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GLOBAL SOLUTIONS TO CHEMOTAXIS-HAPTOTAXIS
TUMOR INVASION SYSTEM WITH TISSUE

RE-ESTABLISHMENT

Ensil Kang* and Jihoon Lee**

Abstract. In this paper, we consider the chemotaxis-haptotaxis
model of tumor invasion with the proliferation and tissue re-establishment
term in dimensions one and two. We show the global in time exis-
tence of a unique classical solution for the the model in two dimen-
sional spatial domain without any restrictions on the coefficients.

1. Introduction

In this paper, we are interested in the mathematical analysis on the
system of partial differential equations modelling such tumor cell inva-
sion, especially, the model suggested by Chaplain-Lolas[5].

There are many mathematical models describing tumor invasion in
different mechanisms of various stages of the invasion([1, 2, 3, 4, 5, 7, 9]
and see references therein). In most of the models, they adopted hap-
totaxis as the direct movement of tumor cells. But recently, Chaplain-
Lolas [4, 5] suggested a model presenting the behavior of tumor cells
by both haptotaxis and chemotaxis movements. There are a few re-
sults in mathematical analysis for this Chaplain-Lolas model[5]. Tao-
Wang[13] proved the global-in-time existence of a classical solution to
the system of the model in [5] neglecting tissue re-establishment in one
dimensionsional spatial domains and in two and three dimensional do-
mains under the assumption that the ratio χ

µ1
in (1.1) is sufficiently

small. Tao[11] showed the global-in-time existence for the model in two
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dimensional spatial domain without that assumption. For the hapto-
taxis only model, Walker-Webb[15] proved the unique global existence
of classical solution to the system of a model not considering chemotaxis.
Szymańska, Morales-Rodrigo, Lachowicz and Chaplain[10] also proved
the unique global existence of a classical solution for a non-local system
of haptotaxis model.

We note that the above mentioned analytical results are mainly fo-
cused on the tumor invasion model neglecting tissue re-establishment.
As far as we know, the first analytical result for the tumor invasion
model considering extracellular matrix(ECM) tissue re-establishment is
[12]. In [12], Tao proved the global-in-time existence of a classical solu-
tion to a haptotaxis only model in [3] of two dimensions for µ1 ≥ µ2λ2ξ,
where µ1, µ2, λ2 and ξ are nonnegative constants in the system (1.1)–
(1.3). Also boundedness of solutions in two and three dimensions is
proved in [12] for the haptotaxis model. As indicated in [12], the models
of tumor invasion with ECM tissue re-establishment are difficult to be
analyzed for the regularity because of the strong coupling between ECM
tissue density and tumor cell density. Very recently, Fan and Zhao[6]
obtained global-in-time existence of smooth solution in three dimensions
with the same assumption as [12] for the two dimensions.

The followings are the chemotaxis-haptotaxis model of tumor invasion
suggested by Chaplain-Lolas[5] ;

∂c

∂t
= ∆c︸︷︷︸

dispersion

−χ∇ · (c∇u)︸ ︷︷ ︸
chemotaxis

− ξ∇ · (c∇v)︸ ︷︷ ︸
haptotaxis

+µ1c(1− c− λ1v)︸ ︷︷ ︸
proliferation

, in ΩT ,

(1.1)

∂v

∂t
= − uv︸︷︷︸

degradation

+µ2v(1− v − λ2c)︸ ︷︷ ︸
re−establishment

, in ΩT ,

(1.2)

∂u

∂t
= ∆u︸︷︷︸

dispersion

+ c︸︷︷︸
production

− u︸︷︷︸
decay

, in ΩT,

(1.3)

where Ω is a smooth bounded domain in R2, ΩT := Ω × (0, T ) for any
0 < T ≤ ∞, and the coefficients χ, ξ, µ1, µ2, λ1 and λ2 are nonnegative
constants. Here, they denote the tumor cell density by c, the ECM
protein density (in normal tissue) by v, and the urokinase Plasminogen
Activator (uPA- a matrix(ECM) degrading enzyme). Also χ and ξ are
the chemotactic and haptotactic coefficients, respectively, µ1 the tumor
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cell proliferation rate, µ2 the ECM re-establishment rate, and λ1 and
λ2 the competition rates for space by the presence of ECM and by the
presence of tumor cells. We impose boundary condition and initial data

