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BOUNDEDNESS IN PERTURBED NONLINEAR
FUNCTIONAL DIFFERENTIAL SYSTEMS

SaNcg I CHor* AND YooN HoeE Goo**

ABSTRACT. In this paper, we investigate bounds for solutions of
the perturbed nonlinear functional differential systems with a too-
similarity condition using the notion of h-stability.

1. Introduction and preliminaries

We consider the nonlinear nonautonomous differential system

(L.1) 2'(t) = f(t,2(t), a(to) = o,

where f € C(RT x R",R"), Rt = [0,00) and R" is the Euclidean n-
space. We assume that the Jacobian matrix f, = 0f/0x exists and is
continuous on RT x R™ and f(¢,0) = 0. Also, we consider the perturbed
nonlinear functional differential systems of (1.1)

t
(12) ¢ =f(ty) +/t 9(s,y(s))ds + h(t,y(t), Ty(t)), y(to) = o,

0
where g € C(R* x R*,R?), h € C(Rt x R* x R*,R") , ¢(¢,0) = 0,
h(t,0,0) =0, and T : C(R",R") — C(R*,R") is a continuous operator.
For z € R™, let |z = (3_)_, a;?)l/Q. For an n X n matrix A, define the
norm |A| of A by |A| = supjy<; [Az].

Let (t, to, xo) denote the unique solution of (1.1) with z(to, to, zo) =

X0, existing on [tg, 00). Then, we can consider the associated variational
systems around the zero solution of (1.1) and around z(t), respectively,

(1.3) V() = f(t,0)v(t), v(ty) = vo
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and

(1.4) 2(t) = fo(t,z(t, o, m0))2(t), 2(to) = 0.
The fundamental matrix ®(¢,tp,zg) of (1.4) is given by

0
(D(t, to, IL‘()) = Txol'(t, to, ZL‘()),

and ®(t,19,0) is the fundamental matrix of (1.3).
We recall some notions of h-stability [15].

DEFINITION 1.1. The system (1.1) (the zero solution x = 0 of (1.1))
is called an h-system if there exist a constant ¢ > 1, and a positive
continuous function h on R™ such that

[2(t)] < ¢lzo| A(t) hto) ™

for t > to > 0 and |zo| small enough (here h(t)~! = ﬁ)

DEFINITION 1.2. The system (1.1) (the zero solution z = 0 of (1.1))
is called
(hS)h-stable if there exists 6 > 0 such that (1.1) is an h-system for
|xg] < 0 and h is bounded.

The notion of h-stability (hS) was introduced by Pinto [15,16] with
the intention of obtaining results about stability for a weakly stable sys-
tem (at least, weaker than those given exponential asymptotic stability)
under some perturbations. He obtained a general variational h-stability
and some properties about asymptotic behavior of solutions of differen-
tial systems called h-systems. Choi, Ryu [3] and Choi, Koo, and Ryu [4]
investigated bounds of solutions for nonlinear perturbed systems. Also,
Goo [7,8,9] and Goo et al. [11] investigated boundedness of solutions for
nonlinear perturbed systems.

In this paper, we investigate bounds for solutions of the perturbed
nonlinear functional differential systems using the notion of t,.-similarity.

Let M denote the set of all n x n continuous matrices A(t) defined on
R*™ and A be the subset of M consisting of those nonsingular matrices
S(t) that are of class C! with the property that S(t) and S~1(t) are
bounded. The notion of ty.-similarity in M was introduced by Conti

[6].
DEFINITION 1.3. A matrix A(t) € M is too-similar to a matrix B(t) €

M if there exists an absolutely integrable n x n matrix F(t) over R,
ie.,

/OO |F(t)]dt < oo
0
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such that
(1.5) S(t) 4+ S(t)B(t) — A(t)S(t) = F(t)
for some S(t) € N.

The notion of t.-similarity is an equivalence relation in the set of
all n x m continuous matrices on R™, and it preserves some stability
concepts [6, 12].

We give some related properties that we need in the sequal.

