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BOUNDEDNESS IN PERTURBED NONLINEAR
FUNCTIONAL DIFFERENTIAL SYSTEMS

Sang Il Choi* and Yoon Hoe Goo**

Abstract. In this paper, we investigate bounds for solutions of
the perturbed nonlinear functional differential systems with a t∞-
similarity condition using the notion of h-stability.

1. Introduction and preliminaries

We consider the nonlinear nonautonomous differential system

x′(t) = f(t, x(t)), x(t0) = x0,(1.1)

where f ∈ C(R+ × Rn,Rn), R+ = [0,∞) and Rn is the Euclidean n-
space. We assume that the Jacobian matrix fx = ∂f/∂x exists and is
continuous on R+×Rn and f(t, 0) = 0. Also, we consider the perturbed
nonlinear functional differential systems of (1.1)

(1.2) y′ = f(t, y) +
∫ t

t0

g(s, y(s))ds + h(t, y(t), T y(t)), y(t0) = y0,

where g ∈ C(R+ × Rn,Rn), h ∈ C(R+ × Rn × Rn,Rn) , g(t, 0) = 0,
h(t, 0, 0) = 0, and T : C(R+,Rn) → C(R+,Rn) is a continuous operator.
For x ∈ Rn, let |x| = (

∑n
j=1 x2

j )
1/2. For an n × n matrix A, define the

norm |A| of A by |A| = sup|x|≤1 |Ax|.
Let x(t, t0, x0) denote the unique solution of (1.1) with x(t0, t0, x0) =

x0, existing on [t0,∞). Then, we can consider the associated variational
systems around the zero solution of (1.1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(1.3)
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and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(1.4)

The fundamental matrix Φ(t, t0, x0) of (1.4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (1.3).
We recall some notions of h-stability [15].

Definition 1.1. The system (1.1) (the zero solution x = 0 of (1.1))
is called an h-system if there exist a constant c ≥ 1, and a positive
continuous function h on R+ such that

|x(t)| ≤ c |x0|h(t) h(t0)−1

for t ≥ t0 ≥ 0 and |x0| small enough (here h(t)−1 = 1
h(t)).

Definition 1.2. The system (1.1) (the zero solution x = 0 of (1.1))
is called
(hS)h-stable if there exists δ > 0 such that (1.1) is an h-system for
|x0| ≤ δ and h is bounded.

The notion of h-stability (hS) was introduced by Pinto [15,16] with
the intention of obtaining results about stability for a weakly stable sys-
tem (at least, weaker than those given exponential asymptotic stability)
under some perturbations. He obtained a general variational h-stability
and some properties about asymptotic behavior of solutions of differen-
tial systems called h-systems. Choi, Ryu [3] and Choi, Koo, and Ryu [4]
investigated bounds of solutions for nonlinear perturbed systems. Also,
Goo [7,8,9] and Goo et al. [11] investigated boundedness of solutions for
nonlinear perturbed systems.

In this paper, we investigate bounds for solutions of the perturbed
nonlinear functional differential systems using the notion of t∞-similarity.

Let M denote the set of all n×n continuous matrices A(t) defined on
R+ and N be the subset of M consisting of those nonsingular matrices
S(t) that are of class C1 with the property that S(t) and S−1(t) are
bounded. The notion of t∞-similarity in M was introduced by Conti
[6].

Definition 1.3. A matrix A(t) ∈M is t∞-similar to a matrix B(t) ∈
M if there exists an absolutely integrable n × n matrix F (t) over R+,
i.e., ∫ ∞

0
|F (t)|dt < ∞
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such that

Ṡ(t) + S(t)B(t)−A(t)S(t) = F (t)(1.5)

for some S(t) ∈ N .

The notion of t∞-similarity is an equivalence relation in the set of
all n × n continuous matrices on R+, and it preserves some stability
concepts [6, 12].

We give some related properties that we need in the sequal.

Lemma 1.4. [16] The linear system

x′ = A(t)x, x(t0) = x0,(1.6)

where A(t) is an n × n continuous matrix, is an h-system (respectively
h-stable) if and only if there exist c ≥ 1 and a positive and continuous
(respectively bounded) function h defined on R+ such that

|φ(t, t0)| ≤ c h(t) h(t0)−1(1.7)

for t ≥ t0 ≥ 0, where φ(t, t0) is a fundamental matrix of (1.6).

