as follows:
DMs(f) = {x ∈ X : f is not weakly M -semicontinuous at x}.

Then by Remark 3.19 and Theorem 4.8 we obtain the following corol-
lary.

Corollary 4.9. For a function f : (X, mX) → (Y,mY ), the follow-
ing properties hold:

DMs(f) =
⋃

G∈mY
{f−1(G) \msInt(f−1(msCl(G)))}

=
⋃

F∈F {msCl(f−1(msInt(F )) \ f−1(F )},
where F is the family of mY -closed sets of Y .

Remark 4.10. By Remark 3.19, we can obtain a quite similar results
of weak M -precontinuity from Theorem 4.8.

Theorem 4.11. For a function f : (X,mX) → (Y, m1
Y ,m2

Y ), where
m1

Y and m2
Y have property B, the following properties hold:

DM(i,j)(f) =
⋃

B∈P (Y ) {mXCl(f−1(mj
YInt(mi

YCl(B))))\f−1(mi
YCl(B))}

=
⋃

G∈mj
Y
{mXCl(f−1(G)) \ f−1(mi

YCl(G))}
=

⋃
F∈F {mXCl(f−1(mj

YInt(F ))) \ f−1(F )},
where F is the family of mij regular closed sets of Y .

Proof. The proof is similar to that of Theorem 4.8.

Corollary 4.12. For a function f : (X,mX) → (Y, mY ), where mY

has property B, the following properties hold:
DMs(f) =

⋃
B∈P (Y ) {msCl(f−1(msInt(mCl(B)))) \ f−1(mCl(B))}

=
⋃

G∈mSO(Y ){msCl(f−1(G)) \ f−1(mCl(G))}
=

⋃
F∈F {msCl(f−1(msInt(F ))) \ f−1(F )},

where F is the family of mij regular closed sets of Y .

Remark 4.13. By Remark 3.19, we can obtain a quite similar results
of weak M -precontinuity from Theorem 4.11.
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Theorem 4.14. For a function f : (X, mX) → (Y, m1
Y ,m2

Y ), the
following properties are equivalent:

(1) f is weakly M(i, j)-continuous;

(2) f−1(V ) ⊂ mXInt(f−1(mj
YCl(V ))) for every mi

Y -open set V of Y ;

(3) mXCl(f−1(mj
YInt(F ))) ⊂ f−1(F ) for every mi

Y -closed set F of Y.

Proof. (1) ⇒ (2): Let V be any mi
Y -open set and x ∈ f−1(V ).

Then, by Theorem 4.1 x ∈ mXInt(f−1(mj
YCl(V ))) and hence f−1(V ) ⊂

mXInt(f−1(mj
YCl(V ))).

(2) ⇒ (3): Let F be any mi
Y -closed set of Y . Suppose that x /∈

f−1(F ). Then Y \ F ∈ mi
Y is and x ∈ X \ f−1(F ) = f−1(Y \ F ). By

(2) and Lemma 3.5, x ∈ mXInt(f−1(mj
YCl(Y \ F ))) = mXInt(f−1(Y \

mj
YInt(F ))) = X \mXCl(f−1(mj

YInt(F ))). Therefore,
x /∈ mXCl(f−1(mj

YInt(F ))) and hence mXCl(f−1(mj
YInt(F ))) ⊂ f−1(F ).

(3) ⇒ (1): Let V be any mi
Y -open set and x ∈ f−1(V ). Then

x /∈ f−1(Y \V ) and Y \V is mi
Y -closed. By (3), x /∈ mXCl(f−1(mj

YInt(Y \
V ))) = mXCl(f−1(Y \mj

YCl(V ))) = mXCl(X \ f−1(mj
YCl(V ))) = X \

mXInt(f−1(mj
YCl(V ))). Therefore, x ∈ mXInt(f−1(mj

YCl(V ))). By
Theorem 4.1, f is weakly M(i, j)-continuous.

Theorem 4.15. For a function f : (X,mX) → (Y, m1
Y ,m2

Y ), where
m1

Y and m2
Y have property B, the following properties are equivalent:

(1) f is weakly M(i, j)-continuous;
(2) for every subset B of Y,

mXCl(f−1(mj
YInt(mi

YCl(B)))) ⊂ f−1(mi
YCl(B));

(3) for every mij-regular closed set F of Y ,

mXCl(f−1(mj
YInt(F ))) ⊂ f−1(F );

(4) for every mj
Y -open set V of Y , mXCl(f−1(V )) ⊂ f−1(mi

YCl(V )).

Proof. (1) ⇒ (2): Let B be any subset of Y . Suppose
x ∈ mXCl(f−1(mj

YInt(mi
YCl(B)))). By Theorem 4.5, x ∈ f−1(mi

YCl(B)).
Hence mXCl(f−1(mj

YInt(mi
YCl(B)))) ⊂ f−1(mi

YCl(B)).
(2) ⇒ (3): Let F be any mij-regular closed set of Y . By (2),

mXCl(f−1(mj
YInt(F ))) = mX(f−1(mj

YInt(mi
YCl(mj

yInt(F )))))
⊂ f−1(mi

YCl(mj
yInt(F ))) = f−1(F ).