∂c

∂ν
− ξc

∂v

∂ν
= 0 and

∂u

∂ν
= 0, (c(x, 0), u(x, 0), v(x, 0)) = (c0(x), u0(x), v0(x)).

Considering only the case χ, ξ, µ1, µ2, λ1 > 0, we obtain the follow-
ing results.

Theorem 1.1. Let Ω ⊂ R2 and ‖(c0, u0, v0)‖C2 < ∞. If λ2 ≥ 0, then

there exists a unique global-in-time solution (c, u, v) ∈ C
2+σ,1+σ

2
x,t (Ω∞)

to the system (1.1)–(1.3).

We will prove above Theorem in the following sections by obtain-
ing some delicate a priori estimates in section 2 and using parabolic
estimates in section 3.

2. A priori estimates

Throughout this section, we obtain some a priori estimates for solu-
tions in C

2+σ,1+σ
2

x,t (ΩT ) on [0, T ].
For λ2 ≥ 0 and Ω ⊂ R2, we have the following result by maximum

principle.

Lemma 2.1. If (c, u, v) ∈ C
2+σ,1+σ

2
x,t (ΩT ) is a solution to the system

(1.1)–(1.3), then c ≥ 0, u ≥ 0 and 0 ≤ v ≤ 1.

For λ2 ≥ 0 and Ω ⊂ R2, we have L1 norm estimates for c.

Lemma 2.2. If (c, u, v) ∈ C
2+σ,1+σ

2
x,t (ΩT ) is a solution to the system

(1.1)–(1.3), we have
(2.1)

sup
t∈[0,T ]

∫

Ω
c(x, t)dx + µ1

∫ T

0

∫

Ω
c2dxds ≤

(∫

Ω
c0(x)dx

)
(Teµ1T + 1).

Proof. If we integrate (1.1) over Ω, then we obtain

d

dt

∫

Ω

c(x, t)dx + µ1

∫

Ω

c2(x, t)dx + µ1λ1

∫

Ω

v(x, t)c(x, t)dx = µ1

∫

Ω

c(x, t)dx.

Using Gronwall’s inequality, we have (2.1).
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For the further a priori estimates, we use the following equations
which are equivalent to (1.1)–(1.3) by the transform c = aeξv.

(2.2)





∂u

∂t
−∆u + u = eξva,

∂v

∂t
= −uv + µ2v(1− v − λ2aeξv),

∂a

∂t
− e−ξv∇ · (eξv∇a) + e−ξv∇ · (χeξva∇u)

= ξauv + µ1a(1− aeξv − λ1v)− µ2ξav(1− v − λ2e
ξva),

(a(x, 0), u(x, 0), v(x, 0)) = (a0(x), u0(x), v0(x)),
∂a

∂ν
=

∂u

∂ν
= 0.

The advantage of the system (2.2) is that the boundary condition ∂c
∂ν −

ξc∂v
∂ν = 0 is transformed into the condition ∂a

∂ν = 0. It is easy to check

that if (c, u, v) ∈ C
2+σ,1+σ

2
x,t (ΩT ) is a solution to the system (1.1)–(1.3),

then (a, u, v) ∈ C
2+σ,1+σ

2
x,t (ΩT ) is a solution to the system (2.2). We also

note that a(x, t) ≤ c(x, t) ≤ a(x, t)eξ because 0 ≤ v ≤ 1. This makes
it possible to replace ‖a‖L2 and ‖∇a‖L2 by ‖ae

ξv
2 ‖L2 and ‖|∇a| e ξv

2 ‖L2 ,
respectively, and vice versa.