We need Alekseev formula to compare between the solutions of (1.1)
and the solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0,(1.8)

where g ∈ C(R+×Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote
the solution of (1.8) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation
of constants formula due to Alekseev [1].

Lemma 1.5. If y0 ∈ Rn, then for all t such that x(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +
∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Theorem 1.6. [3] If the zero solution of (1.1) is hS, then the zero
solution of (1.3) is hS.

Theorem 1.7. [4] Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution
v = 0 of (1.3) is hS, then the solution z = 0 of (1.4) is hS.

Lemma 1.8. (Bihari − type inequality) Let u, λ ∈ C(R+), w ∈
C((0,∞)) and w(u) be nondecreasing in u. Suppose that, for some
c > 0,

u(t) ≤ c +
∫ t

t0

λ(s)w(u(s))ds, t ≥ t0 ≥ 0.
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Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ(s)ds
]
, t0 ≤ t < b1,

where W (u) =
∫ u
u0

ds
w(s) , W−1(u) is the inverse of W (u), and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

λ(s)ds ∈ domW−1
}

.

Lemma 1.9. [5] Let u, λ1, λ2, λ3 ∈ C(R+), w ∈ C((0,∞)) and w(u)
be nondecreasing in u. Suppose that for some c > 0,

u(t) ≤ c +
∫ t

t0

λ1(s)w(u(s))ds +
∫ t

t0

λ2(s)
( ∫ s

t0

λ3(τ)w(u(τ))dτ
)
ds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

λ3(τ))ds
]
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{

t ≥ t0 : W (c)+
∫ t

t0

(λ1(s)+λ2(s)
∫ s

t0

λ3(τ)dτ)ds ∈ domW−1
}

.

Lemma 1.10. [9] Let u, λ1, λ2, λ3, λ4 ∈ C(R+), w ∈ C((0,∞)) and
w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0 and
0 ≤ t0 ≤ t,

u(t) ≤ c +
∫ t

t0

λ1(s)u(s)ds +
∫ t

t0

λ2(s)w(u(s))ds +
∫ t

t0

λ3(s)
∫ s

t0

λ4(τ)u(τ)dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s) + λ3(s)
∫ s

t0

λ4(τ)dτ)ds
]
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{

t ≥ t0 : W (c)+
∫ t

t0

(λ1(s)+λ2(s)+λ3(s)
∫ s

t0

λ4(τ)dτ)ds ∈ domW−1
}

.

2. Main results

In this section, we investigate boundedness for solutions of the non-
linear perturbed differential systems via t∞-similarity.

To obtain the bounded result, the following assumptions are needed:
(H1) fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ

for some constant δ > 0.
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(H2) The solution x = 0 of (1.1) is hS with the increasing function h.

Theorem 2.1. Let a, b, c, q, u, w ∈ C(R+), w(u) be nondecreasing in
u such that u ≤ w(u) and 1

vw(u) ≤ w(u
v ) for some v > 0. Suppose that

(H1), (H2), and g in (1.2) satisfies

(2.1)

∫ t

t0

|g(s, y(s))|ds ≤ a(t)|y(t)|,

|h(t, y(t), T y(t))| ≤ b(t)w(|y(t)|) + c(t)|Ty(t)|,

and

(2.2) |Ty(t)| ≤
∫ t

t0

q(s)|y(s)|ds,

where a, b, c, q ∈ L1(R+). Then, any solution y(t) = y(t, t0, y0) of (1.2)
is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c)+c2

∫ t

t0

(a(s)+c(s)+b(s)
∫ s

t0

k(τ)dτ+c(s)
∫ s

t0

q(τ)dτ)ds
]
,

t0 ≤ t < b1, where W , W−1 are the same functions as in Lemma 1.8,
and

b1 = sup
{

t ≥ t0 : W (c) + c2

∫ t

t0

(a(s) + c(s) + b(s)
∫ s

t0

k(τ)dτ

+c(s)
∫ s

t0

q(τ)dτ)ds ∈ domW−1
}

.

Proof. Using the nonlinear variation of constants formula of Alekseev
[1], any solution y(t) = y(t, t0, y0) of (1.2) passing through (t0, y0) is
given by

y(t, t0, y0) =x(t, t0, y0)

+
∫ t

t0

Φ(t, s, y(s))
(∫ s

t0

g(τ, y(τ))dτ + h(s, y(s), T y(s))
)
ds.