LEMMA 1.4. [16] The linear system
(1.6) ' = A(t)z, z(to) = o,

where A(t) is an n X n continuous matrix, is an h-system (respectively
h-stable) if and only if there exist ¢ > 1 and a positive and continuous
(respectively bounded) function h defined on R™ such that

(1.7) |6(t,to)| < ch(t) h(to)™!
for t > to > 0, where ¢(t,to) is a fundamental matrix of (1.6).

We need Alekseev formula to compare between the solutions of (1.1)
and the solutions of perturbed nonlinear system

(1.8) y' = f(ty) +9(t,v), y(to) = o,

where g € C(RT x R",R") and ¢(t,0) = 0. Let y(t) = y(t, to, yo) denote

the solution of (1.8) passing through the point (¢, yo) in Rt x R™.
The following is a generalization to nonlinear system of the variation

of constants formula due to Alekseev [1].

LEMMA 1.5. Ifyg € R™, then for all t such that x(t,tg,y0) € R",

y(tto,50) = (s to, vo) + / B(t,5,(s)) g(s,y(s)) ds.

to
THEOREM 1.6. [3] If the zero solution of (1.1) is hS, then the zero
solution of (1.3) is hS.

THEOREM 1.7. [4] Suppose that f(t,0) is too-similar to f(t,z(t,to, zg))
for t > tg > 0 and |zg| < ¢ for some constant 6 > 0. If the solution
v =0 of (1.3) is hS, then the solution z = 0 of (1.4) is hS.

LEMMA 1.8. (Bihari — type inequality) Let u,A € C(R"), w €
C((0,00)) and w(u) be nondecreasing in u. Suppose that, for some
c >0,

t
u(t) < c+/ A(s)w(u(s))ds, t >ty > 0.

to
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Then .
u(t) < w1 [W(c) + )\(s)ds], to <t < b,
0
where W (u) = f;lo wd(‘z), W=L(u) is the inverse of W (u), and

t
by = sup {t > to: W(e) +/ A(s)ds € domW_l}.

to

LEMMA 1.9. [5] Let u, A1, Ao, A3 € C(R), w € C((0,00)) and w(u)
be nondecreasing in u. Suppose that for some ¢ > 0,

ut) < c+/tt Al(s)w(u(s))der/tt Ag(s)(/ts Ag(T)w(u(T))dT)ds, 0<to<t.
Then
u(t) < VV_1 [W(C) + /t()\l(s) + /\2(8) /s )\3(’7'))618}, to <t < by,

to to

where W, W1 are the same functions as in Lemma 1.8, and

by = sup {t >to: W(e) +/t(>\1(8) + Aa(s) ) A3(T)dr)ds € domW_l}.

to to

LEMMA 1.10. [9] Let u, A1, A2, A3, s € C(RT), w € C((0,0)) and
w(u) be nondecreasing in u, u < w(u). Suppose that for some ¢ > 0 and
0<ty <t

u(t) < c—|—/t Al(s)u(s)ds—i—/t )\g(s)w(u(s))ds—i—/t As(s) /ts Aa(7)u(T)drds.
Then
u(t) < Wt [W(C) -|-/ (A1(8) + A2(s) + As(s) / )\4(7')cl7')ds}7 to <t < by,

where W, W1 are the same functions as in Lemma 1.8, and

by = sup {t >t W(c)—l—/t(/\l(s)+/\2(8)+)\3(s) /S My (T)dT)ds € domW_l}.

2. Main results

In this section, we investigate boundedness for solutions of the non-
linear perturbed differential systems via ts.-similarity.
To obtain the bounded result, the following assumptions are needed:
(H1) f.(t,0)is teo-similar to fu (¢, z(t, to, o)) for t >ty > 0 and |zo| <
for some constant § > 0.
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(H2) The solution x = 0 of (1.1) is hS with the increasing function h.