Throughout this paper, C denotes a generic constant (its value may
change from line to line) and ε a sufficiently small positive constant.

Lemma 2.3. Let (a, u, v) ∈ C
2+σ,1+σ

2
x,t (ΩT ) be a solution to the system

(2.2) and Ω ⊂ R2. We have
(2.3)

sup
0≤t≤T

‖u(t)‖2
L2 + 2

∫ T

0
‖∇u‖2

L2 + ‖u‖2
L2dt ≤ ‖u0‖2

L2 + C

∫ T

0
‖a‖2

L2dt,

and
(2.4)

sup
0≤t≤T

‖∇u(t)‖2
L2 +

∫ T

0
‖∆u‖2

L2 +‖∇u‖2
L2dt ≤ ‖∇u0‖2

L2 +C

∫ T

0
‖a‖2

L2dt.

Proof. Taking scalar product the first equation of (2.2) with u, using
eξv ≤ C and integrating over [0, T ], we have (2.3). Also taking scalar
product the first equation of (2.2) with −∆u and using

∣∣∣∣
∫

Ω
eξva∆udx

∣∣∣∣ ≤ C‖a‖2
L2 +

1
2
‖∆u‖2

L2 ,

we have (2.4) by integrating over [0, T ].
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By (2.1), we obtain c ∈ L2(ΩT ), hence a ∈ L2(ΩT ) if a0 ∈ L1(Ω). By
(2.3) and (2.4), we have

u ∈ L∞(0, T ; L2(Ω)) ∩ L∞(0, T ;H1(Ω)) and ∇u, ∆u ∈ L2(ΩT ) if u0 ∈ H1(Ω).

The following a priori estimates show that the regularity of ∇v and ∆v
is intimately related with the regularity of ∇a and ∆a, respectively.

Lemma 2.4. Let (a, u, v) ∈ C
2+σ,1+σ

2
x,t (ΩT ) be a solution to the system

(2.2) and Ω ⊂ R2. We have
(2.5)

sup
t∈(0,T ]

‖∇v‖Lp ≤
(
‖∇v0‖Lp + C

∫ T

0
‖∇u‖Lp + ‖∇a‖Lpdt

)
exp(CT ),

and

sup
t∈(0,T ]

‖∆v‖Lp ≤
(
‖∆v0‖Lp +

∫ T

0
‖∆u‖Lp + ‖∆a‖Lpdt

)

(2.6) × exp
(

C

∫ T

0
(‖∇u‖L2p + ‖∇v‖L2p + ‖∇a‖L2p + 1)dt

)

for 1 < p < ∞.

Proof. We have the following a priori estimate from the equation for
v in (2.2) ;
1
p

d

dt
‖∇v‖p

Lp +
∫

Ω

u|∇v|pdx + 2µ2

∫

Ω

v|∇v|pdx + λ2µ2

∫

Ω

(1 + ξv)aeξv|∇v|pdx

≤ ‖∇u‖Lp‖∇v‖p−1
Lp + µ2‖∇v‖p

Lp + µ2λ2e
ξ‖∇a‖Lp‖∇v‖p−1

Lp .

By Gronwall’s inequality, (2.5) follows directly.
For the estimate (2.6), we take ∆ operator on the both sides of the
equation for v :

∂t∆v + u∆v + 2v∆v + µ2λ2(1 + ξv)∆vaeξv

= −2∇u · ∇v −∆uv + µ2∆v − 2µ2|∇v|2 − 2µ2λ2ξ|∇v|2aeξv

− µ2λ2∇a · ∇v(1 + ξv)eξv − µ2λ2∆aveξv.

