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PRINCIPAL FIBRATIONS AND GENERALIZED

H-SPACES

Yeon Soo Yoon*

Abstract. For a map f : A → X, there are concepts of Hf -
spaces, T f -spaces, which are generalized ones of H-spaces [17,18].
In general, Any H-space is an Hf -space, any Hf -space is a T f -
space. For a principal fibration Ek → X induced by k : X → X ′

from ϵ : PX ′ → X ′, we obtain some sufficient conditions to having

liftings H f̄ -structures and T f̄ -structures on Ek of Hf -structures
and T f -structures on X respectively. We can also obtain some
results about Hf -spaces and T f -spaces in Postnikov systems for
spaces, which are generalizations of Kahn’s result about H-spaces.

1. Introduction

A map f : A → X is cyclic [14] if there is a map F : X×A → X such
that F |X ∼ 1X and F |A ∼ f . It is clear that a space X is an H-space
if and only if the identity map 1X of X is cyclic. We called a space
X as an Hf -space for a map f : A → X [17] if there is a cyclic map
f : A → X, that is, there is an Hf -structure F : X × A → X such that
Fj ∼ ∇(1 ∨ f), where j : X ∨ A → X × A is the inclusion. We showed
[17] that if a space X is an H-space, then for any space A and any map
f : A → X, X is an Hf -space for a map f : A → X, but the converse
does not hold. In [1], Aguade introduced a T -space as a space X having

the property that the evaluation fibration ΩX → XS1 → X is fibre
homotopically trivial. It is easy to show that any H-space is a T -space.
However, there are many T -spaces which are not H-spaces in [16]. Let
ΣX denotes the reduced suspension of X, and ΩX denotes the based
loop space of X. Let τ be the adjoint functor from the group [ΣX,Y ] to
the group [X,ΩY ]. The symbols e and e′ denote τ−1(1ΩX)and τ(1ΣX)
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respectively. It is well known [1] that a space X is a T -space if and only
if the evaluating map e : ΣΩX → X is cyclic. We called a space X as
a T f -space for a map f : A → X [18] if e : ΣΩX → X is f -cyclic, that
is, there is a T f -structure F : ΣΩX ×A → X such that Fj ∼ ∇(e ∨ f),
where j : ΣΩX ∨ A → ΣΩX × A is the inclusion. We also showed [18]
that if X is a T -space, then for any space A and any map f : A → X, X
is a T f -space for a map f : A → X, but the converse does not hold. We
called a spaceX as aGf -space for a map f : A → X [19] if e : ΣΩX → X
is weakly f -cyclic, that is, e#(πn(ΣΩX)) ⊂ Gn(A, f,X) for all n. For

a map f : A → X, there are concepts of Hf -spaces, T f -spaces and
Gf -spaces which are generalized ones of H-spaces. In general, Any H-
space is an Hf -space, any Hf -space is a T f -space and any T f -space is
a Gf -space. In this paper, for a principal fibration Ek → X induced by
k : X → X ′ from ϵ : PX ′ → X ′, we obtain some sufficient conditions to

having liftings H f̄ -structures and T f̄ -structures on Ek of Hf -structures
and T f -structures on X respectively. We can also obtain some results
about Hf -spaces and T f -spaces in Postnikov systems for spaces, which
are generalizations of Kahn’s result about H-spaces.

2. Gottlieb sets for maps and generalized H-spaces

Let f : A → X be a map. A based map g : B → X is called f-cyclic
[12] if there is a map ϕ : B ×A → X such that the diagram

A×B
ϕ−−−−→ X

j

x ∇
x

A ∨B
(f∨g)−−−−→ X ∨X

is homotopy commute, where j : A ∨ B → A × B is the inclusion and
∇ : X ∨X → X is the folding map. We call such a map ϕ an associated
map of a f -cyclic map g. Clearly, g is f -cyclic iff f is g-cyclic. In
the case, f = 1X : X → X, g : B → X is called cyclic [14]. We
denote the set of all homotopy classes of f -cyclic maps from B to X
by G(B;A, f,X) which is called the Gottlieb set for a map f : A → X.
In the case f = 1X : X → X, we called such a set G(B;X, 1, X)
the Gottlieb set denoted G(B;X). In particular, G(Sn;A, f,X) will
be denoted by Gn(A, f,X). Gottlieb [3,4] introduced and studied the
evaluation subgroups Gn(X) = Gn(X, 1, X) of πn(X).
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In general, G(B;X) ⊂ G(B;A, f,X) ⊂ [B,X] for any map f :
A → X and any space B. However, there is an example [20] such
that G(B,X) ̸= G(B;A, f,X) ̸= [B,X].