(2.3)

By Theorem 1.6, since the solution x = 0 of (1.1) is hS, the solution
v = 0 of (1.3) is hS. Therefore, by Theorem 1.7, the solution z = 0 of
(1.4) is hS. In view of Lemma 1.4, the hS condition of x = 0 of (1.1),
(2.1), (2.2), and (2.3), we have
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|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
(∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|
)
ds

≤ c1|y0|h(t)h(t0)−1 +
∫ t

t0

c2h(t)h(s)−1
(
a(s)|y(s)|+ b(s)w(|y(s)|)

+c(s)
∫ s

t0

q(τ)|y(τ)|dτ
)
ds

≤ c1|y0|h(t)h(t0)−1 +
∫ t

t0

c2h(t)(a(s)
|y(s)|
h(s)

+b(s)w(
|y(s)|
h(s)

) + c(s)
∫ s

t0

q(τ)
|y(τ)|
h(τ)

dτ)ds.

Set u(t) = |y(t)||h(t)|−1. Then, an application of Lemma 1.10 yields

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + b(s) + c(s)
∫ s

t0

q(τ)dτ)ds
]

where c = c1|y0|h(t0)−1. Hence, any solution y(t) = y(t, t0, y0) of (1.2)
is bounded on [t0,∞), and so the proof is complete.

Remark 2.2. Letting w(u) = u and b(t) = c(t) = 0 in Theorem 2.1,
we obtain the same result as that of Theorem 3.3 in [10].

Lemma 2.3. Let u, λ1, λ2, λ3, λ4, λ5, λ6 ∈ C(R+), w ∈ C((0,∞)) and
w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0,
(2.4)

u(t) ≤ c +
∫ t

t0

λ1(s)u(s)ds +
∫ t

t0

λ2(s)w(u(s))ds +
∫ t

t0

λ3(s)
∫ s

t0

λ4(τ)u(τ)dτds

+
∫ t

t0

λ5(s)
∫ s

t0

λ6(τ)w(u(τ))dτds, 0 ≤ t0 ≤ t.

Then

(2.5)
u(t) ≤ W−1

[
W (c) +

∫ t

t0

(λ1(s) + λ2(s) + λ3(s)
∫ s

t0

λ4(τ)dτ

+ λ5(s)
∫ s

t0

λ6(τ)dτ)ds
]
,

t0 ≤ t < b1, where W , W−1 are the same functions as in Lemma 1.8,
and
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b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(λ1(s) + λ2(s) + λ3(s)
∫ s

t0

λ4(τ)dτ

+λ5(s)
∫ s

t0

λ6(τ)dτ)ds ∈ domW−1
}

.

Proof. Define a function z(t) by the right member of (2.4). Then, we
have z(t0) = c and

z′(t) = λ1(t)u(t) + λ2(t)w(u(t)) + λ3(t)
∫ t

t0

λ4(s)u(s)ds

+ λ5(t)
∫ t

t0

λ6(s)w(u(s))ds

≤ (λ1(t) + λ2(t) + λ3(t)
∫ t

t0

λ4(s)dsλ5(t)
∫ t

t0

λ6(s)ds)w(z(t)), t ≥ t0,

since z(t) and w(u) are nondecreasing, u ≤ w(u), and u(t) ≤ z(t).
Therefore, by integrating on [t0, t], the function z satisfies

z(t) ≤ c +
∫ t

t0

(λ1(s) + λ2(s) + λ3(s)
∫ s

t0

λ4(τ)dτ)w(z(s))

+ λ5(s)
∫ s

t0

λ6(τ)dτ)w(z(s)))ds.

(2.6)

It follows from Lemma 1.8 that (2.6) yields the estimate (2.5).