Next, taking ∆v as a test function to obtain the following ;
1
p

d

dt
‖∆v‖p

Lp ≤ C‖∇u‖L2p‖∇v‖L2p‖∆v‖p−1
Lp + C‖∆u‖Lp‖∆v‖p−1

Lp

+C‖∇v‖2
L2p(1 + ‖a‖L∞)‖∆v‖p−1

Lp

+C‖∇v‖L2p‖∇a‖L2p‖∆v‖p−1
Lp + C‖∆a‖Lp‖∆v‖p−1

Lp + C‖∆v‖p
Lp .
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Then applying Gronwall’s inequality to the above, we obtain (2.6). This
completes the proof.

By using the transformed equation of a instead of the equation of c, we
can obtain L2 a priori estimates because the W 1,p estimates of v is not
necessary. The following is a key estimate to prove existence of a regular
solution without restrictions on the coefficients. We have ‖a‖4

L2 in the
right hand side and it can be estimated by using Gronwall’s inequality
and the fact that a ∈ L2(ΩT ) by (2.1).

Lemma 2.5. Let λ2 ≥ 0 and (a, u, v) ∈ C
2+σ,1+σ

2
x,t (ΩT ) be a solution

to the system (2.2) on Ω ⊂ R2. Then we have

a ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; Ḣ1(Ω)), and ∇u ∈ L∞(0, T ; L4(Ω)),

and furthermore,

‖a‖L∞(0, T ;L2(Ω)) + ‖∇a‖L2(0, T ;L2(Ω)) + ‖∇u‖L∞(0,T ;L4(Ω))

≤ C(‖a0‖L2(Ω), ‖∇u0‖L4(Ω), T ).

Proof. We note that

∂a

∂t
·aeξv =

1
2

∂

∂t

(
a2eξv

)
− ξµ2

2
a2eξvv+

ξ

2
a2eξv

(
uv + µ2v

2 + µ2λ2aveξv
)

.

Multiplying equation of a in (2.2) by aeξv and integrating over Ω, we
have

1
2

d

dt

∫

Ω
a2eξvdx +

∫

Ω
|∇a|2eξvdx +

ξ

2

∫

Ω
a2eξvuvdx

+ µ1

∫

Ω
a3e2ξvdx + (µ1λ1 + µ2ξ2)

∫

Ω
va2eξvdx

= χ

∫

Ω
(∇a · ∇u)aeξvdx + ξ

∫

Ω
a2uveξvdx + µ1

∫

Ω
a2eξvdx

+
µ2ξ

2

∫

Ω
a2v2eξvdx +

µ2λ2ξ

2

∫

Ω
va3e2ξvdx

+
µ2ξ

2

∫

Ω
a2veξvdx := I1 + I2 + I3 + I4 + I5 + I6.

Hölder’s inequality, interpolation inequality and Young’s inequality gives
us that

|I1| = χ
∣∣∫

Ω(∇a · ∇u)aeξvdx
∣∣ ≤ C‖∇u‖L4‖∇a‖L2‖a‖L4

≤ C‖∇u‖L4‖a‖
1
2

L2‖∇a‖
3
2

L2 ≤ C‖∇u‖4
L4‖ae

ξv
2 ‖2

L2 + ε‖e ξv
2 ∇a‖2

L2 .
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For the other terms, we have

|I2| ≤ C‖u‖L3‖a‖2
L3 ≤ C‖u‖

2
3

L2‖∇u‖
1
3

L2‖a‖
4
3

L2‖∇a‖
2
3

L2

≤ C‖u‖L2‖∇u‖
1
2

L2‖a‖2
L2 + ε‖|∇a|e ξv

2 ‖2
L2 ,

and

|I3|, |I4|, |I6| ≤ C

∫

Ω
a2eξvdx.

I5 can be estimated as follows :

|I5| ≤ C‖a‖3
L3 ≤ C‖a‖2

L2‖∇a‖L2 ≤ C‖a‖4
L2 + ε‖|∇a|e ξv

2 ‖2
L2 .