The next proposition is an immediate consequence from the defini-
tion.

Proposition 2.1.

(1) For any maps f : A → X, θ : C → A and any spaceB, G(B;A, f,X) ⊂
G(B;C, fθ,X).

(2) G(B,X) = G(B;X, 1X , X) ⊂ G(B;A, f,X) ⊂ G(B;A, ∗, X) =
[B,X] for any spaces X, A and B.

(3) G(B,X) = ∩{G(B;A, f,X)|f : A → X is a map and A is a space}.
(4) If h : C → A is a homotopy equivalence, then G(B;A, f,X) =

G(B;C, fh,X).
(5) For any map k : X → Y , k#(G(B;A, f,X)) ⊂ G(B;A, kf, Y ).
(6) For any map k : X → Y , k#(G(B,X)) ⊂ G(B;X, k, Y ).

(7) For any map s : C → B, s#(G(B;A, f,X)) ⊂ G(C;A, f,X).

Proposition 2.2.

(1) [9] X is an H-space ⇐⇒ G(B,X) = [B,X] for any space B.
(2) [16] X is a T -space ⇐⇒ G(ΣC,X) = [ΣC,X] for any space C.
(3) [4] X is a G-space ⇐⇒ Gn(X) = πn(X) for all n.

It is clear that anyH-space is a T -space and any T -space is a G-space.

Proposition 2.3. Let f : A → X be a map. Then

(1) [17] X is an Hf -space ⇐⇒ G(B;A, f,X) = [B,X] for any space
B.

(2) [18] X is a T f -space ⇐⇒ G(ΣC;A, f,X) = [ΣC,X] for any space
C.

(3) [19] X is a Gf -space ⇐⇒ Gn(A, f,X) = πn(X) for all n.

It is clear that any Hf -space is a T f -space and any T f -space is a
Gf -space.

3. Principal fibrations and generalized H-spaces

Let f : A → X, f ′ : A′ → X ′, l : A → A′, k : X → X ′ be maps.
Then a pair of maps (k, l) : (X,A) → (X ′, A′) is called a map from f to
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f ′ if the following diagram is commutative;

A
f−−−−→ X

l

y k

y
A′ f ′

−−−−→ X ′.

It will be denoted by (k, l) : f → f ′.
Given maps f : A → X, f ′ : A′ → X ′, let (k, l) : f → f ′ be a map

from f to f ′. Let PX ′ and PA′ be the spaces of paths inX ′ and A′ which
begin at ∗ respectively. Let ϵX′ : PX ′ → X ′ and ϵA′ : PA′ → A′ be the
fibrations given by evaluating a path at its end point. Let pk : Ek → X
be the fibration induced by k : X → X ′ from ϵX′ . Let pl : El → A
induced by l : A → A′ from ϵA′ . Then there is a map f̄ : El → Ek such
that the following diagram is commutative

El
f̄−−−−→ Ek

pl

y pk

y
A

f−−−−→ X,

where El = {(a, ξ) ∈ A × PA′|l(a) = ϵ(ξ)} , Ek = {(x, η) ∈ X ×
PX ′|k(x) = ϵ(η)}, f̄(a, ξ) = (f(a), f ′ ◦ ξ), pk(x, η) = x, pl(a, ξ) = a.

Definition 3.1. Let X be an Hf -space for a map f : A → X. Then
a map (k, l) : f → f ′ is called an Hf -primitive if there is an associated
map F : X × A → X such that Fj ∼ ∇(1 ∨ f) and kF (pk × pl) ∼ ∗ :
Ek × El → X ′, where j : X ∨A → X ×A is the inclusion.