(3) ⇒ (4): Let V be any mj
Y -open set of Y . Then mi

YCl(V ) =
mi

YCl(mj
YInt(V )) and mi

YCl(V ) is mij-regular closed. By (3),
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mXCl(f−1(V )) = mXCl(f−1(mj
YInt(V ))) ⊂ mXCl(f−1(mj

YInt(mi
YCl(V ))))

⊂ f−1(mi
YCl(V )).

(4) ⇒ (1): Let V be any mi
Y -open set of Y . Since mj

Y has prop-
erty B, mj

YCl(V ) is mj
Y -closed and Y \mj

YCl(V ) is mj
Y -open. By (4),

mXCl(f−1(Y \mj
YCl(V ))) ⊂ f−1(mi

YCl(Y \mj
YCl(V )))) ⊂ X \ f−1(V ).

Therefore, we obtain f−1(V ) ⊂ mXInt(f−1(mj
YCl(V ))) and by Theorem

4.14 f is weakly M(i, j)-continuous.

Remark 4.16. (1) By Theorems 4.14 and 4.15, we obtain the results
from Theorems 3.3, 3.5 and 3.6 of [33].

(2) By Theorems 4.14 and 4.15, we obtain the results from Theorems
3.3 and 3.5 of [34].

(3) Let m1
Y = σ1 and m2

Y = σ2, then by Theorems 4.14 and 4.15 we
obtain Theorem 3.1 of [43].

Definition 4.17. Let (X, m1
X ,m2

X) be a bi-m-space and A a subset
of X. A point x of X is called an mij-θ-adherent point of A if A ∩
mj

XCl(U) 6= ∅ for every mi-open set U containing x.

The set of all mij-θ-adherent points of A is called the mij-θ-closure
of A and is denoted by mijClθ(A). If A = mijClθ(A), then A is said to
be mij-θ-closed. A subset A of X is said to be mij-θ-open if X \ A is
mij-θ-closed.

Lemma 4.18. Let (X,m1
X ,m2

X) be a bi-m-space, where mi
X has prop-

erty B. Then mijClθ(A) is mi
X -closed for each subset A of X.

Proof. Let x ∈ X \ mijClθ(A). Then x /∈ mijClθ(A). Hence there
exists Ux ∈ mi

X containing x such that mj
XCl(Ux) ∩ A = ∅. Then

Ux∩A = ∅ which implies that Ux∩mijClθ(A) = ∅. Indeed, suppose that
Ux ∩mijClθ(A) 6= ∅. Then, there exists y ∈ Ux ∩mijClθ(A). Therefore,
y ∈ Ux and y ∈ mijClθ(A). Therefore, we have mj

XCl(Ux) ∩ A 6= ∅.
This is a contradiction. Hence x ∈ Ux ⊂ X \mijClθ(A). Since mi

X has
property B, X \mijClθ(A) = ∪Ux ∈ mi

X . It follows that mijClθ(A) is
mi

X -closed.

Lemma 4.19. Let (X, m1
X ,m2

X) be a bi-m-space. If U is an mi
X -open

set, then mjiClθ(U) = mj
XCl(U).

Proof. Suppose that x /∈ mjiClθ(U). Then there exists V ∈ mj
X

containing x such that mi
XCl(V ) ∩ U = ∅; hence V ∩ U = ∅. Therefore,

V ∩ mj
XCl(U) = ∅ and hence x /∈ mj

XCl(U). Therefore, mjiClθ(U) ⊃
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mj
XCl(U). Conversely, suppose that x /∈ mj

XCl(U). Then there exists
V ∈ mj

X containing x such that V ∩ U = ∅. Since U ∈ mi
X , U ∩

mi
XCl(V ) = ∅ and hence x /∈ mjiClθ(U). Hence mjiClθ(U) ⊂ mj

XCl(U).
Hence mjiClθ(U) = mj

XCl(U).

Theorem 4.20. For a function f : (X,mX) → (Y, m1
Y ,m2

Y ), where
m1

Y and m2
Y have property B, the following properties are equivalent:

(1) f is weakly M(i, j)-continuous;
(2) f(mXCl(A)) ⊂ mijClθ(f(A)) for every subset A of X;
(3) mXCl(f−1(B)) ⊂ f−1(mijClθ(B)) for every subset B of Y;

(4) mXCl(f−1(mj
YInt(mijClθ(B)))) ⊂ f−1(mijClθ(B)) for every sub-

set B of Y.

