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A REMARK ON THE REGULARIZED GAP FUNCTION
FOR IQVI

Sangho Kum*

Abstract. Aussel et al. [1] introduced the notion of inverse quasi-
variational inequalities (IQVI) by combining quasi-variational in-
equalities and inverse variational inequalities. Discussions are made
in a finite dimensional Euclidean space. In this note, we develop
an infinite dimensional version of IQVI by investigating some ba-
sic properties of the regularized gap function of IQVI in a Banach
space.

1. Introduction

Recently, Aussel et al. [1] introduced the notion of inverse quasi-
variational inequalities (in short, IQVI) by combining quasi-variational
inequalities (QVI) and inverse variational inequalities (IVI) as follows:
Given two continuous functions F, h : Rn → Rn and a multifunction
S : Rn ⇒ Rn with closed convex values Sx for all x ∈ Rn, the inverse
quasi-variational inequality problem, IQVI, is the problem of finding a
vector x̄ ∈ Rn such that h(x̄) ∈ Sx̄ and

〈Fx̄, y − h(x̄)〉 ≥ 0 for all y ∈ Sx̄, (1.1)

where 〈·, ·〉 denote the inner product in Rn. If h is the identity map
on Rn, IQVI reduces to QVI [4, 5]. When C is a convex closed subset
of Rn and for all x ∈ Rn, Sx = C, IQVI is nothing but IVI [6, 7].
Aussel et al. [1] stated a main motivation to consider the general IQVI
and provided an interesting example [1, Example 1] which confirms that
this extension is necessary in a practical sense. They also obtained
local/global error bounds for IQVI in terms of standard gap functions
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such as the residual gap function, the regularized gap function and the
D-gap function. However, discussions are made in a finite dimensional
Euclidean space. In addition, as pointed out by them, IQVI is still not
fully explored.

Motivated by these facts, in this note, we develop an infinite di-
mensional version of IQVI by investigating some basic properties of the
regularized gap function of IQVI in a Banach space. In a Hilbert space
setting, extensions of the results in [1] are straightforward by the same
argument in [1]. So we pay the attention to Banach spaces.

2. Preliminaries

First we define the following IQVI in a Banach space.

IQVI : Let E be a real Banach space and E∗ be its dual space. Given
functions F : E → E∗, h : E → E and a multifunction S : E ⇒ E with
closed convex values Sx for all x ∈ E (for the simplicity of argument,
Sx is assumed to be nonempty), find x̄ ∈ E such that h(x̄) ∈ Sx̄ and

〈Fx̄, y − h(x̄)〉 ≥ 0 for all y ∈ Sx̄, (2.1)

where 〈·, ·〉 denote the dual paring on E × E∗.

Definition 2.1. A function g : E → R is called a gap function of
IQVI on a subset K ⊂ E if it satisfies

(i) g(x) ≥ 0 for all x ∈ K;
(ii) g(x̄) = 0, x̄ ∈ K ⇔ x̄ is a solution of IQVI.

As is well-known [2, 4, 1], VI, QVI and IQVI can be equivalently
formulated as a minimization problem of certain gap function. This work
has a basic concern about the (regularized gap) function gα : E → R
(α > 0) under suitable conditions;

gα(x) := − inf
y∈Sx

{
〈Fx, y − h(x)〉+

1
2α
‖y − h(x)‖2

}
. (2.2)

For a proper convex lower semicontinuous function f : E → R ∪
{+∞}, the subdifferential of f at x is the set

∂f(x) = {x∗ ∈ E∗ | 〈x∗, y − x〉 ≤ f(y)− f(x) for all y ∈ E}.
From the definition of subdifferential, we immediately obtain the result
below.
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Proposition 2.2. Let f : E → R ∪ {+∞} be a proper convex lower
semicontinuous function and x0 ∈ E. Define g(x) = f(x + x0) for each
x ∈ E. Then ∂g(x) = ∂f(x + x0).

In addition, as seen in [9, 2.26 Example, p.27], the following fact is
well-known.

Proposition 2.3. For f(x) = 1
2‖x‖2, we have

∂f(x) = J(x) = {x∗ ∈ E∗ | 〈x∗, x〉 = ‖x∗‖‖x‖ and ‖x∗‖ = ‖x‖}.
J is called the duality mapping for E.

In what follows, we need continuity notions of multifunctions below.

Definition 2.4. Let X and Y be topological spaces. T : X ⇒ Y be
a multifunction. Then T is called

(i) upper semicontinuous (u.s.c.) if for each x ∈ X and each open set
V in Y with T (x) ⊂ V , there exists an open neighborhood U of x
in X such that T (y) ⊂ V for each y ∈ U ;

(ii) lower semicontinuous (l.s.c.) if for each x ∈ X and each open set
V in Y with T (x) ∩ V 6= ∅, there exists an open neighborhood U
of x in X such that T (y) ∩ V 6= ∅ for each y ∈ U ;

(iii) continuous if T is both u.s.c. and l.s.c.

3. Main result

Theorem 3.1. The function gα in (2.2) is a gap function of IQVI on
the set h−1(S) = {x ∈ E | h(x) ∈ Sx}, that is, it satisfies

(i) gα(x) ≥ 0 for all x ∈ h−1(S);
(ii) x̄ is a solution of IQVI if and only if x̄ ∈ h−1(S) and gα(x̄) = 0.

