ON GENERALIZED DERIVATIONS OF BCH-ALGEBRAS

KYUNG HO KIM*

ABSTRACT. The aim of this paper is to introduce the notion of a generalized derivations of BCH-algebras and some related properties are investigated.

1. Introduction

In 1966, Imai and Iseki introduced two classes of abstract algebras, BCK-algebra and BCI-algebras [6]. It is known that the class of BCI-algebras is a generalization of the class of BCK-algebras In 1983, Hu and Li [3] introduced the notion of a BCH-algebra, which is a generalization of the notions of BCK-algebras and BCI-algebras. They have studied a few properties of these algebras. In this paper, we introduce the notion of generalized derivations of BCH-algebras and investigate some properties of generalized derivations in a BCH-algebra. Moreover, we introduce the notions of fixed set and kernel set of generalized derivations in a BCH-algebra and obtained some interesting properties in medial BCH-algebras. Also, we discuss the relations between ideals in a medial BCH-algebras.

2. Preliminary

By a BCH-algebra, we mean an algebra (X,*,0) with a single binary operation "*" that satisfies the following identities for any $x,y,z\in X$: (BCH1) x*x=0,

Received November 13, 2015; Accepted January 15, 2016.

²⁰¹⁰ Mathematics Subject Classification: Primary 03G25, 06B10, 06D99, 06B35, 06B99.

Key words and phrases: BCH-algebra, derivation, generalized derivation, regular, isotone, Torsion free, fixed set.

This was supported by Korea National University of Transportation in 2015.

(BCH2) $x \le y$ and $y \le x$ imply x = y, where $x \le y$ if and only if x * y = 0. (BCH3) (x * y) * z = (x * z) * y.

In a BCH-algebra X, the following identities are true for all $x, y \in X$:

- (BCH4) (x * (x * y)) * y = 0,
- (BCH5) x * 0 = 0 implies x = 0,
- (BCH6) 0*(x*y) = (0*x)*(0*y),
- (BCH7) x * 0 = x,
- (BCH8) (x * y) * x = 0 * y,
- (BCH9) x * y = 0 implies 0 * x = 0 * y,
- $(BCH10) \ x * (x * y) \le y.$

DEFINITION 2.1. Let I be a nonempty subset of a BCH-algebra X. Then I is called an ideal of X if it satisfies:

- (i) $0 \in I$,
- (ii) $x * y \in I$ and $y \in I$ imply $x \in I$.

DEFINITION 2.2. A BCH-algebra X is said to be medial if it satisfies

$$(x * y) * (z * w) = (x * z) * (y * w)$$

for all $x, y, z, w \in X$.

In a medial BCH-algebra X, the following identity hold:

(BCH11)
$$x * (x * y) = y$$
 for all $x, y \in X$.

DEFINITION 2.3. Let X be a BCH-algebra. Then the set $X_+ = \{x \in X | 0 * x = 0\}$ is called a BCA-part of X.

DEFINITION 2.4. Let X be a BCH-algebra. Then the set $G(X) = \{x \in X | 0 * x = x\}.$

DEFINITION 2.5. Let X be a BCH-algebra. If we define an operation "+", called addition, as x+y=x*(0*y), for all $x,y\in X$, then (X,+) is an abelian group with identity 0 and the additive inverse -x=0*x, for all $x\in X$.

REMARK 2.6. If we have a BCH-algebra (X, *, 0), it follows from the above definition that (X, +) is an abelian group with -y = 0 * y, for all $y \in X$. Then we have x - y = x * y, for all $x, y \in X$. On the other hand, if we choose an abelian group (X, +) with an identity 0 and define x * y = x - y, we get a BCH-algebra (X, *, 0) where x + y = x * (0 * y), for every $x, y \in X$.

For a BCH-algebra X, we denote $x \wedge y = y * (y * x)$ for all $x, y \in X$. A BCH-algebra X is said to be *commutative* if for all $x, y \in X$,

$$y*(y*x) = x*(x*y)$$
, i.e., $x \wedge y = y \wedge x$.