Proof. (1) ⇒ (2): Suppose that f is weakly M(i, j)-continuous. Let
A be any subset of X, x ∈ mXCl(A) and V be an mi

Y -open set of Y
containing f(x). Then, there exists an mX -open set U containing x such
that f(U) ⊂ mj

YCl(V ). Since x ∈ mXCl(A), by Lemma 3.6 we obtain
U ∩A 6= ∅ and hence ∅ 6= f(U)∩f(A) ⊂ mj

YCl(V )∩f(A). Therefore, we
obtain f(x) ∈ mijClθ(f(A)) and hence f(mXCl(A)) ⊂ mijClθ(f(A)).

(2) ⇒ (3): Let B be any subset of Y . Then f(mXCl(f−1(B))) ⊂
mijClθ(f(f−1(B))) ⊂ mijClθ(B) and hence
mXCl(f−1(B)) ⊂ f−1(mijClθ(B)).

(3) ⇒ (4): Let B be any subset of Y . Then, by Lemma 4.18
mijClθ(B)) is mi

Y -closed in Y and by using Lemmas 4.18 and 4.19 we
obtain
mXCl(f−1(mj

YInt(mijClθ(B)))) ⊂ f−1(mijClθ(m
j
YInt(mijClθ(B))))

= f−1(mi
YCl(mj

YInt(mijClθ(B)))) ⊂ f−1(mi
YCl(mijClθ(B)))

= f−1(mijClθ(B)).
(4) ⇒ (1): Let V be any mj

Y -open set of Y . Then by Lemma 4.19,
V ⊂ mj

YInt(mi
YCl(V )) = mj

YInt(mijClθ(V )) and we have
mXCl(f−1(V )) ⊂ mXCl(f−1(mj

YInt(mijClθ(V )))) ⊂ f−1(mijClθ(V ))
= f−1(mi

YCl(V )).
Thus we obtain mXCl(f−1(V )) ⊂ f−1(mi

YCl(V )). It follows from
Theorem 4.15 that f is weakly M(i, j)-continuous.

Definition 4.21. Let (X, mX) be an m-space and A be a subset of X.
The mX-frontier of A [43], mXFr(A), is defined as follows: mXFr(A) =
mXCl(A) ∩mXCl(X \A) = mXCl(A) \mXInt(A).

Theorem 4.22. Let (X, mX) be an m-space and (Y, m1
Y ,m2

Y ) a bi-
m-space. The set of all points x of X at which a function f : (X, mX) →
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(Y, m1
Y ,m2

Y ) is not weakly M(i, j)-continuous is identical with the union

of all mX -frontiers of the inverse images of the mj
Y -closure of mi

Y -open
sets of Y contining f(x).

Proof. Let x be a point of X at which f is not weakly M(i, j)-
continuous. Then, there exists a mi

Y -open set V of Y containing f(x)
such that U ∩ (X \ f−1(mj

YCl(V ))) 6= ∅ for every mX -open set U of X

containing x. By Lemma 3.6, x ∈ mXCl(X \ f−1(mj
YCl(V ))). Since x ∈

f−1(mj
YCl(V )), x ∈ mXCl(f−1(mj

YCl(V ))) and x ∈ mXFr(f−1(mj
YCl(V ))).

Conversely, if f is weakly M(i, j)-continuous at x, then for each mi
Y -

open set V of Y containing f(x), there exists an mX -open set U contain-
ing x such that f(U) ⊂ mj

YCl(V ) and hence x ∈ U ⊂ f−1(mj
YCl(V )).

Therefore, we obtain that x ∈ mXInt(f−1(mj
YCl(V ))) and hence x /∈

mXFr(f−1(mj
YCl(V ))).

Corollary 4.23. The set of all points x of X at which a function
f : (X, mX) → (Y, mY ) is not weakly M -semicontinuous is identical
with the union of all mSO(X)-frontiers of the inverse images of the
mY -semi-closure of mY -open sets of Y contining f(x).

5. Weak M(i, j)-continuity and M-continuity

Definition 5.1. A function f : (X,mX) → (Y, mY ) is said to be
M -continuous [47] at x ∈ X if for each V ∈ mY containing f(x), there
exists U ∈ mX containing x such that f(U) ⊂ V . The function f is said
to be M -continuous if it has this property at each x ∈ X.

Definition 5.2. A function f : (X, mX) → (Y, m1
Y , m2

Y ) is said to
be M-i-continuous if f : (X,mX) → (Y, mi

Y ) is M -continuous.

Lemma 5.3. For a function f : (X,mX) → (Y, m1
Y ,m2

Y ), the following
properties are equivalent:

(1) f is M-i-continuous;
(2) f−1(V ) = mXInt(f−1(V )) for every mi

Y -open set V of Y;
(3) f−1(F ) = mXCl(f−1(F )) for every mi

Y -closed set F of Y.

Proof. The proof follows from Definition 5.2 and Theorem 3.1 of [47].