Combining all the above estimates, we have

d

dt

∫

Ω
a2eξvdx +

∫

Ω
|∇a|2eξvdx

+ µ1

∫

Ω
a3e2ξvdx + (µ1λ1 + µ2ξ)

∫

Ω
va2eξvdx

≤ C‖∇u‖4
L4‖ae

ξv
2 ‖2

L2 + C‖u‖L2‖∇u‖
1
2

L2‖a‖2
L2

+ C

∫

Ω
a2eξvdx + C‖ae

ξv
2 ‖2

L2‖a‖2
L2 .

(2.7)

Taking ∇ operator on the equation of u in (2.2), multiplying |∇u|2∇u,
and integrating over Ω, we obtain

1
4

d

dt
‖∇u‖4

L4 +
3
4
‖∇|∇u|2‖2

L2 + ‖∇u‖4
L4

≤ ‖a‖L4‖∇|∇u|2‖L2‖∇u‖L4

≤ C‖a‖L2‖∇a‖L2‖∇u‖2
L4 + ε‖∇|∇u|2‖2

L2

≤ ε‖∇|∇u|2‖2
L2 + ε‖|∇a|e ξv

2 ‖2
L2 + C‖a‖2

L2‖∇u‖4
L4 .

(2.8)

Now choosing ε to be sufficiently small positive constant and adding
(2.7) and (2.8) to obtain

d

dt

(∫

Ω
a2eξvdx +

∫

Ω
|∇u|4dx

)
+

∫

Ω
|∇a|2eξvdx

+
∫

Ω
|∇|∇u|2|2dx + µ1

∫

Ω
a3e2ξvdx +

∫

Ω
|∇u|4dx

≤ C‖u‖L2‖∇u‖
1
2

L2‖ae
ξv
2 ‖2

L2 + C(‖a‖2
L2 + 1)(‖∇u‖4

L4 + ‖ae
ξv
2 ‖2

L2),

and apply the Gronwall inequality for the following inequality ;
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sup
t∈(0,T ]

(∫

Ω
a2eξvdx +

∫

Ω
|∇u|4dx

)

+
∫ T

0

∫

Ω
|∇a|2eξvdxdt +

∫ T

0

∫

Ω
|∇|∇u|2|2dxdt

+
∫ T

0

∫

Ω
a3e2ξvdxdt +

∫ T

0

∫

Ω
|∇u|4dxdt

≤ C
(‖a0‖2

L2 + ‖∇u0‖4
L4

)
exp

(
C

∫ T

0
‖u‖L2‖∇u‖

1
2

L2 + ‖a‖2
L2 + 1dt

)
.

Using Lemmas 2.2 and 2.3, the right hand side of above is bounded by
the initial data and T . This completes the proof.

For the higher order regularity, ‖a‖L∞(0,T ;Ḣ1) is estimated simulta-
neously with ‖∇v‖L∞(0,T ;L4) in the next lemma(see also Lemma 4.2 in
[12]).

Lemma 2.6. Let λ2 ≥ 0 and (a, u, v) ∈ C
2+σ,1+σ

2
x,t (ΩT ) be a solution

to the system (2.2) on Ω ⊂ R2. Then we have

a ∈ L∞(0, T ; Ḣ1(Ω)) ∩ L2(0, T ; Ḣ2(Ω)) and ∇v ∈ L∞(0, T ;L4(Ω)),

and furthermore,

‖a‖L∞(0, T ;Ḣ1(Ω)) + ‖∆a‖L2(0, T ;L2(Ω)) + ‖∇v‖L∞(0, T ;L4(Ω))

≤ C(‖a0‖Ḣ1(Ω), ‖∇v0‖L4 , ‖u0‖Ḣ2(Ω), T ).

