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Abstract. In this paper, we consider the finite form of the continued

fraction found in the unorganized material, Entry 9 [2], and give the

sum of n terms. We give the n
th convergent series in two ways-one

by simple expansion and the other by using partition theory.

1. Introduction

In the second notebook of Ramanujan, there are organized mate-

rial in the 21 chapters. Chapter 12 [3] is devoted entirely to continued

fractions. Some continued fractions are also found in Chapter 16 [1].

After these 21 chapters there are 100 pages containing material which

is unorganized and there are only 33 pages in the third notebook, con-

taining material, which is also unorganized. Thus there are 133 pages,

the contents of which are unorganized. Andrews, Berndt, Jacobson and

Lamphere [2] have proved all the continued fractions found in these 133
pages.

In this paper, we consider the finite form of the continued fraction

found in the unorganized material, Entry 9 [2],
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and give the sum of n terms. We give the nth convergent series in

two ways-one by simple expansion and the other by using partition

theory. We choose this continued fraction as Andrews et. al., say,

the most interesting results are Entry 7 and Entry 9 involving modest

generalizations of the Rogers-Ramanujan continued fraction. Andrews

et. al. did not consider its finite form. They proved the result of

Ramanujan by first proving two three term relations. We give a simple

proof.

We shall use the following usual basic hypergeometric notations: For

|q| < 1,

(a)0 = 1,

(a)n = (1 − a)(1 − aq) · · · (1 − aqn−1) for 1 ≤ n < ∞,

(a)∞ = Π∞
r=0(1 − aqr),

[nr ] = (q)n

(q)r(q)n−r

,

∑
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.

2. Expression for Pn and Qn

Theorem 2.1. For n = 2m, the nth term = xq3m

1+q2m
and for n =

2m − 1, the nth term = −xqm

1+q2m−1 ,
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Applying Abel’s Lemma, we get
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Therefore,

Pn(x) =
∑

r+s+t=n+1

(−1)rq
r
2+r

2 xr(−1)tqt[r+s
r ][r−1+t

r−1 ]

=
n+1∑

r=0

(−1)rq
r
2+r

2 xr

n+1−r∑

s=0

(−q)n+1−r−s[r+s
r ][n−s

r−1 ],

which proves (2).

Similarly,

Q(x, z) =
∞∑

r=0

(−1)rq
r
2+3r

2 (xz)r

(z)r+1(−zq)r

=
∞∑

r=0

(−1)rq
r
2+3r

2 xrzr

∞∑

s=0

zs[r+s
r ]

∞∑

t=0

(−1)tqtzt[r−1+t
r−1 ].

Therefore,

Qn(x) =
∑

r+s+t=n

(−1)rq
r
2+3r

2 xr(−1)tqt[r+s
r ][r−1+t

r−1 ]

=
n∑

r=0

(−1)rq
r
2+3r

2 xr

n−r∑

s=0

(−q)n−r−s[r+s
r ][n−s−1

r−1 ],

which proves (3).

Now we shall now use partition theory to give Pn and Qn.

We have
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where
∑

k

p(k, r, n)xk =
(x)r+n

(x)r(x)n

and p(k, r, n) is the number of partition of k into at most r parts not

exceeding n.
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