Definition 5.4. A bi-m-space (X, m1
X ,m2

X) is said to be mij-regular
if for each x ∈ X and each mi

X -open set U containing x, there exists an
mi

X -open set V such that x ∈ V ⊂ mj
XCl(V ) ⊂ U .
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Lemma 5.5. If A bi-m-space (X, m1
X ,m2

X) is mij-regular, then
mijClθ(F ) = F for every mi

X -closed set F of X.

Proof. Let F be any mi
X -closed set of X and x ∈ mijClθ(F ), then

mj
XCl(U)∩F 6= ∅ for every mi

X -open set U containing x. Since X is mij-
regular, there exists an mi

X -open set V such that x ∈ V ⊂ mj
XCl(V ) ⊂

U . Since x ∈ V ∈ mi
X , mj

XCl(V ) ∩ F 6= ∅. This implies that U ∩ F 6= ∅
and hence x ∈ mi

XCl(F ). Then, we have F ⊂ mijClθ(F ) ⊂ mi
XCl(F ) =

F .

Theorem 5.6. Let (Y, m1
Y ,m2

Y ) be an mij-regular bi-m-space, where
m1

Y and m2
Y have property B. For a function f : (X, mX) → (Y,m1

Y ,m2
Y ),

the following properties are equivalent:

(1) f is M-i-continuous;
(2) f−1(mijClθ(B)) = mXCl(f−1(mijClθ(B))) for every subset B of

Y;
(3) f is weakly M(i, j)-continuous;
(4) f−1(F ) = mXCl(f−1(F )) for every mij-θ-closed set F of Y;
(5) f−1(V ) = mXInt(f−1(V )) for every mij-θ-open set V of Y.

Proof. (1) ⇒ (2): Let B be any subset of Y . By Lemma 4.18,
mijClθ(B) is mi

Y -closed in Y . It follows from Lemma 5.5 that f−1(mijClθ(B)) =
mXCl(f−1(mijClθ(B)));

(2) ⇒ (3): Let B be any subset of Y . Then by (2) and Lemma 3.5
we have

mXCl(f−1(B)) ⊂ mXCl(f−1(mijClθ(B))) = f−1(mijClθ(B)).

By Theorem 4.20, f is weakly M(i, j)-continuous.
(3) ⇒ (4): Let F be any mij-θ-closed set of Y . Then by Theorem

4.20, mXCl(f−1(F )) ⊂ f−1(mijClθ(F )) = f−1(F ). By Lemma 3.5,
f−1(F ) = mXCl(f−1(F )).

(4) ⇒ (5): Let V be any mij-θ-open set of Y . Then by (4), X \
f−1(V ) = f−1(Y \ V ) = mXCl(f−1(Y \ V )) = X \ mXInt(f−1(V )).
Hence f−1(V ) = mXInt(f−1(V )).

(5) ⇒ (1): Since (Y, m1
Y ,m2

Y ) is mij-regular, by Lemma 5.5
mijClθ(B) = B for every mi

Y -closed set B of Y and hence every mi
Y -open

set is mij-θ-open. Therefore, by Lemma 5.3, f is M -i-continuous.
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6. Minimal structures in bitopological spaces

Definition 6.1. A subset A of a bitopological space (X, τ1, τ2) is
said to be

(1) (i, j)-semi-open [25] if A ⊂ jCl(iInt(A)), where i 6= j, i, j = 1, 2,
(2) (i, j)-preopen [14] if A ⊂ iInt(jCl(A)), where i 6= j, i, j = 1, 2,
(3) (i, j)-α-open [15] if A ⊂ iInt(jCl(iInt(A))), where i 6= j, i, j = 1,

2,
(4) (i, j)-semi-preopen (briefly (i, j)-sp-open) [20] if there exists an

(i, j)-preopen set U such that U ⊂ A ⊂ jCl(U), where i 6= j, i, j =
1, 2.

The family of all (i, j)-semi-open (resp. (i, j)-preopen, (i, j)-α-open,
(i, j)-sp-open) sets of (X, τ1, τ2) is denoted by (i, j)SO(X) (resp.
(i, j)PO(X), (i, j)α(X), (i, j)SPO(X)).

Remark 6.2. Let (X, τ1, τ2) be a bitopological space. Then (i, j)SO(X),
(i, j)PO(X), (i, j)α(X) and (i, j)SPO(X) are all m-structures on X.

In the following, we denote by mij(X) a minimal structure on X
determined by τ1 and τ2 as in Definition 6.1. If mij(X) = (i, j)SO(X)
(resp. (i, j)PO(X), (i, j)α(X), (i, j)SPO(X)), by Definition 3.3 for a
subset A of X we have

mijCl(A) = (i, j)sCl(A) [25]
(resp. (i, j)pCl(A) [20], (i, j)αCl(A) [36], (i, j)spCl(A)) [20],

mijInt(A) = (i, j)sInt(A) (resp. (i, j)pInt(A), (i, j)αInt(A), (i, j)spInt(A)).