Proof. (i) The result follows from taking y = h(x) in (2.2) because
h(x) ∈ Sx.
(ii) (⇒) Let x̄ be a solution of IQVI. Then we have

〈Fx̄, y − h(x̄)〉 ≥ 0 for all y ∈ Sx̄.

Clearly

〈Fx̄, y − h(x̄)〉+
1
2α
‖y − h(x̄)‖2 ≥ 0 for all y ∈ Sx̄.

Hence, we get gα(x̄) ≤ 0. Since h(x̄) ∈ Sx̄ and gα(x̄) ≥ 0 by (i), we see
gα(x̄) = 0.
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(⇐) Assume that h(x̄) ∈ Sx̄ and gα(x̄) = 0. Then

〈Fx̄, y − h(x̄)〉+
1
2α
‖y − h(x̄)‖2 ≥ 0 ∀y ∈ Sx̄.

Equivalently,

〈Fx̄, y〉+
1
2α
‖y − h(x̄)‖2 ≥ 〈Fx̄, h(x̄)〉+

1
2α
‖h(x̄)− h(x̄)‖2 ∀y ∈ Sx̄.

This means that h(x̄) is a solution of the following minimization problem

min
y∈Sx̄

〈Fx̄, y〉+
1
2α
‖y − h(x̄)‖2.

By the optimality condition together with Propositions 2.2 and 2.3, we
obtain

0 ∈ Fx̄ +
1
α

J(h(x̄)− h(x̄)) + NSx̄(h(x̄))

where NSx̄(h(x̄)) = {x∗ ∈ E∗ | 〈x∗, y − h(x̄)〉 ≤ 0 for all y ∈ Sx̄}, the
normal cone of Sx̄ at h(x̄). As J(0) = {0}, we get −Fx̄ ∈ NSx̄(h(x̄)),
that is,

〈Fx̄, y − h(x̄)〉 ≥ 0 for all y ∈ Sx̄,

which implies that x̄ is a solution of IQVI. This completes the proof.

Remark 3.2. Theorem 3.1 is an infinite dimensional extension of
Aussel et al. [1, Proposition 4.2].

As far as the continuity of the gap function gα is concerned, we have the
following:

Theorem 3.3. Let F : E → E∗ (E∗ is endowed with the norm
topology), h : E → E and S : E ⇒ E be continuous. Assume that
Sx be a (nonempty) compact convex set for all x ∈ E. Then the gap
function gα is continuous.

Proof. Note from (2.2) that

gα(x) = sup
y∈Sx

{
〈Fx, h(x)− y〉+

1
2α
‖h(x)− y‖2

}
.

Define ψ : E × E → R to be ψ(x, y) = 〈Fx, h(x)− y〉+ 1
2α‖h(x)− y‖2.

As E∗ is equipped with the norm topology, ψ is clearly continuous. It
follows from Berge [2, Theorems 1 and 2, pp.115-116] that

gα(x) = sup
y∈Sx

ψ(x, y) = max
y∈Sx

ψ(x, y)

is continuous.
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Remark 3.4. Only for the continuity of gα, those of F , h and S (with
the compactness of Sx) are sufficient as seen in Theorem 3.3. However,
differentiability needs more conditions including differentiabilities of F
and h as well as the smoothness of the norm ‖ · ‖. This can be easily
induced by the equation (3.1) below.

From now on, for further discussions of gα, E is assumed to be a reflexive
Banach space. Since the function

ψx
α(y) = 〈Fx, y − h(x)〉+

1
2α
‖y − h(x)‖2

is strongly convex for each fixed x ∈ E, it is coercive (see [8]). Thus
ψx

α has a unique minimizer zα(x) ∈ Sx over the closed convex set Sx.
Hence

gα(x) = − min
y∈Sx

ψx
α(y) = −ψx

α(zα(x))

= −〈Fx, zα(x)− h(x)〉 − 1
2α
‖zα(x)− h(x)‖2. (3.1)

Then a solution x̄ of IQVI has the following characterization:

Theorem 3.5. x̄ is a solution of IQVI if and only if h(x̄) = zα(x̄).

Proof. (⇒) Suppose that x̄ is a solution of IQVI. Since zα(x̄) is a
minimizer of ψx̄

α over Sx̄, by the optimality condition together with
Propositions 2.2 and 2.3, we have

0 ∈ Fx̄ +
1
α

J(zα(x̄)− h(x̄)) + NSx̄(zα(x̄)). (3.2)

So, for some x∗ ∈ J(zα(x̄)− h(x̄)), we have

−Fx̄− 1
α

x∗ ∈ NSx̄(zα(x̄)).

Thus,

〈Fx̄ +
1
α

x∗, y − zα(x̄)〉 ≥ 0 for all y ∈ Sx̄. (3.3)

Taking y = h(x̄) ∈ Sx̄ yields that

0 ≥ − 1
α
‖zα(x̄)− h(x̄)‖2 = − 1

α
〈x∗, zα(x̄)− h(x̄)〉

≥ 〈Fx̄, zα(x̄)− h(x̄)〉 ≥ 0

because x̄ is a solution of IQVI and x∗ ∈ J(zα(x̄)− h(x̄)). This implies
that h(x̄) = zα(x̄), as desired.

(⇐) Assume that h(x̄) = zα(x̄) ∈ Sx̄. Since J(0) = {0}, we again obtain
from (3.2) and (3.3) that
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〈Fx̄, y − h(x̄)〉 ≥ 0 for all x ∈ Sx̄,

which means that x̄ is a solution of IQVI. This completes the proof.
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