Definition 3.2. Let X be a T f -space for a map f : A → X. Then
a map (k, l) : f → f ′ is called a T f -primitive if there is an associated
map F : ΣΩX ×A → X such that Fj ∼ ∇(e∨ f) and kF (ΣΩpk × pl) ∼
∗ : ΣΩEk × El → X ′, where j : ΣΩX ∨A → ΣΩX ×A is the inclusion.

Definition 3.3. [19] Let X be a Gf -space for a map f : A → X.
Then a map (k, l) : f → f ′ is called a Gf -primitive if for each m and
each map g : Sm → X, there is a map F : Sm ×A → X such that Fj ∼
∇(g ∨ f), kF (1× pl) ∼ ∗ : Sm ×El → X ′, where j : Sm ∨A → Sm ×A
is the inclusion.

It is well known that any map g : Sm → X, g ∼ eΣτ(g) : Sm → X.
Thus we know the above definition is equivalent to one in [19].

Proposition 3.4.
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(1) If X is an Hf -space for a map f : A → X and (k, l) : f → f ′ is an
Hf -primitive, then (k, l) : f → f ′ is a T f -primitive.

(2) If X is a T f -space for a map f : A → X and (k, l) : f → f ′ is an
T f -primitive, then (k, l) : f → f ′ is a Gf -primitive.

Proof. (1) Since (k, l) : f → f ′ is an Hf -primitive, there is an as-
sociated map F : X × A → X such that Fj ∼ ∇(1 ∨ f) and kF (pk ×
pl) ∼ ∗ : Ek × El → X ′. Let F ′ = F (eX × 1) : ΣΩX × A → X.
Then F ′j′ ∼ Fj(eX ∨ 1) ∼ ∇(1 ∨ f)(eX ∨ 1) = ∇(eX ∨ f), where
j′ : ΣΩX ∨ A → ΣΩX × A is the inclusion. Moreover, since (pk ×
pl)(eEk

×1El
) ∼ (eX×1A)(ΣΩpk×pl) : ΣΩEk×El → X×A, we have that

kF ′(ΣΩpk × pl) ∼ kF (eX × 1)(ΣΩpk × pl) ∼ kF (pk × pl)(eEk
× 1El

) ∼ ∗.
Thus (k, l) : f → f ′ is a T f -primitive.

(2) Since (k, l) : f → f ′ is a T f -primitive, there is an associated map
F : ΣΩX × A → X such that Fj ∼ ∇(e ∨ f) and kF (ΣΩpk × pl) ∼ ∗ :
ΣΩEk×El → X ′. For each m and each g : Sm → X, let F ′ = F (Στ(g)×
1) : Sm ×A → X. Then F ′j′ ∼ Fj(Στ(g) ∨ 1) ∼ ∇(e ∨ f)(Στ(g) ∨ 1) ∼
∇(g ∨ f), where j′ : Sm ∨A → Sm ×A is the inclusion. Moreover, since
(1× pl)(Στ(g)× 1El

) ∼ (Στ(g)× 1A)(1Sm × pl) : S
m ×El → ΣΩX ×A,

we have that kF ′(1Sm × pl) = kF (Στ(g)× 1)(1Sm × pl) ∼ (kF (ΣΩpk ×
pl)(Στ(g) × 1El

) ∼ ∗(Στ(g) × 1El
) ∼ ∗. Thus (k, l) : f → f ′ is a Gf -

primitive.

Lemma 3.5.

(1) A map l : C → X can be lifted to a map C → Ek if and only if
kl ∼ ∗.

(2) [5] Given maps gi : Ai → Ek, i = 1, 2 and g : A1 × A2 → Ek

satisfying pkg|Ai ∼ pkgi, i = 1, 2, then there is a map h : A1 ×
A2 → Ek such that pkh = pkg and h|Ai ∼ gi, i = 1, 2.

Theorem 3.6.

(1) If X is an Hf -space for a map f : A → X and (k, l) : f → f ′ is an

Hf -primitive, then Ek is an H f̄ -space for f̄ : El → Ek.
(2) If X is a T f -space for a map f : A → X and (k, l) : f → f ′ is a

T f -primitive, then Ek is a T f̄ -space for f̄ : El → Ek.