Remark 6.3. Let (X, τ1, τ2) be a bitopological space. Then the fam-
ilies (i, j)SO(X), (i, j)PO(X), (i, j)α(X) and (i, j)SPO(X) are all m-
structures on X satisfying property B by Theorem 2 of [25] (resp. The-
orem 4.2 of [16] or Theorem 3.2 of [20], Theorem 5 of [36], Theorem 3.2
of [20]).

Let (X, τ1, τ2) be a bitopological space and A a subset of X. A
point x of X is called an (i, j)-semi-θ-adherent point [21] of A, if A ∩
(j, i)sCl(U) 6= ∅ for every (i, j)-semi-open set U containing x. The set of
all (i, j)-semi-θ-adherent points of A is called the (i, j)-semi-θ-closure
of A and is denoted by (i, j)sClθ(A). If A = (i, j)sClθ(A), then A is said
to be (i, j)-semi-θ-closed. A subset A of X is said to be (i, j)-semi-θ-
open if X \ A is (i, j)-semi-θ-closed. A bitopological space (X, τ1, τ2) is
said to be (i, j)-semi-regular [21] if for each (i, j)-semi-open set G and
each x ∈ G, there exists an (i, j)-semi-open set U such that x ∈ U ⊂
(j, i)sCl(U) ⊂ G.
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Definition 6.4. A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be
(i, j)-weakly semi-continuous [18] (resp. (i, j)-weakly precontinuous [42])
if for each x ∈ X and each σi-open set V of Y containing f(x), there
exists an (i, j)-semi-open (resp. (i, j)-preopen) set U containing x such
that f(U) ⊂ jCl(V ).

Hence, a function f : (X, τ1, τ2) → (Y, σ1, σ2) is (i, j)-weakly semi-
continuous (resp. (i, j)-weakly precontinuous) if and only if a func-
tion f : (X, (i, j)SO(X)) → (Y, σ1, σ2) (resp. f : (X, (i, j)PO(X)) →
(Y, σ1, σ2)) is weakly M(i, j)-continuous.

Definition 6.5. A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to
be (i, j)-quasi irresolute [21] (resp. (i, j)-almost s-continuous [22]) if
for each x ∈ X and each (i, j)-semi-open set V of Y containing f(x),
there exists U ∈ (i, j)SO(X) (resp. U ∈ τi) containing x such that
f(U) ⊂ (j, i)sCl(V ).

Hence, a function f : (X, τ1, τ2) → (Y, σ1, σ2) is (i, j)-quasi irres-
olute (resp. (i, j)-almost s-continuous) if and only if a function f :
(X, (i, j)SO(X)) → (Y, (i, j)SO(Y ), (j, i)SO(Y )) (resp. f : (X, τi) →
(Y, (i, j)SO(Y ), (j, i)SO(Y ))) is weakly M(i, j)-continuous.

Therefore, by the results of Sections 4 and 5, we can obtain the results
established in [18], [21], [22], [42] and [43].

Remark 6.6. Let (X, τ1, τ2) be a bitopological space. Then the fam-
ilies (i, j)SO(X) and (i, j)PO(X) have property B.

(1) If we set mX = (i, j)SO(X), m1
Y = σ1 and m2

Y = σ2, then by The-
orems 4.14 and 4.15 we obtain the results established in Theorems
2.1 and 2.2 in [18] and Theorems 3.1 and 3.2 in [46].

(2) If we set mX = (i, j)PO(X), m1
Y = σ1 and m2

Y = σ2, then by The-
orems 4.14 and 4.15 we obtain the results established in Theorems
3.1 and 3.2 of [42].

(3) If we set m1
Y = σ1 and m2

Y = σ2, then by Theorems 4.14 and 4.15
we obtain the results established in Theorem 3.1 of [43].

(4) If we set mX = (i, j)SO(X), m1
Y = (i, j)SO(Y ) and m2

Y = (j, i)SO(Y ),
then by Theorem 4.14 we obtain the results established in Propo-
sition 15 (1), (4), (5) of [21] and Theorem 2.4 (1), (2) of [19].

Remark 6.7. (1) If we set mX = (i, j)SO(X), m1
Y = σ1 and m2

Y =
σ2, then by Theorem 5.6 we obtain the results established in The-
orem 3.2 in [51].
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(2) If we set mX = (i, j)PO(X), m1
Y = σ1 and m2

Y = σ2, then by
Theorem 5.6 we obtain the results established in Theorems 3.3 of
[42].

(3) If we set m1
Y = σ1 and m2

Y = σ2, then by Theorem 5.6 we obtain
the results established in Theorem 4.1 of [43].

(4) If we set mX = mijSO(X), m1
Y = (i, j)SO(Y ) and m2

Y = (j, i)SO(Y ),
then by Theorem 5.6 we obtain the results established in Theorem
2.7 of [19].

Remark 6.8. (1) If we set mX = (i, j)SO(X), m1
Y = σ1 and m2

Y =
σ2, then by Theorem 4.22 we obtain the results established in
Theorem 4.3 in [51].