3. Generalized derivations of BCH-algebras

In what follows, let X denote a BCH-algebra unless otherwise specified.

DEFINITION 3.1. Let X be a BCH-algebra. A map $D: X \to X$ is called a *generalized left-right derivation* (briefly, *generalized* (l,r)-derivation) of X if there exists a derivation $d: X \to X$ such that

$$D(x * y) = (D(x) * y) \wedge (x * d(y)),$$

for every $x, y \in X$. If D satisfies the identity $D(x * y) = (x * D(y)) \land (d(x)*y)$, for all $x, y \in X$, then it is said that D is a generalized right-left derivation (briefly, generalized (r, l)-derivation) of X.

Moreover, If D is both a generalized (l, r) and (r, l)-derivation of X, it is said that D is a generalized derivation of X.

EXAMPLE 3.2. Let $X = \{0, 1, 2\}$ be a BCH-algebra with Cayley table as follows:

Define a self-map $d: X \to X$ by

$$d(x) = \begin{cases} 0 & \text{if } x = 0, 1\\ 2 & \text{if } x = 2 \end{cases}$$

Then it is easy to check that d is both (l,r) and (r,l)-derivation of a BCH-algebra X. Also, define a map $D: X \to X$ by

$$D(x) = \begin{cases} 2 & \text{if } x = 0, 1\\ 0 & \text{if } x = 2. \end{cases}$$

It is easy to verify that D is a generalized derivation of X.

Example 3.3. Let $X = \{0, 1, 2, 3\}$ be a BCH-algebra with Cayley table as follows:

Define a self-map $d: X \to X$ by

$$d(x) = \begin{cases} 2 & \text{if } x = 0, 1\\ 0 & \text{if } x = 2, 3 \end{cases}$$

Then it is easy to check that d is a derivation of a BCH-algebra X. Also, define a map $D: X \to X$ by

$$D(x) = \begin{cases} 0 & \text{if } x = 0, 1\\ 2 & \text{if } x = 2, 3. \end{cases}$$

It is easy to verify that D is a generalized derivation of X.

DEFINITION 3.4. A self-map D of a BCH-algebra X is said to be regular if D(0) = 0.

Example 3.5. A generalized derivation D in Example 3.3 is regular.

Proposition 3.6. Let D be a self-map of a medial BCH-algebra X. Then,

- (1) If D is a generalized (l,r)-derivation of X, then $D(x) = D(x) \wedge x$, for all $x \in X$,
- (2) If D is a generalized (r,l)-derivation of X, then D(0) = 0 if and only if $D(x) = x \wedge d(x)$, for all $x \in X$.

Proof. (1) Let D be a generalized (r, l)-derivation of X. Then, for all $x, y \in X$,

$$\begin{split} D(x) &= D(x*0) = (D(x)*0) \wedge (x*d(0)) \\ &= D(x) \wedge (x*d(0)) = (x*d(0))*((x*d(0))*D(x)) \\ &= (x*d(0))*((x*D(x))*d(0)) \qquad (\text{ since } (x*y)*z = (x*z)*y) \\ &= x*(x*D(x)) \qquad (\text{ since } (x*y)*(t*s) = (x*t)*(y*s)) \\ &= D(x) \wedge x. \end{split}$$

(2) Let D be a generalized (r, l)-derivation on X such that D(0) = 0. Then

$$D(x * y) = (x * D(y)) \wedge (d(x) * y)) \tag{1}$$

for all $x, y \in X$. Putting y = 0 in (1), we have $D(x * 0) = (x * D(0)) \land (d(x) * 0)$, that is, $D(x) = (x * 0) \land d(x) = x \land d(x)$, for all $x \in X$. Conversely, if $D(x) = x \land d(x)$, then we have

$$D(0) = 0 \land d(0) = d(0) * (d(0) * 0) = d(0) * d(0) = 0.$$

PROPOSITION 3.7. Let D be a generalized derivation of X. If D(x) * x = 0 for all $x \in X$, then D is regular.