Proof. (1) Since (k, l) : f → f ′ is an Hf -primitive, there is a map F :
X×A → X such that Fj ∼ ∇(1∨f) and kF (pk×pl) ∼ ∗ : Ek×El → X ′,
where j : X ∨ A → X × A is the inclusion. From Lemma 3.5(1), there
is a lifting F ′ : Ek × El → Ek of F (pk × pl) : Ek × El → Ek, that is,
pkF

′ = F (pk × pl). Then pkF
′|Ek

= F (pk × pl)|Ek
∼ F |Xpk ∼ pk1Ek

and pkF
′|El

= F (pk × pl)|El
∼ F |Apl ∼ fpl = pkf̄ . Thus we have,



182 Yeon Soo Yoon

from Lemma 3.5(2), that there is a map F̄ : Ek × El → Ek such that
pkF̄ = pkF

′ = F (pk × pl) and F̄ |Ek
∼ 1Ek

, F̄ |El
∼ f̄ . Thus Ek is an

H f̄ -space for f̄ : El → Ek. This proves the theorem.

(2) Since (k, l) : f → f ′ is a T f -primitive, there is a map F : ΣΩX ×
A → X such that Fj ∼ ∇(e∨f) and kF (ΣΩpk×pl) ∼ ∗ : ΣΩEk×El →
X ′, where j : X ∨ A → X × A is the inclusion. From Lemma 3.5(1),
there is a lifting F ′ : ΣΩEk × El → Ek of F (ΣΩpk × pl) : ΣΩEk ×
El → Ek, that is, pkF

′ = F (ΣΩpk × pl). Then pkF
′|ΣΩEk

= F (ΣΩpk ×
pl)|ΣΩEk

∼ F |ΣΩXΣΩpk ∼ eΣΩpk ∼ pkeEk
and pkF

′|El
= F (ΣΩpk ×

pl)|El
∼ F |Apl ∼ fpl = pkf̄ . Thus we have, from Lemma 3.5(2), that

there is a map F̄ : ΣΩEk×El → Ek such that pkF̄ = pkF
′ = F (ΣΩpk×

pl) and F̄ |ΣΩEk
∼ eEk

, F̄ |El
∼ f̄ . Thus Ek is a T

f̄ -space for f̄ : El → Ek.
This proves the theorem.

Proposition 3.7. [19] If X is a Gf -space for a map f : A → X and

(k, l) : f → f ′ is a Gf -primitive, then Ek is a Gf̄ -space for f̄ : El → Ek.

In 1951, Postnikov [13] introduced the notion of the Postnikov system
as follows; A Postnikov system for X( or homotopy decomposition of
X) {Xn, in, pn} consists of a sequence of spaces and maps satisfying
(1) in : X → Xn induces an isomorphism (in)# : πi(X) → πi(Xn) for
i ≤ n. (2) pn : Xn → Xn−1 is a fibration with fiber K(πn(X), n).
(3) pnin ∼ in+1. It is well known fact [11] that if X is a 1-connected
space having a homotopy type of CW-complex, then there is a Postnikov
system {Xn, in, pn} for X such that pn+1 : Xn+1 → Xn is the fibration
induced from the path space fibration over K(πn+1(X), n+2) by a map
kn+2 : Xn → K(πn+1(X), n + 2). It is well known [7] that if A and
X are spaces having the homotopy type of 1-connected countable CW -
complexes and f ;A → X is a map, then there exist Postnikov systems
{An, i

′
n, p

′
n} and {Xn, in, pn} for A and X respectively and induced maps

{fn : An → Xn} satisfying (1) for each n, the following diagram is
homotopy commutative

An
fn−−−−→ Xn

kn+2
A

y kn+2
X

y
K(πn+1(A), n+ 2)

f̃#−−−−→ K(πn+1(X), n+ 2),

that is, (kn+2
X , kn+2

A ) : fn → f̃#. (2) fn+1 : An+1 → Xn+1 given by
fn+1 = f̄n satisfying commute diagram
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An+1(= Ekn+2
A

)
fn+1=f̄n−−−−−−→ Xn+1 = (Ekn+2

X
)

p′n(=p
kn+2
A

)
y pn(=p

kn+2
X

)
y

An
fn−−−−→ Xn.