(2) If we set mX = (i, j)PO(X), m1
Y = σ1 and m2

Y = σ2, then by
Theorem 4.22 we obtain the results established in Theorem 4.3 of
[42].

By Theorem 4.15, we can obtain the characterizations of (i, j)-almost
s-continuous functions.

Corollary 6.9. For a function f : (X, τ1, τ2) → (Y, σ1, σ2), the
following properties are equivalent:

(1) f is (i, j)-almost s-continuous;
(2) for every subset B of Y,

iCl(f−1((j, i)sInt((i, j)sCl(B)))) ⊂ f−1((i, j)sCl(B));

(3) for every semi-regular closed set F of Y ,

iCl(f−1((j, i)sInt(F ))) ⊂ f−1(F );

(4) for every (j, i)-semi-open set V of Y , iCl(f−1(V )) ⊂ f−1((i, j)sCl(V )).

Remark 6.10. (1) If we set mX = (i, j)SO(X), m1
Y = σ1 and

m2
Y = σ2, then by Theorem 4.20 we obtain the results established

in Theorem 3.3 in [46].
(2) If we set mX = (i, j)PO(X), m1

Y = σ1 and m2
Y = σ2, then by

Theorem 4.20 we obtain the results established in Theorems 3.2 of
[42].

(3) If we set m1
Y = σ1 and m2

Y = σ2, then by Theorem 5.6 we obtain
the results established in Theorem 4.20 of [43].

(4) If we set mX = mijSO(X), m1
Y = (i, j)SO(Y ) and m2

Y = (j, i)SO(Y ),
then by Theorem 4.20 we obtain the results established in Theorem
2.3 of [19].
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(5) If we set mX = τi, m1
Y = (i, j)SO(Y ) and m2

Y = (j, i)SO(Y ), then
by Theorem 4.20 we obtain new characterizations of (i, j)-almost
s-continuous functions.

Corollary 6.11. For a function f : (X, τ1, τ2) → (Y, σ1, σ2), the
following properties are equivalent:

(1) f is (i, j)-almost s-continuous;
(2) for every subset A of X, f(iCl(A)) ⊂ (i, j)sClθ(f(A));
(3) for every subset B of Y, iCl(f−1(B)) ⊂ f−1((i, j)sClθ(B));
(4) for every subset set B of Y, iCl(f−1((j, i)Int((i, j)sClθ(B)))) ⊂

f−1((i, j)sClθ(B)).

For a function f : (X, τ1, τ2) → (Y, σ1, σ2), we define D(i,j)s(f) as
follows:

D(i,j)s(f) = {x ∈ X : f is not (i, j)-weakly semi-continuous at x}.
Then, by Theorems 4.8 and 4.11 we obtain the following corollary.

Corollary 6.12. For a function f : (X, τ1, τ2) → (Y, σ1, σ2), the
following properties hold:

D(i,j)s(f) =
⋃

G∈σi
{f−1(G) \ (i, j)sInt(f−1(jCl(G)))}

=
⋃

F∈F {(i, j)sCl(f−1(jInt(F )) \ f−1(F )},
=

⋃
B∈P (Y ) {(i, j)sCl(f−1(jInt(iCl(B)))) \ f−1(iCl(B))}

=
⋃

R∈R {(i, j)sCl(f−1(jInt(R))) \ f−1(R)},
=

⋃
G∈σj

{(i, j)sCl(f−1(G)) \ f−1(iCl(G))},
where F is the family of σi-closed sets of Y and R is the family of (i, j)
regular closed sets of Y .

Remark 6.13. If we set as follows:
(1) mX = (i, j)PO(X), m1

Y = σ1 and m2
Y = σ2,

(2) mX = (i, j)SO(X), m1
Y = (i, j)SO(Y ) and m2

Y = (j, i)SO(Y ),
(3) mX = τi, m1

Y = (i, j)SO(Y ) and m2
Y = (j, i)SO(Y ),

then by Theorems 4.8 and 4.11 we obtain the similar corollaries with
Corollary 6.12 concerning (1) (i, j)-weakly precontinuity, (2) (i, j)-quasi
irresoluteness, and (3) (i, j)-almost s-continuity, respectively.

7. Some properties of weak M(i, j)-continuity

Definition 7.1. A bi-m-space (X, m1
X ,m2

X) is said to be Mij-Urysohn
if for each distinct points x, y of X there exist an mi

X -open set U and an
mj

X -open set V such that x ∈ U and y ∈ V and mj
XCl(U)∩mi

XCl(V ) = ∅
for i 6= j, i, j = 1, 2.
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Remark 7.2. If (X, τ1, τ2) is a bitopological space, then we obtain
the definition of a pairwise Urysohn space [7].