Theorem 2.4. Let a, b, c, k, q, u, w ∈ C(R+), w(u) be nondecreasing
in u such that u ≤ w(u) and 1

vw(u) ≤ w(u
v ) for some v > 0. Suppose

that (H1), (H2), and g in (1.2) satisfies
(2.7)∫ t

t0

|g(s, y(s))|ds ≤ a(t)w(|y(t))|+ b(t)
∫ t

t0

k(s)|y(s)|ds, t ≥ t0 ≥ 0

and
(2.8)

|h(t, y(t), T y(t))| ≤ c(t)(|y(t)|+ |Ty(t)|), |Ty(t)| ≤
∫ t

t0

q(s)w(|y(s)|)ds,

t ≥ t0 ≥ 0, where a, b, c, k, q ∈ L1(R+). Then, any solution y(t) =
y(t, t0, y0) of (1.2) is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c)+c2

∫ t

t0

(a(s)+c(s)+b(s)
∫ s

t0

k(τ)dτ+c(s)
∫ s

t0

q(τ)dτ)ds
]
,



224 Sang Il Choi and Yoon Hoe Goo

t0 ≤ t < b1, where W , W−1 are the same functions as in Lemma 1.8,
and

b1 = sup
{

t ≥ t0 : W (c) + c2

∫ t

t0

(a(s) + c(s) + b(s)
∫ s

t0

k(τ)dτ

+c(s)
∫ s

t0

q(τ)dτ)ds ∈ domW−1
}

.

Proof. It is known that the solution of (1.2) is represented by the in-
tegral equation (2.3). By the same argument as in the proof in Theorem
2.1, the solution z = 0 of (1.4) is hS. By Lemmma 1.4, the hS condition
of x = 0 of (1.1), (2.3), (2.7), and (2.8), we have

|y(t)| ≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)h(s)−1((a(s)w(|y(s)|)

+b(s)
∫ s

t0

k(τ)|y(τ)|dτ + c(s)(|y(s)|+
∫ s

t0

q(τ)w(|y(τ)|)dτ)ds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)(c(s)
|y(s)|
h(s)

+ a(s)w(
|y(s)|
h(s)

))ds

+
∫ t

t0

c2h(t)(b(s)
∫ s

t0

k(τ)
|y(τ)|
h(τ)

dτ + c(s)
∫ s

t0

q(τ)w(
|y(τ)|
h(τ)

)dτ)ds.

Set u(t) = |y(t)||h(t)|−1. Then, an application of Lemma 2.3 yields

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + c(s) + b(s)
∫ s

t0

k(τ)dτ

+c(s)
∫ s

t0

q(τ)dτ)ds
]
,

where c = c1|y0|h(t0)−1. Thus, any solution y(t) = y(t, t0, y0) of (1.2) is
bounded on [t0,∞). Hence, the proof is complete.

Remark 2.5. Letting c(t) = 0 in Theorem 2.4, we obtain the same
result as that of Theorem 3.4 in [7].

Theorem 2.6. Let a, b, u, w ∈ C(R+), w(u) be nondecreasing in u
such that 1

vw(u) ≤ w(u
v ) for some v > 0. Suppose that (H1), (H2), and

g in (1.2) satisfies

(2.9) |g(t, y(t))| ≤ a(t)w(|y(t)|), |h(t, y(t), T y(t))| ≤ b(t)w(|y(t)|),
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where a, b ∈ L1(R+). Then, any solution y(t) = y(t, t0, y0) of (1.2) is
bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(b(s) +
∫ s

t0

a(τ)dτ)ds
]
,

where W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{

t ≥ t0 : W (c) + c2

∫ t

t0

(b(s) +
∫ s

t0

a(τ)dτ)ds ∈ domW−1
}

.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(1.1) and (1.2), respectively. By the same argument as in the proof in
Theorem 2.1, the solution z = 0 of (1.4) is hS. Applying Lemma 1.4, the
hS condition of x = 0 of (1.1), (2.3) and (2.9), we have

|y(t)| ≤ c1|y0|h(t)h(t0)−1 +
∫ t

t0

c2h(t)h(s)−1
( ∫ s

t0

a(τ)w(|y(τ)|)dτ

+ b(s)w(|y(s)|)
)
ds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)
(
b(s)w(

|y(s)|
h(s)

) +
∫ s

t0

a(τ)w(
|y(τ)|
h(τ)

)dτ
)
ds.

Defining u(t) = |y(t)||h(t)|−1, then, by Lemma 1.9, we have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(b(s) +
∫ s

t0

a(τ)dτ)ds
]
,

where c = c1|y0|h(t0)−1. Thus, any solution y(t) = y(t, t0, y0) of (1.2) is
bounded on [t0,∞). This completes the proof.

Remark 2.7. Letting b(t) = 0 in Theorem 2.6, we obtain the similar
result as that of Theorem 3.5 in [11].