(3) for each n, the following diagram is homotopy commutative

A
f−−−−→ X

i′n

y in

y
An

fn−−−−→ Xn.

Theorem 3.8. Let A and X be spaces having the homotopy type
of 1-connected countable CW -complexes and f ;A → X a map, and
{An, i

′
n, p

′
n} and {Xn, in, pn} Postnikov systems for A and X respec-

tively.

(1) If X is an Hf -space for a map f : A → X, then each Xn is Hfn-

space and the all pair of k invariants (kn+2
X , kn+2

A ) : fn → f̃# are

Hfn-primitive.
(2) IfXn−1 is anHfn−1-space and the pair of k-invariants (kn+1

X , kn+1
A ) :

fn−1 → f̃# is Hfn−1-primitive, then Xn is an Hfn-space, where fn
is an induced map from f .

Proof. (1) Clearly {Xn × An, in × i′n, pn × p′n} is a Postnikov system
for X ×A. Then we have, by Kahn’s result [7,Theorem 2.2], that there
are families of maps fn : An → Xn and Fn : Xn × An → Xn such
that pnfn = fn−1p

′
n and inf ∼ fni

′
n, and pnFn = Fn−1(pn × p′n) and

inF ∼ Fn(in × i′n) for n = 2, 3, · · · respectively, and kn+2
X fn ∼ f̃kn+2

A ,

kn+2
X Fn ∼ F̃#(k

n+2
X × kn+2

A ), where kn+2
A : An → K(πn+1(A), n+ 2) and

kn+2
X : Xn → K(πn+1(X), n+2) are k-invariants of A andX respectively,

f̃# : K(πn+1(A), n+2) → K(πn+1(X), n+2) and F̃# : K(πn+1(X), n+
2)×K(πn+1(A), n+2) ≈ K(πn+1(X ×A), n+2) → K(πn+1(X), n+2)
are the induced maps by f : A → X and F : X × A → X respectively.
Since F |X ∼ 1 and F |A ∼ f , we know, from Kahn’s another result [8,
Theorem 1.2], that Fn|Xn

= (F |X)n ∼ 1 and Fn|An
= (F |A)n ∼ fn.

Thus for each n, there exists an Hfn-structure Fn : Xn × An → Xn

on Xn such that Fnjn ∼ ∇(1 ∨ fn), where jn : Xn ∨ An → Xn × An

is the inclusion and fn is an induced map from f , and Xn is an Hfn-
space. Moreover, since there is a lifting Fn+1 : Xn+1 × An+1 → Xn+1

of Fn such that pn+1Fn+1 ∼ Fn(pn+1 × p′n+1), we know, from Lemma
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3.5(1), that kn+2
X Fn(pn+1 × p′n+1) ∼ ∗ and all the pair of k-invariants

(kn+2
X , kn+2

A ) : fn → f̃# are Hfn-primitive, where f̃# : K(πn+1(A), n +
2) → K(πn+1(X), n+ 2) is the induced map by f : A → X.

(2) It follows from Theorem 3.6(1).

Taking f = 1X , f ′ = 1K(πn+1(X),n+2), l = k = kn+2
X , we can obtain,

from the fact [15] pn+1 : Xn+1 → Xn is an H-map if and only if kn+1
X is

primitive and the above theorem, the following corollary given by Kahn
[8].

Corollary 3.9. [8, Theorem 1.3] Let X be space having the ho-
motopy type of 1-connected countable CW -complexes and {Xn, in, pn}
Postnikov systems for X.

(1) IfX is anH-space, then eachXn isH-space and all the k invariants
kn+2
X is primitive.

(2) If Xn−1 is an H-space and the k-invariants kn+1
X is primitive, then

Xn is an H-space, where fn is an induced map from f .

Theorem 3.10. Let A and X be spaces having the homotopy type
of 1-connected countable CW -complexes and f ;A → X a map, and
{An, i

′
n, p

′
n} and {Xn, in, pn} Postnikov systems for A and X respec-

tively.