Proof. Let D(x) * x = 0 for all $x \in X$. Then we have

$$D(0) = D(x * x) = (D(x) * x) \land (x * d(x))$$

= $0 \land (x * d(x)) = (x * d(x)) * ((x * d(x)) * 0)$
= $(x * d(x)) * (x * d(x)) = 0$.

Hence D is regular.

PROPOSITION 3.8. Let D be a generalized derivation of X. Then we have for all $x, y \in X$,

- (1) $D(x * y) \le D(x) * y$,
- (2) D(x * D(x)) = 0.

Proof. Let D be a generalized derivation of X. Then for all $x, y \in X$,

(1)

$$D(x * y) = (D(x) * y) \land (x * d(y))$$

= $(x * d(x)) * ((x * d(x)) * (D(x) * y))$
 $\leq D(x) * y.$

(2) For any $x \in X$, we have

$$D(x * D(x)) = (D(x) * D(x)) \land (x * d(D(x)))$$

= 0 \land (x * d(D(x))) = 0.

PROPOSITION 3.9. Let D be a generalized (l,r)-derivation of X. If there exists $a \in X$ such that D(x) * a = 0 for all $x \in X$, then D is regular.

Proof. Let
$$D(x) * a = 0$$
 for all $x \in X$. Then
$$0 = D(x * a) * a = ((D(x) * a) \land (x * d(a))) * a$$
$$= (0 \land (x * d(a))) * a$$
$$= 0 * a,$$

that is, $a \in X_+$ and so

$$D(0) = D(0 * a)$$

= $(D(0) * a) \wedge (0 * d(a))$
= $0 \wedge (0 * d(a)) = 0$.

Hence D is regular.

PROPOSITION 3.10. Let D be a generalized (r,l)-derivation of X. If there exists $a \in X$ such that a * D(x) = 0 for all $x \in X$, then D is regular.

Proof. Let
$$a*D(x)=0$$
 for all $x\in X$. Then
$$0=a*D(a*x)=a*((a*D(x))\wedge(d(a)*x))$$

$$=a*(0\wedge(d(a)*x))$$

$$=a*0=a$$

that is, $a \in X_+$ and so

$$D(0) = D(a) = D(a * 0)$$

= $(a * D(0)) \wedge (a * d(0))$
= $0 \wedge (a * d(0)) = 0$.

Hence D is regular.

PROPOSITION 3.11. Let D be a generalized left derivation of X and let D is regular. Then $D: X \to X$ is an identity map if it satisfies D(x) * y = x * D(y) for all $x, y \in X$.

Proof. Since D is regular, we have D(0) = 0. Let x * D(y) = D(x) * y for all $x, y \in X$. Then D(x) = D(x) * 0 = x * D(0) = x * 0 = x. Thus D is an identity map.

DEFINITION 3.12. Let X be a BCH-algebra. A self-map D on X is said to be *isotone* if $x \leq y$ implies $D(x) \leq D(y)$ for $x, y \in X$.

PROPOSITION 3.13. Let D be a generalized left derivation of X and let D be regular. Then D(x * y) = D(x) * D(y) implies $D(x \wedge y) = D(x) \wedge D(y)$.

Proof. Let D(x * y) = D(x) * D(y) for all $x, y \in X$. Then we have for all $x, y \in X$,

$$D(x \wedge y) = D(y * (y * x))$$

$$= D(y) * D(y * x)$$

$$= D(y) * [D(y) * D(x)]$$

$$= D(x) \wedge D(y)$$

PROPOSITION 3.14. Let D be a generalized derivation of X. If $D(x \land y) = D(x) \land D(y)$ for all $x, y \in X$, then D is isotone.