Definition 7.3. A function f : (X, mX) → (Y,mY ) is said to have
a strongly M-closed graph [49] if for each (x, y) ∈ (X × Y ) − G(f),
there exist U ∈ mX containing x and V ∈ mY containing y such that
[U ×mYCl(V )] ∩G(f) = ∅.

Lemma 7.4. (Popa and Noiri [49]) A function f : (X, mX) → (Y, mY )
has a strongly M -closed graph if and only if for each (x, y) ∈ (X ×Y )−
G(f), there exist U ∈ mX containing x and V ∈ mY containing y such
that f(U) ∩mYCl(V ) = ∅.

Definition 7.5. A function f : (X, mX) → (Y,mY ) is said to have
a strongly M-semi-closed graph [33] (resp. strongly M-preclosed graph
[34]) if for each (x, y) ∈ (X × Y ) − G(f), there exist an m-semi-open
(resp. m-preopen) set U containing x and V ∈ mY containing y such
that [U ×mYCl(V )] ∩G(f) = ∅.

Remark 7.6. If mX = mSO(X) (resp. mPO(X)) in Definition 7.3,
then we obtain Definition 7.5.

Definition 7.7. A function f : (X,mX) → (Y, m1
Y ,m2

Y ) is said
to have an Mij-strongly closed graph if f : (X, mX) → (Y, mi

Y ) has a
strongly M -closed graph.

Theorem 7.8. If a function f : (X, mX) → (Y,m1
Y ,m2

Y ) is weakly
M(i, j)-continuous and Y is Mij-Urysohn, then f has an Mij-strongly
closed graph.

Proof. Let (x, y) ∈ (X × Y ) − G(f). Then y 6= f(x). Since Y is
Mij-Urysohn, there exist an mi

Y -open set U and an mj
Y -open set V such

that f(x) ∈ U and y ∈ V , respectively, such that mj
YCl(U)∩mi

YCl(V ) =
∅. By weak M(i, j)-continuity of f , there exists an mX -open set G

containing x such that f(G) ⊂ mj
YCl(U); hence f(G) ∩mi

YCl(V ) = ∅.
By Lemma 7.4, f has an Mij-strongly closed graph.

Remark 7.9. If mX = mSO(X) (resp. mPO(X)), then we obtain
Theorem 3.9 of [33] (resp. Theorem 3.9 of [34])

Definition 7.10. An m-space (X, mX) is said to be m-T2 [47] if for
each distinct points x, y of X there exist mX -open sets U and V such
that x ∈ U and y ∈ V , respectively, such that U ∩ V = ∅.
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Theorem 7.11. If a function f : (X, mX) → (Y, m1
Y , m2

Y ) is a weakly

M(i, j)-continuous injection, where mi
Y ⊂ mj

Y , and f has an Mij-
strongly closed graph, then (X, mX) is m-T2.

Proof. Let x1 6= x2. Then f(x1) 6= f(x2) and (x1, f(x2)) /∈ G(f).
Since G(f) is Mij-strongly closed, there exist U ∈ mX containing x1

and V ∈ mi
Y containing f(x2) such that f(U) ∩mi

YCl(V ) = ∅. Since f
is weakly M(i, j)-continuous and f(x2) ∈ V ∈ mi

Y , there exists an mX -
open set W containing x2 such that f(W ) ⊂ mj

YCl(V ). Since mi
Y ⊂ mj

Y ,
it follows that mj

YCl(V ) ⊂ mi
YCl(V ). Hence f(U) ∩ f(W ) = ∅. This

implies that U ∩W = ∅ and hence (X,mX) is m-T2.

Remark 7.12. If f : (X, mSO(X)) → (Y, mY , mSO(Y )) (resp. f :
(X, mPO(X)) → (Y,mY , mPO(Y )), then we obtain Theorem 3.10 of
[33] (resp. Theorem 3.10 of [34]).

Theorem 7.13. If f : (X,mX) → (Y, m1
Y ,m2

Y ) is a function such
that

(1) (Y, m1
Y ,m2

Y ) is Mij-Urysohn,
(2) f(xi) 6= f(xj),
(3) f is weakly M(i, j)-continuous at xi and weakly M(j, i)-continuous

at xj for distinct points xi, xj ∈ X,
then (X, mX) is m-T2.

Proof. Let x1 and x2 be distinct points and yi = f(xi) for i = 1, 2.
Then y1 6= y2. Since (Y, m1

Y ,m2
Y ) is Mij-Urysohn, there exist an mi

Y -
open set Vi and an mj

Y -open set Vj such that yi ∈ Vi, yj ∈ Vj and
mj

XCl(Vi) ∩ mi
XCl(Vj) = ∅. Since f is weakly M(i, j)-continuous at

xi and f(xi) ∈ Vi ∈ mi
Y , there exists Ui ∈ mX containing xi such

that f(Ui) ⊂ mj
YCl(Vi). Since f is weakly M(j, i)-continuous at xj

and f(xj) ∈ Vj ∈ mj
Y , there exists Uj ∈ mX containing xj such that

f(Uj) ⊂ mi
YCl(Vj). Hence f(Ui)∩ f(Uj) = ∅ which implies Ui ∩Uj = ∅.