THEOREM 2.1. Let a,b,c,q,u,w € C(RT), w(u) be nondecreasing in
u such that u < w(u) and 2w(u) < w(%) for some v > 0. Suppose that
(H1), (H2), and g in (1.2) satisfies

t

(2.1) . l9(s, y(s))lds < a(t)|y(t)],

[t y(8), Ty())] < b(H)w(ly(®)]) + )Ty (1)l

and

t
22) 7y(o)] < [ als)ly(s)lds,

to
where a,b,c,q € L1(RT). Then, any solution y(t) = y(t,to,yo) of (1.2)
is bounded on [ty,c0) and it satisfies

(O] < HOW W (e e / (a(s)+e(s) +h(s) / " k(r)drte(s) / q(rydr)ds).

to <t < by, where W, W~ are the same functions as in Lemma 1.8,
and

b= sup {t> 1o W(e) + 3 / (a(s) + e(s) + b(s) / T k(r)dr

to to

+c(s) /s q(r)dr)ds € domW_l}.

to
Proof. Using the nonlinear variation of constants formula of Alekseev

[1], any solution y(t) = y(t,to,yo) of (1.2) passing through (¢, o) is
given by

(2.3)
y(t, to, yo0) =x(t, o, yo)

t s

+ [ ottsy@)( [ alrumydr + hts,y(s), Tys) ) ds.
to to

By Theorem 1.6, since the solution z = 0 of (1.1) is hS, the solution

v = 0 of (1.3) is hS. Therefore, by Theorem 1.7, the solution z = 0 of

(1.4) is hS. In view of Lemma 1.4, the hS condition of z = 0 of (1.1),

(2.1), (2.2), and (2.3), we have
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Iy(t)\élw(t)|+/t |<1’(t,8,y(8))|( tslg(T,y(T))ldTﬂLIh(s7y(8)7Ty(S))l)d8
< ealyolh(t) h(to) ™" +/t CQh(t)h(S)’l(a(s)ly(S)l +b(s)w(ly(s)])
+et) [ aly(lar)ds

< aallh(O) hito) ™+ [ cah(t)(alo

+b(s)w( 'Zi;') +¢(s) /t o Ol g

Set u(t) = |y(t)||h(t)|~!. Then, an application of Lemma 1.10 yields

t

ly(t)| < h()W ! [W(c)+c2 / (a(s) + b(s) + ¢(s) / sq(T)dr)ds}

to to

where ¢ = c1|yo| h(to)~!. Hence, any solution y(t) = y(t,to,%0) of (1.2)
is bounded on [tg, 00), and so the proof is complete. O

REMARK 2.2. Letting w(u) = u and b(t) = ¢(t) = 0 in Theorem 2.1,
we obtain the same result as that of Theorem 3.3 in [10].

LEMMA 2.3. Let u, A1, A2, A3, A1, A5, Ag € C(RT), w € C((0,00)) and
w(u) be nondecreasing in u, u < w(u). Suppose that for some ¢ > 0,
(2.4)

u(t) < e+ /t t A (s)u(s)ds + /tt Ao(8)w(u(s))ds + /tt As(s) /t A (r)u(r)drds

0

+/t As(s) /ts Xe(T)w(u(r))drds, 0 <ty <t.

Then
u(t) < W HW(e) + t()\l(s) + A2(s) + As(s) ) Aa(T)dT
e l

+/\5(S) /S)\G(T)dT)dS s

to

to <t < by, where W, W~ are the same functions as in Lemma 1.8,
and
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s

by = sup {t >to: Wi(e)+ /t()\l(s) + Xa(s) + )\3(5)/ Ay (T)dT

to to

+As(s) / " No(r)dr)ds € domW_l}.

to

Proof. Define a function z(t) by the right member of (2.4). Then, we
have z(ty) = ¢ and

2(t) = M (@®)u(t) + A2 (H)w(u(t)) + Ag(t)/t Ai(s)u(s)ds
t
+ A5(t) 1; A6(s)w(u(s))ds

S ()\1 (t) + )\2(75) + )\3(t) /: )\4(S)d8)\5(t) /tt Ag(s)ds)w(z(t)), t Z to,

since z(t) and w(u) are nondecreasing, u < w(u), and u(t) < z(¢).
Therefore, by integrating on [to, t], the function z satisfies

2(t) < e -l—/ (A1(s) + Aa(s) + As(s) /S M (T)dr)w(z(s))

(2.6) fo o
+ 2s(s) / No(r)dr)w(=(s)))ds.
to
It follows from Lemma 1.8 that (2.6) yields the estimate (2.5). O