Lemma 2.8. Let u, λ1, λ2, λ3, λ4, λ5 ∈ C(R+), w ∈ C((0,∞)) and
w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0 and
0 ≤ t0 ≤ t,

(2.10)
u(t) ≤ c +

∫ t

t0

λ1(s)u(s)ds +
∫ t

t0

λ2(s)
∫ s

t0

(
λ3(τ)w(u(τ))

+ λ4(τ)
∫ τ

t0

λ5(r)u(r)dr
)
dτds.

Then
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u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

(λ3(τ)

+ λ4(τ)
∫ τ

t0

λ5(r)dr)dτ)ds
]
,

(2.11)

t0 ≤ t < b1, where W , W−1 are the same functions as in Lemma 1.8,
and

b1 = sup
{

t ≥ t0 :W (c) +
∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

(λ3(τ)

+ λ4(τ)
∫ τ

t0

λ5(r)dr)dτ)ds ∈ domW−1
}

.

Proof. Define a function z(t) by the right member of (2.10). Then,
we have z(t0) = c and

z′(t) = λ1(t)u(t) + λ2(t)
∫ t

t0

(λ3(s)w(u(s)) + λ4(s)
∫ s

t0

λ5(τ)u(τ)dτ)ds

≤ (λ1(t) + λ2(t)
∫ t

t0

(λ3(s) + λ4(s)
∫ s

t0

λ5(τ)dτ)ds)w(z(t)), t ≥ t0,

since z(t) and w(u) are nondecreasing, u ≤ w(u), and u(t) ≤ z(t).
Therefore, by integrating on [t0, t], the function z satisfies
(2.12)

z(t) ≤ c+
∫ t

t0

(λ1(s)+λ2(s)
∫ s

t0

(λ3(τ)+λ4(τ)
∫ τ

t0

λ5(r)dr)dτ)w(z(s)))ds.

It follows from Lemma 1.8 that (2.12) yields the estimate (2.11).

Theorem 2.9. Let a, b, c, k, u, w ∈ C(R+), w(u) be nondecreasing in
u such that u ≤ w(u) and 1

vw(u) ≤ w(u
v ) for some v > 0. Suppose that

(H1), (H2), and g in (1.2) satisfies

(2.13) |g(t, y(t))| ≤ a(t)w(|y(t)|) + b(t)
∫ t

t0

k(s)|y(s)|ds

and

(2.14) |h(t, y(t), T y(t))| ≤ c(t)|y(t)|,
where a, b, c, k ∈ L1(R+). Then, any solution y(t) = y(t, t0, y0) of (1.2)
is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c)+c2

∫ t

t0

(c(s)+
∫ s

t0

(a(τ)+b(τ)
∫ τ

t0

k(r)dr)dτ)ds
]
,



Boundedness in perturbed functional differential systems 227

where W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{

t ≥ t0 :W (c) + c2

∫ t

t0

(c(s) +
∫ s

t0

(a(τ)

+ b(τ)
∫ τ

t0

k(r)dr)dτ)ds ∈ domW−1
}

.

Proof. It is well known that the solution of (1.2) is represented by
the integral equation (2.3). By the same argument as in the proof in
Theorem 2.1, the solution z = 0 of (1.4) is hS. Using the nonlinear
variation of constants formula (2.3), Lemma 1.4, the hS condition of
x = 0 of (1.1), (2.13), and (2.14), we have

|y(t)| ≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)h(s)−1
(∫ s

t0

(a(τ)w(|y(τ)|)

+b(τ)
∫ τ

t0

k(r)|y(r)|dr)dτ + c(s)|y(s)|
)
ds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)
(
c(s)

|y(s)|
h(s)

+
∫ s

t0

(a(τ)w(
|y(τ)|
h(τ)

) + b(τ)
∫ τ

t0

k(r)
|y(r)|
h(r)

dr)dτ
)
ds.

Set u(t) = |y(t)||h(t)|−1. Then, by Lemma 2.8, we have

|y(t)| ≤ h(t)W−1
[
W (c)+c2

∫ t

t0

(c(s)+
∫ s

t0

(a(τ)+b(τ)
∫ τ

t0

k(r)dr)dτ)ds
]
,

where c = c1|y0|h(t0)−1. From the above estimation, we obtain the
desired result. Thus, the theorem is proved.

Remark 2.10. Letting c(t) = 0 in Theorem 2.9, we obtain the similar
result as that of Theorem 3.7 in [7].
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