Proof. Let $D(x \wedge y) = D(x) \wedge D(y)$ and $x \leq y$ for all $x, y \in X$. Then x * y = 0. Thus, we have

$$D(x) = D(x * 0)$$

$$= D(x * (x * y))$$

$$= D(y \land x)$$

$$= D(y) \land D(x)$$

$$= D(x) * [D(x) * D(y)]$$

$$\leq D(y).$$

Hence we get $D(x) \leq D(y)$, and so D is isotone.

PROPOSITION 3.15. Let D be a generalized derivation of a medial BCH-algebra X. Then D(x * y) = D(x) * y for all $x, y \in X$.

Proof. Let $x, y \in X$. Then we have

$$D(x*y) = (D(x)*y) \land (x*d(y)) = (x*d(y))*((x*d(y))*(D(x)*y)) = D(x)*y.$$

PROPOSITION 3.16. Let D be a generalized (l, r)-derivation of a medial BCH-algebra X. Then, the following conditions hold,

- (1) D(a) = D(0) + a, for all $a \in X$,
- (2) D(a+x) = D(a) + x, for all $a, x \in X$,
- (3) D(a+b) = D(a) + b = a + D(b), for all $a, b \in X$.

Proof. (1) Let D be a generalized (l,r)-derivation of a medial BCH-algebra X. Then we have

$$D(a) = D(0 * (0 * x)) = (D(0) * (0 * a)) \land (0 * d(0 * a)) = D(0) * (0 * a),$$
 which implies $D(a) = D(0) + a$, for all $a \in X$.

П

(2) For all $a, x \in X$, we have

$$D(a+x) = D(a*(0*x)) = (D(a)*(0*x)) \land (a*d(0*x))$$

= $D(a)*(0*x) = D(a) + x$.

(3) Since (X, +) is an abelian group, we get

$$D(a) + b = D(a + b) = D(b + a) = D(b) + a,$$

for all $a, b \in X$.

PROPOSITION 3.17. Let D be a generalized (r, l)-derivation of a medial BCH-algebra X. Then, the following conditions hold,

- (1) $D(a) \in G(X)$, for all $a \in G(X)$,
- (2) D(a) = a * D(0) = a + D(0), for all $a \in X$,
- (3) D(a+b) = D(a) + D(b) D(0), for all $a, b \in X$,
- (4) D is an identity map on X if and only if D(0) = 0.

Proof. (1) For $a \in G(X)$, we have

$$D(a) = D(0 * a) = (0 * D(a)) \land (d(0) * a) = 0 * D(a),$$

which implies $D(a) \in G(X)$.

(2) Now, since $D(a) = D(a*0) = (a*D(0)) \wedge (d(a)*0)$, for all $a \in X$, we have

$$D(a) = a * D(0) = a * D(0 * 0) = a * (0 * D(0)) = a + D(0).$$

(3) By (2) we get D(a+b) = (a+b) + D(0) and D(b) = b + D(0). Since (X, +) is an abelian group, we have

$$D(a+b) = (a+b) + D(0) = (a+D(0)) + b$$

= $D(a) + b = D(a) + (D(b) - D(0))$
= $D(a) + D(b) - D(0)$.

(4) If D(0) = 0, then we have, for every $a \in X$,

$$D(a) = D(a * 0) = a * D(0) = a * 0 = a,$$

which implies D is an identity map on X. Conversely, if D is an identity map on X, then D(a) = a for all $a \in X$, and so D(0) = 0.

DEFINITION 3.18. A BCH-algebra X is said to be $Torsion\ free$ if it satisfies

$$x + x = 0 \Rightarrow x = 0$$
,

for all $x \in X$.

If there exists a nonzero element $x \in X$ such that x + x = 0, then X is not Torsion free.

EXAMPLE 3.19. Let $X = \{0, a, b, c\}$ be a BCH-algebra with Cayley table as follows:

Then X is a Torsion free since 0+0=0*(0*0)=0, a+a=a*(0*a)=a*0=a, b+b=b*(0*b)=b*0=b, c+c=c*(0*c)=c*0=c. But in Example 3.2, X is not a Torsion free since 2+2=2*(0*2)=2*2=0.

THEOREM 3.20. Let X be a Torsion free BCH-algebra and let D_1 and D_2 be generalized derivations of X. If $D_1D_2 = 0$ on X, then $D_2 = 0$ on X.

Proof. Let $x \in X$. Then $x + x \in X$, and so we have

$$0 = (D_1D_2)(x+x)$$

$$= D_1(D_2(x+x))$$

$$= D_1(0) + D_2(x+x) \quad \text{(since } D(a) = D(0) + a)$$

$$= D_1(0) + D_2(x) + D_2(x) - D_2(0) \quad \text{(by proposition } 3.17 (3))$$

$$= D_1(0) - D_2(0) + D_2(x) + D_2(x)$$

$$= (D_1(0) * D_2(0)) + D_2(x) + D_2(x)$$

$$= (D_1(0) * (0 * D_2(0)) + D_2(x) + D_2(x)$$

$$= D_1(D_2(0)) + D_2(x) + D_2(x)$$

$$= D_1(D_2(0)) + D_2(x) + D_2(x)$$

$$= (D_1D_2(0)) + D_2(x) + D_$$

Since X is Torsion free, we have $D_2(x) = 0$, for all $x \in X$, and so $D_2 = 0$ on X.

In the above theorem, if we replace both the generalized derivations D_1 and D_2 by a generalized derivation D itself, we get the following corollary.

COROLLARY 3.21. Let X be a Torsion free BCH-algebra and let D be a generalized derivation. If $D^2 = 0$, then D = 0 on X.

Proof. Let $D^2=0$ on X. Then $D^2(x)=0$, for all $x\in X$. Now, for any $x\in X$,

$$0 = D^{2}(x+x) = D(D(x+x)$$

$$= D(0) + D(x+x) (since D(a) = D(0) + a)$$

$$= D(0) + D(x) + D(x) - D(0)$$

$$= D(x) + D(x).$$

Since X is Torsion free, we have D(x)=0, for all $x\in X$, proving D=0, for all $x\in X$.

Let D be a generalized derivation of X. Define a set $Fix_D(X)$ by

$$Fix_D(X) = \{ x \in X \mid D(x) = x \}.$$

PROPOSITION 3.22. Let D be a generalized derivation of a medial BCH-algebra X. If $x \in Fix_D(X)$ and for any $y \in X$, then $x * y \in Fix_D(x)$.

Proof. Let $x \in Fix_D(X)$ and $y \in X$. Then D(x) = x, and so we have

$$\begin{split} D(x*y) &= (D(x)*y) \wedge (x*d(x)) \\ &= (x*y) \wedge (x*d(y)) \\ &= (x*d(y))*[(x*d(y))*(x*y)] \\ &= x*y \end{split}$$

which implies $x * y \in Fix_D(X)$.

PROPOSITION 3.23. Let D be a generalized derivation of a medial BCH-algebra X. If $x \in Fix_D(X)$ and $y \in X$, then $x \wedge y \in Fix_D(X)$.

Proof. Let $x \in Fix_D(X)$ and $y \in X$. Then D(x) = x, and so we have

$$D(x \wedge y) = D(x * (x * y))$$

$$= (D(x) * (x * y)) \wedge (x * d(x * y))$$

$$= (x * (x * y)) \wedge (x * d(x * y))$$

$$= (x * d(x * y)) * [(x * d(x * y)) * (x * (x * y))]$$

$$= x * (x * y) = x \wedge y,$$

which implies $x \wedge y \in Fix_D(X)$.

PROPOSITION 3.24. Let D be a generalized derivation of X. If $x \in Fix_D(X)$, then we have $(D \circ D)(x) = x$.

Proof. Let $x \in Fix_D(X)$. Then we have

$$(D \circ D)(x) = D(D(x)) = D(x) = x.$$

This completes the proof.

THEOREM 3.25. Let D be a generalized derivation of a medial BCH-algebra of X. If $Fix_D(X) \neq \phi$, then D is regular.

Proof. Let $y \in Fix_D(X)$. Then we get D(y) = y and

$$\begin{split} D(0) &= D(0 \wedge y) \\ &= D(y * (y * 0)) \\ &= (D(y) * (y * 0)) \wedge (y * d(y * 0)) \\ &= (y * (y * 0)) \wedge (y * d(y)) \\ &= (y * y) \wedge (y * d(y)) \\ &= 0 \wedge (y * d(y)) = 0. \end{split}$$

Hence D is regular.

THEOREM 3.26. Let D be a generalized derivation of a medial BCH-algebra X. Then $Fix_D(X)$ is an ideal of X.

Proof. Let X be a medial BCH-algebra and let D be a generalized derivation of X. Then by Theorem 3.25, D is regular, and so $0 \in Fix_D(X)$. Let $x * y \in Fix_D(X)$ and $y \in Fix_D(X)$. Then we get D(x * y) = x * y and D(y) = y. Thus we have

$$\begin{split} D(x) &= D(x \wedge y) = D(y * (y * x)) \\ &= (D(y) * (y * x)) \wedge (y * d(y * x)) \\ &= (y * (y * x)) \wedge (y * d(y * x)) \\ &= (y * d(y * x)) * [(y * d(y * x)) * (y * (y * x))] \\ &= y * (y * x) = x, \end{split}$$

which implies $x \in Fix_D(X)$. This implies that $Fix_D(X)$ is an ideal of X.

THEOREM 3.27. Let D is a generalized derivation of X and let D is regular. Then the following identities are equivalent:

- (1) D is an isotone generalized derivation of X.
- (2) $x \le y$ implies D(x * y) = D(x) * D(y).

Proof. (1) \Rightarrow (2). Let $x, y \in X$ be such that $x \leq y$. Then x * y = 0. Hence D(x * y) = D(0) = 0 = D(x) * D(y) since $D(x) \leq D(y)$.

 $(2) \Rightarrow (1)$. Let $x \leq y$. Then 0 = D(0) = D(x * y) = D(x) * D(y), which implies $D(x) \leq D(y)$.

Let D be a generalized derivation of X. Define a KerD by

$$KerD = \{x \mid D(x) = 0\}$$

for all $x \in X$.

PROPOSITION 3.28. Let D be a generalized (r,l)-derivation of a medial BCH-algebra X and let D is regular. Then KerD is an ideal of X.

Proof. Clearly, $0 \in KerD$. Let $x * y \in KerD$ and $y \in KerD$. Then we have $0 = D(x * y) = (x * D(y)) \land (d(x) * y) = x * D(y) = x * 0 = x$, and so D(x) = D(0) = 0. This implies $x \in KerD$. Hence KerD is an ideal of X.

References

- [1] M. A. Chaudhry, On BCH-algebras, Math. Japonica. 36 (1991), no. 4, 665-676.
- [2] M. A. Chaudhry and H. Fakhar-ud-din, *Ideals and Filter in BCH-algebras*, Math. Japonica. 44 (1996), no. 1, 101-112.
- [3] Q. P. Hu and X. Li, On BCH-algebra, Math. Sem. Notes Kobe Univ. 11 (1983), no. 2, 313-320.
- [4] Q. P. Hu and X. Li, On proper BCH-algebra, Math. Japon. 30 (1985), no. 4, 659-661
- [5] K. Iseki, An algebra related with a propositional calculus, Proc. Japon Acad 42 (1966), 26-29.
- [6] Y. Imai and K. Iseki, On axiom system of propositional calculi XIV , Proc. Japan Academy 42 (1966), 19-22.

*

Department of Mathematics Korea National University of Transportation Chungju 380-702, Republic of Korea *E-mail*: ghkim@ut.ac.kr