(1) If X is a T f -space for a map f : A → X, then each Xn is T fn-

space and the all pair of k invariants (kn+2
X , kn+2

A ) : fn → f̃# are

T fn-primitive.
(2) If Xn−1 is a T fn−1-space and the pair of k-invariants (kn+1

X , kn+1
A ) :

fn−1 → f̃# is T fn−1-primitive, then Xn is a T fn-space, where fn
is an induced map from f .

Proof. (1) Clearly {ΣΩXn × An,ΣΩin × i′n,ΣΩpn × p′n} is a Post-
nikov system for ΣΩX × A. Then we have, by Kahn’s result [7,The-
orem 2.2], that there are families of maps fn : An → Xn and Fn :
ΣΩXn × An → Xn such that pnfn = fn−1p

′
n and inf ∼ fni

′
n, and

pnFn = Fn−1(ΣΩpn × p′n) and inF ∼ Fn(ΣΩin × i′n) for n = 2, 3, · · ·
respectively, and kn+2

X fn ∼ f̃kn+2
A , kn+2

X Fn ∼ F̃#(k
n+2
ΣΩX × kn+2

A ), where

kn+2
A : An → K(πn+1(A), n + 2) and kn+2

X : Xn → K(πn+1(X), n + 2)

and kn+2
ΣΩX : ΣΩXn → K(πn+1(ΣΩX), n + 2) are k-invariants of A, X

and ΣΩX respectively, f̃# : K(πn+1(A), n + 2) → K(πn+1(X), n + 2)

and F̃# : K(πn+1(ΣΩX), n+2)×K(πn+1(A), n+2) ≈ K(πn+1(ΣΩX ×
A), n + 2) → K(πn+1(X), n + 2) are the induced maps by f : A → X
and F : ΣΩX × A → X respectively. Since F |ΣΩX ∼ e and F |A ∼ f ,
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we know, from Kahn’s another result [8, Theorem 1.2], that Fn|ΣΩXn
=

(F |ΣΩX)n ∼ 1 and Fn|An
= (F |A)n ∼ fn. Thus for each n, there ex-

ists a T fn-structure Fn : ΣΩXn × An → Xn on Xn such that Fnjn ∼
∇(e ∨ fn), where jn : ΣΩXn ∨ An → ΣΩXn × An is the inclusion
and fn is an induced map from f , and Xn is a T fn-space. More-
over, since there is a lifting Fn+1 : ΣΩXn+1 × An+1 → Xn+1 of Fn

such that pn+1Fn+1 ∼ Fn(ΣΩpn+1 × p′n+1), we know, from Lemma

3.5(1), that kn+2
X Fn(ΣΩpn+1× p′n+1) ∼ ∗ and all the pair of k-invariants

(kn+2
X , kn+2

A ) : fn → f̃# are T fn-primitive, where f̃# : K(πn+1(A), n +
2) → K(πn+1(X), n+ 2) is the induced map by f : A → X.

(2) It follows from Theorem 3.6(2).

In [19], the similar result with the above is known as follows.

Proposition 3.11. [19] Let A and X be spaces having the homo-
topy type of 1-connected countable CW -complexes and f ;A → X a
map, and {An, i

′
n, p

′
n} and {Xn, in, pn} Postnikov systems for A and X

respectively.

(1) If X is a Gf -space for a map f : A → X, then each Xn is Gfn-

space and the all pair of k invariants (kn+2
X , kn+2

A ) : fn → f̃# are

Gfn-primitive.
(2) If Xn−1 is a Gfn−1-space and the pair of k-invariants (kn+1

X , kn+1
A ) :

fn−1 → f̃# is Gfn−1-primitive, then Xn is a Gfn-space, where fn
is an induced map from f .

Taking f = 1X , f ′ = 1K(πn+1(X),n+2), l = k = kn+2
X , we can obtain

the following corollary given by Haslam[5].

Corollary 3.12. [5] Let X be space having the homotopy type of 1-
connected countable CW -complexes and {Xn, in, pn} Postnikov systems
for X.

(1) If X is a G-space, then each Xn is G-space and all the k invariants
kn+2
X are G-primitive.

(2) If Xn−1 is a G-space and the k-invariants kn+1
X is G-primitive, then

Xn is a G-space, where fn is an induced map from f .
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