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PARAMETRIC APPROXIMATION OF MONOTONE

DECREASING SEQUENCE

Hyang J. Rhee*

Abstract. The aim of this work is to generalize parametric approx-

imation in order to apply them to an one-sided L1-approximation.

A natural question now arises : when is the parameter map

P : f → PK(f)(f)

continuous on C1(X) ?

We find some results with a monotone decreasing sequence about

above question.

1. Introduction

Let X be a normed linear space, (V, d) a metric space. For each

p ∈ V , let K(p) be a closed convex subset of X. For each x ∈ X,

denote by

PK(p)(x) : {y ∈ K(p) | ||x− y|| = d(x, K(p))},

where d(x, K(p)) = inf{||x− y|| | y ∈ K(p)}.

Generally, the metric projection depends on x and the approximating

set is fixed. In parametric approximation, the metric projection P

depends on x, moreover the approximating set K(p) depends on p.

In this paper, we will consider on a space C1(X), which is a set of

all real valued continuous functions on a compact set X with L1-norm.
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Then the space C1(X) is not a Banach space but is a dense linear

subspace of L1(X).

Let S be a finite dimensional subspace of C1(X) and

S(f) = {s ∈ S | s ≤ f}

for each f ∈ C1(X). Then the set S(f) is closed and convex.

Define a map r : C(X) → R is a continuous real-value function on

C1(X) such that for any f ∈ C1(X)

r(f) ≥ d(f, S(f)) + ||f ||

where d(f, S(f)) = infs∈S(f) ||f − s||.

For each f ∈ C1(X), define

K(f) = {s ∈ S(f) | ||s|| ≤ r(f)}

= S(f) ∩ B(0, r(f)).

2. