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CHARACTERIZATIONS OF FLOWS NEAR CLOSED

SETS

Ki Shik Koo*

Abstract. In this paper, we obtain close characterizations of flows
near a saddle set which is one of the interesting unstable closed sets.
Also, we consider some conditions that closed sets are to be stable.

As an attempt to approach some problems of stability theory in dy-
namical systems, behaviour of flows near closed sets are studied together
with the related concepts of invariance, stability, and unstability. We
can find many results for the analysis of flows near arbitrary closed sets.

The purpose of this paper is devoted to a rather deep analysis of flows
in the vicinity of various closed sets. We obtain close characterizations
of flows near a saddle set which is one of the interesting unstable closed
sets. Also, we consider some conditions that closed sets are to be stable.

A given continuous flows (X,π) on a locally compact metric space
X will be assumed throughout this paper. The symbols O, D denote,
respectively, the orbit and prolongation relations. The unilateral ver-
sions of these relations carry the appropriate superscript + or −. Also,
O+(x), O−(x) are called semi-orbits of x. ω(x), α(x) denote, respec-
tively, the positive and negative limit set of x ∈ X. A point x of X is
positively weakly attracted to a set M ⊂ X if positive semi-orbit of x is
frequently contained in each neighborhood of M . The region of positive
weak attraction is denoted by A+

W (M) and M is called positive weak

attractor if A+
W (M) contains a neighborhood of M . A set M ⊂ X is

called a saddle set if there exists a neighborhood U of M such that every
neighborhood V of M contains at least one point x with O+(x) 6⊂ U
and O−(x) 6⊂ U .
U ⊂ X is a neighborhood of x provided U is an open set containing

x. We denote the closure, interior, boundary and complement of a set
M ⊂ X by M, M◦, ∂M and X \M , respectively.
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Each of the basic properties of dynamical theory used in this paper
are presented in detail in references [1,2].

Theorem 1.1. Let M ⊂ X be a closed set with compact boundary
which contains no semi-orbits. Then, M is positively invariant if and
only if M is positively asymptotically stable.

Proof. Assume that M is positively invariant and let U be a neigh-
borhood of M . Let x be in M . Since O+(x) ⊂ M and O+(x) 6⊂ ∂M ,
there is a number tx ≥ 0 such that xtx ∈M◦. Thus, there is a neighbor-
hood Vx of x with xtx ∈ Vxtx ⊂M◦. Since M is positively invariant, for
every nonnegative number t, (Vxtx)t ⊂ M . On the other hand, by the
continuity of π, there is a neighborhood Wx of x such that Wxt ⊂ U for
all t, 0 ≤ t ≤ tx. Let Nx = Vx ∩Wx. Then, for any t with 0 ≤ t ≤ tx,
Nxt ⊂ Wxt ⊂ U and, for any t with t ≤ tx, Nxt = Nxtx(t − tx) ⊂
Vxtx(t − tx) ⊂ M ⊂ U. Let W =

⋃
{O+(Nx) : x ∈ M}. Then, W is a

positively invariant neighborhood of M which is contained in U . Thus
we see that M is positively stable. Also, let y be in W and y ∈ Nz

for some z ∈ M . Since yt ∈ M for all t ≥ tz, the semi-orbit O+(z) is
ultimately contained in M . This shows that W ⊂ A+(M) and M is an
attractor. Therefore, M is positively asymptotically stable.

The converse is trivial and this completes the proof.

Corollary 1.2. Let M ⊂ X be a positively invariant closed set with
compact boundary which contains no semi-orbits. Then, M is positively
asymptotically stable and X \M is negatively asymptotically stable.

Proof. This follows from the facts that M is positively invariant if
and only if X \M is negatively invariant and the boundaries of M and

X \M are same.

Theorem 1.3. Let M ⊂ X be a positively (negatively) invariant
closed set with compact boundary. Then every neighborhood of M
contains a point x not in M such that a semi-orbit of x is fully contained
in that neighborhood.

Proof. Let M be positively invariant. If M is positively stable, then
conclusion is trivial. So, assume that M is not positively stable. Let U
be a neighborhood of M . Since M is not positively stable, there is a
neighborhood W of M , a sequence of points {xi} in W \M satisfying
that xi → x ∈ ∂M and O+(xi) 6⊂ W . We may assume that W ⊂ U
and U \M◦ is compact. For each i, define ti = inf{t > 0|xit ∈ ∂W}.
Then we have xiti ∈ ∂W and xi(0, ti) ⊂ W \ M◦. Suppose {xiti}
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converges to z in ∂W . Let s be a positive number. Since M is positively
invariant we may assume that ti → ∞. Hence, there exists an integer
N > 0 such that ti − s > 0 for all integers i ≥ N . Then, for each
i ≥ N , we have (xiti)(−s) = xi(ti − s) ∈ xi(0, ti) ⊂ W \ M◦ and
(xiti)(−s)→ z(−s) ∈ xi[0, ti] ⊂W \M◦. This shows that the negative
semi-orbit of z is fully contained in U . In the case that M is negatively
invariant the proof is similar. This completes the proof.

M is called isolated from closed invariant sets provided there exists
a neighborhood U of M satisfying that every closed invariant subset of
U is contained in M .

Theorem 1.4. Let M ⊂ X be a closed set with compact bound-
ary and be isolated from closed invariant sets. Then, M is positively
stable if and only if M is positively invariant and satisfies Zubov’s
condition, i.e. α(X \M) ∩M = ∅.

Proof. First, suppose thatM is positively invariant and satisfies Zubov’s
condition. Let U be a neighborhood of M which isolates M from closed
invariant sets and V be a neighborhood of M with V ⊂ U . To show
that M is positively stable, assume, on the contrary, that M is not
positively stable. Then D+(M) 6= M and so, there is a point x in
D+(y) \M for some y in M . We may assume that x is not in U . Then
there is a sequence of points {xi} and a sequence of numbers {ti} in
R+ such that xi → y ∈ ∂M and xiti → x. For each integer i, define
ri = inf{t > 0|xit ∈ ∂V }. Since M is positively invariant, we may as-
sume that xi[0, ri] is contained in the compact set V \M◦ and ri →∞.
Let xiri converge to z in ∂V . Suppose z(−s) /∈ V for a positive number s.
Then, for sufficiently large k, we get 0 < rk−s < rk and (xkrk)(−s) /∈ V .
This contradicts the fact that (xkrk)(−s) = xk(rk − s) ∈ xk[0, rk] ⊂ V .

This shows that O−(z) ⊂ V \M◦. Hence α(z) is nonempty and is con-
tained in V \M◦. By assumtion, α(z) is contained in M and we conclude
that Zubov’s condition does not hold. This contradiction shows that M
is positively stable.

Next, let M be positively stable, then M is positively invariant and
D−(X\M)∩M is empty [1]. Since α−(X\M)∩M ⊂ D−(X\M)∩M , M
satisfies Zubov’s condition. This completes the proof of this result.

A weak attractor M ⊂ X is called recursive provided the positive
semi-orbit of x is frequently contained in M for each point x of A+

W (M).
For a point x in M the number of x leaves in M is the cardinality of

the class of components of {t : xt ∈ O(x) \M}.
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Theorem 1.5. Let M be a closed recursive positive weak attractor
with compact boundary and let the boundary of M contain no positive
semi-orbit. Then, M is a saddle set if and only if some point in M leaves
M at least twice.

Proof. Suppose that M is a saddle set for which each point in M
leaves M at most once. Then, there is a neighborhood U of M contained
in the positive region of weak attraction of M so that U \M◦ is compact.
Also, there is a sequence of points {xi} in U \M converging to a point x
in ∂M such that O+(xi)∩∂U 6= ∅ and O−(xi)∩∂U 6= ∅ for each i. Here,
we can choose sequences of numbers {ti} ⊂ R+ and {si} ⊂ R− satisfying
that ti = inf {t > 0 : xit ∈ ∂U} and ti = sup {s < 0 : xis ∈ ∂U}. Then,
cleary, xiti and xisi is in ∂U . Note that xi[0, ti] ∩M and xi[si, 0] ∩M
are empty for each i because if xit ∈ M for some t with 0 < t ≤ ti,
then, the point xt in M leaves M at least twice and this is absurd. For
any point y in A+

W (M), since M is a positive recursive weak attractor,
there is a number r > 0 such that yr in M . If the point yr is in the
boundary of M then, the positive semi-orbit of yr is not contained in the
boundary of M . If O+(yr) ∩M◦ is empty, then O+(yr) ∩ (X \M) 6= ∅
and this means that the point yr in M leaves M at least twice, but this
is absurd. From this, we conclude that for each point y in A+

W (M), the
positive semi-orbit of y must intersect the interior of M . Therefore, for
each point y in A+

W (M), the number Ty = inf{t ≥ 0 : yt ∈ M◦} can

be defined. Also, define T = sup{ty : y ∈ U \ M◦}. We shall show

that T <∞. For every point y in U −M◦ there exists a neighborhood
Vy of y such that Vyt ⊂ M◦ for some t between Ty and Ty + 1 by the
continuity of π. Note that, for any point z of Vy, Tz ≤ Ty +1 holds. The

set {Vy : y ∈ U \M◦} is an open covering of the compact set U \M◦
and hence contains a finite subcovering {Vy1 , Vy2 , · · · , Vyn} of U \M◦.
Therefore, T ≤ max{tyi +1 : 1 ≤ i ≤ n} and thus we get T <∞. By the
choice of {ti}, we can assume that 0 < ti ≤ T for every positive integer
i. So, by the continuity of π, we can assume without loss of generality
that xiti → xτ1 ∈ O+(x) ∩ ∂U for some positive integer τ1.

On the other hand, Since x leaves M at most once, the negative orbit
of x is contained in M and thus we may assume that si → −∞. Let
xisi → x ∈ ∂U . By the above statement, zτ2 is in the interior of M
with 0 < τ2 < T . Thus, there exists a positive integer k satisfying that
sk + τ2 < 0 and xk(τ2 + sk) is in the interior of M by the continuity of
π. This shows that the point xt(τ2 + sk) leaves M at least twice, which
is absurd. Consequently, some point in M leaves M at least twice. The
converse is trivial and this completes the proof of this result.
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Let M and Q be a subset of X. M is called a saddle set relative
to the set Q if there exists a neighborhood U of M such that every
neighborhood V of M contains at least one point x in V ∩ Q with
O+(x) 6⊂ U and Q−(x) 6⊂ U . M ⊂ X is called a component-wise saddle
set if M is a saddle set relative to at least one connected component of
X \M . The following is trivial.

Theorem 1.6. If M ⊂ X is a component-wise saddle set, then M is
a saddle set.

The following example shows that the converse of the above result
does not hold in general.

Example 1.7. Let

X = {(x, y) ∈ R2 : y = 0 or y =
1

n
for positive integers n}.

Consider the flow on X defined by the differential equation

x′ = y, y′ = 0

Then, the set {(0, 0)} ⊂ X is saddle set but is not a component-wise
saddle set.

Theorem 1.8. Let M ⊂ X be a closed invariant saddle set with
compact boundary and X \ M be locally connected. Then, M is a
component-wise saddle set.

Proof. Since M is a saddle set, there exist a neighborhood U of M
with compact boundary, a sequences of points {xn} ⊂ U \M , sequences
of numbers {tn} ⊂ R+, {sn} ⊂ R− such that xn → x ∈ M, xntn ∈
∂U and xnsn ∈ ∂U. Let {Cλ} be the class of connected components
of X \ M . First, we claim that the only finite number of connected
components in {Cλ} can intersect ∂U . Assume, on the contrary, that
infinite number of connected components in {Cλ} intersect ∂U . Then,
we can choose a sequence of points {yn} ⊂ ∂U such that any two points
in {yn} does not exist in the same connected components in {Cλ}. Let
yn → y ∈ ∂U . Since X \M is locally connected, there is a connected
neighborhood W of y contained in X \M . Then, W is contained in one
connected component, namely Cα ∈ {Cλ} and there is a positive integer
N such that every point yi, i ≥ N is in Cα. But this is absurd. Hence,
we conclude that only the finite number of connected components of
X \M intersect ∂U .

Let C1, C2, · · · , Cp be connected components of X \M which inter-
sect ∂U . Note that every connected component set is invarinat. There-
fore, we can choose a connected component Ck in {C1, C2, · · · , Cq},
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a subsequence {xnk
} of {xn} such that {xnk

} ⊂ Ck. This implies
that, for every neighborhood V of M , there is a point z ∈ {xnk

} with
z ∈ V ∩Ck satisfying that O+(z) 6⊂ U and O−(x) 6⊂ U . This shows that
M is a component-wise saddle set relative to Ck and this completes the
proof.
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