Proof. Taking ∇ operator on the second equation of (2.2), multiply-
ing |∇v|2∇v and integrating over Ω, we have

1
4

d

dt
‖∇v‖4

L4 +
∫

Ω
u|∇v|4dx + µ2λ2

∫

Ω
aeξv|∇v|4dx + C

∫

Ω
v|∇v|4dx

≤
∫

Ω
|∇u||∇v|3dx + µ2λ2

∫

Ω
|∇a||∇v|3eξvdx + µ2

∫

Ω
|∇v|4dx

≤ ‖∇u‖L4‖∇v‖3
L4 + C‖∇a‖L4‖∇v‖3

L4 + C‖∇v‖4
L4

≤ C‖∇u‖4
L4 + C(‖∇a‖

2
3

L2 + 1)‖∇v‖4
L4 + ε‖∆a‖2

L2 .

(2.9)
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Multiplying −∆a to the equation of a in (2.2) and integrating over Ω,
we obtain

1
2

d

dt
‖∇a‖2L2 + ‖∆a‖2L2 ≤ −ξ

∫

Ω

∇v · ∇a∆adx + χ

∫

Ω

∇a · ∇u∆adx

+ χξ

∫

Ω

a(∇v · ∇u)∆adx− ξ

∫

Ω

auv∆adx + µ2ξ

∫

Ω

av(1− v − λ2e
ξva)∆adx

+ χ

∫

Ω

a∆u∆adx− µ1

∫

Ω

a(1− eξva− λ1v)∆adx

:= I1 + I2 + I3 + I4 + I5 + I6 + I7.

(2.10)

We now estimate I1, · · · , I7 as follows ;

|I1| ≤ C‖∇v‖L4‖∇a‖L4‖∆a‖L2 ≤ C‖∇v‖L4‖∇a‖
1
2

L2‖∆a‖
3
2

L2

≤ ε‖∆a‖2
L2 + C‖∇v‖4

L4‖∇a‖2
L2 ,

|I2| ≤ C‖∇a‖2
L2‖∇u‖4

L4 + ε‖∆a‖2
L2 ,

|I3| ≤ C‖a‖L∞‖∇u‖L4‖∇v‖L4‖∆a‖L2 ≤ C‖a‖
3
5

L3‖∇u‖L4‖∇v‖L4‖∆a‖
7
5

L2

≤ C‖a‖2
L3‖∇u‖

10
3

L4‖∇v‖
10
3

L4 + ε‖∆a‖2
L2 ,

|I4| ≤ C‖a‖L2‖u‖L∞‖∆a‖L2 ≤ C‖a‖2
L2‖u‖2

L∞ + ε‖∆a‖2
L2 ,

|I5|, |I7| ≤ C‖a‖4
L4 + C‖a‖2

L2 + ε‖∆a‖2
L2

≤ C‖a‖2
L2‖∇a‖2

L2 + C‖a‖2
L2 + ε‖∆a‖2

L2 ,

|I6| ≤ C‖a‖2
L4‖∆u‖2

L4 + ε‖∆a‖2
L2 ≤ C‖a‖L2‖∇a‖L2‖∆u‖2

L4 + ε‖∆a‖2
L2 .

Adding (2.9) and (2.10) and absorbing ε terms to the left hand side, we
obtain

d

dt
(‖∇a‖2

L2 + ‖∇v‖4
L4) + ‖∆a‖2

L2

≤ C(‖∇a‖2
L2 + ‖a‖2

L2‖∇u‖4
L4 + 1)‖∇v‖4

L4 + C(‖∇u‖4
L4)‖∇a‖2

L2

+ C‖∇u‖4
L4 + C‖a‖2

L2(1 + ‖u‖2
L∞).

By Gronwall’s inequality, we have the desired estimates.

