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A REMARK ON THE REGULARIZED GAP FUNCTION
FOR IQVI

SANGHO Kuwm*

ABSTRACT. Aussel et al. [1] introduced the notion of inverse quasi-
variational inequalities (IQVI) by combining quasi-variational in-
equalities and inverse variational inequalities. Discussions are made
in a finite dimensional Euclidean space. In this note, we develop
an infinite dimensional version of IQVI by investigating some ba-
sic properties of the regularized gap function of IQVI in a Banach
space.

1. Introduction

Recently, Aussel et al. [1] introduced the notion of inverse quasi-
variational inequalities (in short, IQVI) by combining quasi-variational
inequalities (QVI) and inverse variational inequalities (IVI) as follows:
Given two continuous functions F, h : R™ — R" and a multifunction
S : R®" = R” with closed convex values Sx for all x € R™, the inverse
quasi-variational inequality problem, IQVI, is the problem of finding a
vector Z € R™ such that h(z) € Sz and

(Fz,y —h(z)) > 0 for all y € Sz, (1.1)

where (-,-) denote the inner product in R™. If h is the identity map
on R™ IQVI reduces to QVI [4, 5]. When C' is a convex closed subset
of R™ and for all z € R", Sz = C, IQVI is nothing but IVI [6, 7].
Aussel et al. [1] stated a main motivation to consider the general IQVI
and provided an interesting example [1, Example 1] which confirms that
this extension is necessary in a practical sense. They also obtained
local/global error bounds for IQVI in terms of standard gap functions
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such as the residual gap function, the regularized gap function and the
D-gap function. However, discussions are made in a finite dimensional
Euclidean space. In addition, as pointed out by them, IQVT is still not
fully explored.

Motivated by these facts, in this note, we develop an infinite di-
mensional version of IQVI by investigating some basic properties of the
regularized gap function of IQVI in a Banach space. In a Hilbert space
setting, extensions of the results in [1] are straightforward by the same
argument in [1]. So we pay the attention to Banach spaces.

2. Preliminaries
First we define the following IQVI in a Banach space.

IQVI: Let E be areal Banach space and E* be its dual space. Given
functions F' : E — E*, h: E — E and a multifunction S : £ = F with
closed convex values Sz for all z € E (for the simplicity of argument,
Sz is assumed to be nonempty), find z € E such that h(z) € ST and

(Fz,y—h(z)) >0 forall y € Sz, (2.1)
where (-, -) denote the dual paring on E x E*.

DEFINITION 2.1. A function g : E — R is called a gap function of
IQVI on a subset K C E if it satisfies
(i) g(z) > 0 for all z € K;
(ii)) g(z) =0, z € K & I is a solution of IQVL.

As is well-known [2, 4, 1], VI, QVI and IQVI can be equivalently
formulated as a minimization problem of certain gap function. This work
has a basic concern about the (regularized gap) function g, : £ — R
(o > 0) under suitable conditions;

gnla) = = inf { Py~ + Ly -} @2

For a proper convex lower semicontinuous function f : £ — R U
{+00}, the subdifferential of f at z is the set
Of(z) ={2" € E" [ (z",y —x) < f(y) — f(z) for all y € E}.

From the definition of subdifferential, we immediately obtain the result
below.
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PROPOSITION 2.2. Let f : E — RU {+o0} be a proper convex lower
semicontinuous function and xg € E. Define g(x) = f(xz + xo) for each
x € E. Then 0g(x) = 0f(x + xo).

In addition, as seen in [9, 2.26 Example, p.27], the following fact is
well-known.

PROPOSITION 2.3. For f(z) = 3| z||%, we have
Of(x) = J(x) = {z" € E | («",x) = [[2"||||z] and [|z7[| = [l=[|}.

J is called the duality mapping for E.

In what follows, we need continuity notions of multifunctions below.
DEFINITION 2.4. Let X and Y be topological spaces. T': X = Y be

a multifunction. Then T is called

(i) upper semicontinuous (u.s.c.) if for each z € X and each open set
V in Y with T'(z) C V, there exists an open neighborhood U of x
in X such that T'(y) C V for each y € U,
(ii) lower semicontinuous (l.s.c.) if for each z € X and each open set
V in Y with T'(z) NV # (), there exists an open neighborhood U
of z in X such that T'(y) NV # () for each y € U;
(iii) continuous if T is both u.s.c. and l.s.c.