THEOREM 2.4. Let a,b,c, k,q,u,w € C(RT), w(u) be nondecreasing

in u such that u < w(u) and tw(u) < w(%) for some v > 0. Suppose
that (H1), (H2), and g in (1.2) satisfies

(2.7)

t l9(s,y(s))|ds < a(t)w(|y(t))| + b(t)/t k(s)ly(s)lds, t > tg >0
and
(2.8)

t

|h(t, y(t), Ty(t))| < c(t)(ly@)] + | Ty@)]), | Ty(t)] < /t q(s)w(ly(s)[)ds,
t > to > 0, where a,b,c,k,q € L1(R"). Then, any solution y(t) =
y(t, to,yo) of (1.2) is bounded on [tg, c0) and it satisfies
(a(s)+c(s)+b(s) /ts k(T)dr+c(s) /ts q(T)dT)ds},

t

O] < BOW W (0)+es /

to
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to <t < by, where W, W~ are the same functions as in Lemma 1.8,
and

by = sup {t >ty : W(e) + 2 /t(a(s) + c(s) + b(s) /S k(T)dr

to to

+c(s) /S q(T)dr)ds € domW_l}.

to

Proof. 1t is known that the solution of (1.2) is represented by the in-
tegral equation (2.3). By the same argument as in the proof in Theorem
2.1, the solution z = 0 of (1.4) is hS. By Lemmma 1.4, the hS condition
of z =0 of (1.1), (2.3), (2.7), and (2.8), we have

ly(1)] < ealyol h(t) h(to) ™ +/t c2h(8)h(s) ™ ((a(s)w(|y(s)])

+0s) [ KOl -+ e(s) (o) + [ atryulla(r)hdr)ds

to to

< clmlh) h(t0) "+ [ ah(t)el) ¥+ alsu B as
+ /t c2h(1)(b(s) /t sk(r)'ZE:§|d7+c(s) / g(7)w ('Zg;’) 7)ds.

Set u(t) = |y(t)||h(t)|~!. Then, an application of Lemma 2.3 yields

ly(t)| < h(t)yW ! [W(c) + cz/ (a(s) + c(s) + b(s) /S k(T)dr

to to

+e(s) /8 q(T)dT)d8:|,

to

where ¢ = c1|yo| h(to)~*. Thus, any solution y(t) = y(t,to, o) of (1.2) is
bounded on [ty, 00). Hence, the proof is complete. ]

REMARK 2.5. Letting ¢(t) = 0 in Theorem 2.4, we obtain the same
result as that of Theorem 3.4 in [7].

THEOREM 2.6. Let a,b,u,w € C(RT), w(u) be nondecreasing in u
such that Lw(u) < w(%) for some v > 0. Suppose that (H1), (H2), and
g in (1.2) satisfies

(2.9 gt y®)] < a()w(ly®)]), [h(t, y(@), Ty(t))| < bE)w(|y@))),
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where a,b € Li(R1). Then, any solution y(t) = y(t,to,y0) of (1.2) is
bounded on [ty, 00) and it satisfies

WOl < OW W) +er [ 006)+ [ atryanyas]

to to

where W, W~ are the same functions as in Lemma 1.8, and

by = sup {t >ty : W(e) + 2 /t(b(s) + /s a(t)dr)ds € domW’l}.

to to

Proof. Let x(t) = x(t,to,yo) and y(t) = y(¢,to,y0) be solutions of
(1.1) and (1.2), respectively. By the same argument as in the proof in
Theorem 2.1, the solution z = 0 of (1.4) is hS. Applying Lemma 1.4, the
hS condition of z = 0 of (1.1), (2.3) and (2.9), we have

S

MMSqmmmmm*+[@mmmr%lamMMﬂwf
+b(s)u(ly(s))) ) ds

< cllne) hite) -+ [ eane) () ¥ + [y ar) s

Defining u(t) = |y(¢)||h(t)| 7}, then, by Lemma 1.9, we have

t s
[y(t)] < HOW ™ [W(e) + ez / (b(s) + / a(r)dr)ds|
to to
where ¢ = c1|yo| h(to)~*. Thus, any solution y(t) = y(t,tg,yo) of (1.2) is
bounded on [tg, 00). This completes the proof. O

REMARK 2.7. Letting b(¢) = 0 in Theorem 2.6, we obtain the similar
result as that of Theorem 3.5 in [11].

LEMMA 2.8. Let u, A1, A2, A3, A1, A5 € C(RT), w € C((0,00)) and
w(u) be nondecreasing in u, v < w(w). Suppose that for some ¢ > 0 and
0<to <t

u(t) < e+ / " (s)u(s)ds + / "o(s) / ) (a(rw(u(r))

(2.10) oo o o
+)\4(T)/ )\5(r)u(r)dr)d7'ds.

to

Then
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u(t) < W1 |:W(C) +/ (A1(s) + Aa(s) /S()\g(T)
(2.11) fo fo
—l—)\4(7')/t A5(r)dr)dT)ds|,

to <t < by, where W, W~ are the same functions as in Lemma 1.8,

and
S

by = sup {t > to W (c) + /t(/\l(s) + )\2(8)/ (As(7)

to to

+ Ay (1) As(r)dr)dT)ds € domW_l}.
to
Proof. Define a function z(t) by the right member of (2.10). Then,
we have z(tp) = ¢ and

S

Z(t) = M (t)u(t) + )\Q(t)/ (As(s)w(u(s)) + )\4(8)/ A5 (T)u(T)dT)ds

to to

< (A (t) + Ao (t) / t()\g(s) + Aa(s) / N (F)dr)ds)w((8), ¢ > to,

to to
since z(t) and w(u) are nondecreasing, u < w(u), and u(t) < z(t).
Therefore, by integrating on [to, t], the function z satisfies
(2.12)

t s T

2(t) §C—I-/ ()\1(8)+)\2(5)/ ()\3(T)+)\4(T)/ As(r)dr)dT)w(z(s)))ds.
to to to

It follows from Lemma 1.8 that (2.12) yields the estimate (2.11). O

THEOREM 2.9. Let a,b,c, k,u,w € C(RT), w(u) be nondecreasing in
u such that u < w(u) and 2w(u) < w(¥) for some v > 0. Suppose that
(H1), (H2), and g in (1.2) satisfies
t

(2.13) l9(t, y(8))] < a(t)w(|y(?)]) + b(t) t k(s)ly(s)|ds
and
(2.14) [h(t,y(1), Ty(t))| < c(t)|y(@)],

where a,b,c,k € L1(RT). Then, any solution y(t) = y(t,to,yo) of (1.2)
is bounded on [ty, 00) and it satisfies

t s T
O] < HOW ! [Wioh+er [ (elo)+ [ (@) +b(r) [ blrydryaryds],

to to to
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where W, W~ are the same functions as in Lemma 1.8, and

by = sup {t > to :W(e) + o /t(c(s) + /S(G(T)

to to

+b(7) / k(r)dr)dr)ds € domw—l}.
to
Proof. 1t is well known that the solution of (1.2) is represented by
the integral equation (2.3). By the same argument as in the proof in
Theorem 2.1, the solution z = 0 of (1.4) is hS. Using the nonlinear
variation of constants formula (2.3), Lemma 1.4, the hS condition of
x =0 of (1.1), (2.13), and (2.14), we have

s

)] < alln(®) hito) " + [ eantnts) ([ (aryullyo)

to to

+(r) [ KOy ldr)dr + e(s)u(s)])ds

to

t
< erlyolh() h(to) ™" + / cah(t) (e(s) 'igiﬁ

+ [ (atrul ’ZE:;H +r) [ ko) ’Zég‘ dr)dr ) ds.

Set u(t) = |y(t)||h(t)| . Then, by Lemma 2.8, we have

)] < BOW W) +er [ (els)+ [ (alr)+0(r) [ hirydrdr)s]

to to to

t

where ¢ = c1|yo| h(to)~!. From the above estimation, we obtain the
desired result. Thus, the theorem is proved. ]

REMARK 2.10. Letting ¢(¢) = 0 in Theorem 2.9, we obtain the similar
result as that of Theorem 3.7 in [7].
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