Therefore, (X,mX) is m-T2.

Definition 7.14. An m-space (X, mX) is said to be m-connected
[47], [48] if it is not expressed as the union of two disjoint nonempty
m-open sets of X.

Definition 7.15. A bi-m-space (X,m1
X , m2

X) is said to be pairwise
m-connected if it cannot be expressed as the union of two nonempty
disjoint sets U ∈ m1

X and V ∈ m2
X .
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Theorem 7.16. Let a function f : (X, mX) → (Y, m1
Y ,m2

Y ) be a func-
tion, where mX ,m1

Y and m2
Y have property B. If f is a weakly M(i, j)-

continuous and weakly M(j, i)-continuous surjection and (X, mX) is m-
connected, then (Y, m1

Y ,m2
Y ) is pairwise m-connected.

Proof. Suppose that (Y, m1
Y ,m2

Y ) is not pairwise m-connected. Then,
there exist a σi

Y -open set U and a σj
Y -open set V such that U 6= ∅, V 6=

∅, U∩V = ∅ and U∪V = Y . Since f is surjective, f−1(U) and f−1(V ) are
nonempty. Moreover f−1(U) ∩ f−1(V ) = ∅ and f−1(U) ∪ f−1(V ) = X.
Since f is weakly M(i, j)-continuous and weakly M(j, i)-continuous, by
Theorem 4.14 we have f−1(U) ⊂ mXInt(f−1(mj

YCl(U))) and f−1(V ) ⊂
mXInt(f−1(mi

YCl(V ))). Since V = X \ U ∈ mj
Y and U = X \ V ∈ mi

Y ,
by Lemma 3.9 U = mj

YCl(U) and V = mi
YCl(V ). Therefore, we have

f−1(U) ⊂ mXInt(f−1(U)) and f−1(V ) ⊂ mXInt(f−1(V )). Hence by
Lemma 3.5 f−1(U) = mXInt(f−1(U)) and f−1(V ) = mXInt(f−1(V )).
By Lemma 3.3, f−1(U) and f−1(V ) are mX -open sets in (X, mX). This
shows that (X, mX) is not m-connected.

Definition 7.17. A subset K of an m-space (X, mX) is said to be
m-compact if [47], [48] if every cover of K by mX -open sets has a finite
subcover.

Definition 7.18. A subset K of a bi-m-space (Y, m1
Y ,m2

Y ) is said to
be Mij-quasi H-closed relative to Y if for each cover {Uα : α ∈ ∆} of
K by mi

Y -open sets of Y , there exists a finite subset ∆0 of ∆ such that
K ⊂ ∪{mj

YCl(Uα) : α ∈ ∆0}.
Theorem 7.19. If f : (X,mX) → (Y, m1

Y , m2
Y ) is weakly M(i, j)-

continuous and K is an m-compact set in (X, mX), then f(K) is Mij-
quasi H-closed relative to Y.

Proof. Let K be an m-compact set of X and {Vα : α ∈ ∆} any
cover of f(K) by mi

Y -open sets of Y . For each x ∈ K, there exists
α(x) ∈ ∆ such that f(x) ∈ Vα(x). Since f is weakly M(i, j)-continuous,
there exists Ux ∈ mX containing x such that f(Ux) ⊂ mj

YCl(Vα(x)).
The family {Ux : x ∈ K} is a cover of K by mX -open sets. Since K is
m-compact, there exist a finite number of points, say x1, x2, ..., xn in K
such that K ⊂ ∪{Uxk

: xk ∈ K, k = 1, 2, ..., n}. Therefore, we obtain
f(K) ⊂ ∪{f(Uxk

) : xk ∈ K, k = 1, 2, ..., n} ⊂ ∪{mj
YCl(Vα(xk)) : xk ∈

K, k = 1, 2, ..., n}. This shows that f(K) is Mij-quasi H-closed relative
to Y .

Remark 7.20. Let (X, τ1, τ2) and (Y, σ1, σ2) be bitopological spaces.
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(1) If we set mX = (i, j)PO(X), m1
Y = σ1 and m2

Y = σ2, then by
Theorem 7.19 we obtain the results established in Theorem 6.3 of
[42].

(2) If we set m1
Y = σ1 and m2

Y = σ2, then by Theorem 7.19 we obtain
the results established in Theorem 5.3 of [43].

(3) If we set mX = (i, j)SO(X), m1
Y = (i, j)SO(Y ) and m2

Y = (j, i)SO(Y ),
then by Theorem 7.19 we obtain the results established in Propo-
sition 17 of [21].

(4) If we set mX = τi, m1
Y = (i, j)SO(Y ) and m2

Y = (j, i)SO(Y ), then
by Theorem 7.19 we obtain the results established in Theorem 7
of [22].
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