3. Main result
THEOREM 3.1. The function g, in (2.2) is a gap function of IQVI on
the set h=1(S) = {x € E | h(z) € Sz}, that is, it satisfies

(i) galz) >0 for all z € h=1(S);
(ii) Z is a solution of IQVI if and only if € h~1(S) and g, (%) = 0.

Proof. (i) The result follows from taking y = h(x) in (2.2) because
h(x) € Sx.
(ii) (=) Let = be a solution of IQVI. Then we have

(Fz,y—h(z)) >0 forall y € Sz.
Clearly
1
(Fz,y — h(z)) + %Hy — @) ||>>0 forall y € Sz.

Hence, we get go(Z) < 0. Since h(Z) € ST and g,(Z) > 0 by (i), we see
9a(Z) = 0.
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(«=) Assume that h(z) € ST and ¢o(Z) = 0. Then
(FZ,y — h(z)) + illy — h(@)]|? >0 Vy € Sz.
Equivalently,
(FE,) + 5 lly — h(@)|? > (F2, h(E) + 5 [1(@) ~ h@)|? ¥y € 2.
This means that h(Z) is a solution of the following minimization problem
min (Fa,y) + 5y — @)

By the optimality condition together with Propositions 2.2 and 2.3, we
obtain

1
0€ Fz+ aJ(h(gf) — h(z)) + Nsz(h(T))
where Ngz(h(z)) = {z* € E* | (z*,y — h(z)) < 0 for all y € Sz}, the
normal cone of Sz at h(z). As J(0) = {0}, we get —FZ € Ngz(h(Z)),
that is,
(Fz,y —h(z)) >0 for all y € Sz,
which implies that Z is a solution of IQVI. This completes the proof. [

REMARK 3.2. Theorem 3.1 is an infinite dimensional extension of
Aussel et al. [1, Proposition 4.2].

As far as the continuity of the gap function g, is concerned, we have the
following:

THEOREM 3.3. Let F' : E — E* (E* is endowed with the norm
topology), h : E — E and S : E = E be continuous. Assume that
Sz be a (nonempty) compact convex set for all x € E. Then the gap
function g, is continuous.

Proof. Note from (2.2) that

an(a) = sup { (. hlo) =) + o) — .

Define ¢ : E x E — R to be 9(z,y) = (Fz,h(z) — y) + 5= ||h(z) — y||*.
As E* is equipped with the norm topology, v is clearly continuous. It
follows from Berge [2, Theorems 1 and 2, pp.115-116] that

go(x) = sup (x,y) = max(z,y)
yESx yeST

is continuous. O
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REMARK 3.4. Only for the continuity of g, those of F', h and S (with
the compactness of Sx) are sufficient as seen in Theorem 3.3. However,
differentiability needs more conditions including differentiabilities of F’
and h as well as the smoothness of the norm || - ||. This can be easily
induced by the equation (3.1) below.

From now on, for further discussions of g,, E is assumed to be a reflexive
Banach space. Since the function

Yaly) = (Fa,y = h(@) + 5-lly - (o)

is strongly convex for each fixed x € F, it is coercive (see [8]). Thus
¥ has a unique minimizer z,(z) € Sz over the closed convex set Sz.
Hence

Jo(z) = — ;féfqri Val(y) = =5 (2a(z))

1
= —(Fz,20(2) = h(@)) = 5 ~[|7a() = h(@)II*. (3.1)
Then a solution Z of IQVI has the following characterization:
THEOREM 3.5. Z is a solution of IQVI if and only if h(Z) = z4(Z).

Proof. (=) Suppose that z is a solution of IQVI. Since z,(Z) is a
minimizer of ¥% over SZ, by the optimality condition together with
Propositions 2.2 and 2.3, we have

0e Fz+ éJ(za(a’:) — h(Z)) + Nsz(2a(Z)). (3.2)

So, for some z* € J(24(Z) — h(Z)), we have

1
—Fz — ax* € Ngz(za(T)).

Thus,
1
(FZ 4 —x",y — 24(Z)) > 0 for all y € Sz. (3.3)
o
Taking y = h(z) € St yields that

02 L@~ h@I = L (0", (@) - h(@)

that h(Z) = z4(Z), as desired.

(<) Assume that h(Z) = 24(Z) € Sz. Since J(0) = {0}, we again obtain
from (3.2) and (3.3) that
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(FZ,y — h(z)) > 0 for all z € S7,
which means that Z is a solution of IQVI. This completes the proof.
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