Note that Lp estimate of ∇v (2 < p < ∞) can be obtained directly
from Lemma 2.6. But L∞-estimate of ∇v is not clear. Since the proof is
just a calculation as previous lemmas, we present the following Lemma
without proof.
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Lemma 2.7. Let λ2 ≥ 0 and (a, u, v) ∈ C
2+σ,1+σ

2
x,t (ΩT ) be a solution

to the system (2.2) on Ω ⊂ R2. Then we have

a ∈ L∞(0, T ; Ḣ2(Ω)) ∩ L2(0, T ; Ḣ3(Ω)) and ∆v ∈ L∞(0, T ; L4(Ω)),

and furthermore,

‖a‖L∞(0, T ;Ḣ1(Ω)) + ‖∆a‖L2(0, T ;L2(Ω)) + ‖∆v‖L∞(0,T ;L4(Ω))

≤ C(‖a0‖H2(Ω), ‖∆v0‖L4 , T ).

3. Proof of theorem

The local existence and uniqueness of classical solution to the system
(2.2) can be shown by using the standard contraction mapping methods
as [8] and [13]. See [8] and [11] for the details.

Proposition 3.1. There exists a unique solution (a, u, v) ∈ C
2+σ,1+σ

2
x,t

(ΩT ) to the system (2.2) for sufficiently small T which depends on
‖(a0, u0, v0)‖C2+σ

x (Ω).

We now consider the global existence of a solution to the system (2.2).

Proof of Theorem 1.1. Let us define the Sobolev space

W 2,1
q (ΩT ) = {w ∈ Lq(ΩT ) | ‖w‖

W 2,1
q (ΩT )

< ∞}

with the norm

‖w‖
W 2,1

q (ΩT )
= ‖w‖Lq(ΩT ) + ‖∇w‖Lq(ΩT ) + ‖∇2w‖Lq(ΩT ) + ‖∂tw‖Lq(ΩT )

for q ≥ 1 and T > 0. Suppose that T ∗ is a finite maximal time validating
the solution (a, u, v) in Proposition 3.1. For any T ∈ (0, T ∗], we have
(3.1)

‖∆u‖Lp(0,T ;Lp(Ω))+‖
∂u

∂t
‖Lp(0,T ;Lp(Ω)) ≤ C(‖u0‖W 2,p(Ω)+‖c‖Lp(0,T ;Lp(Ω))).

By using Lemma 2.6, the right hand side of (3.1) is bounded by a con-
stant which depends on M (‖u0‖W 2,p(Ω) and ‖c0‖H1(Ω) are controlled by
M). Then the Sobolev embedding for sufficiently large p gives us that

‖∇u‖
C

σ, σ
2

x,t (ΩT )
≤ C(M).
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To apply the parabolic Lp estimate for a, we rewrite the equation of
a in the non-divergence form

∂a

∂t
−∆a− (ξ∇v − χ∇u) · ∇a + (χξ∇u · ∇v + χ∆u)a

= ξauv + µ1a(1− eξva− λ1v)− µ2ξav(1− v − λ2e
ξva).

(3.2)

By the boundedness of ‖∇u‖
C

σ, σ
2

x,t (ΩT )
and by Lemma 2.4 and Lemma

2.7, we obtain for any p ≥ 2,
‖ξ∇v − χ∇u‖L∞(ΩT ) ≤ C(M), ‖χξ∇u · ∇v + χ∆u‖Lp(ΩT ) ≤ C(M),

‖ξauv + µ1a(1− eξva− λ1v)− µ2ξav(1− v − λ2e
ξva)‖Lp(ΩT ) ≤ C(M).

Here, using the parabolic Lp estimates, we have

‖a‖
W 2,1

p (ΩT )
≤ C(M).

For a sufficiently large p, we have the following from Sobolev’s embed-
ding

‖∇a‖
C

σ, σ
2

x,t (ΩT )
≤ C(M), ‖∇v‖

C
σ, σ

2
x,t (ΩT )

≤ C(M).

By Schauder estimates of parabolic equations, we finally have

‖(a, u, v)‖
C

2+σ,1+ σ
2

x,t (ΩT )
≤ C(M).

This contradicts to the assumption that T ∗ is a finite maximal time, and
we conclude T ∗ = ∞.
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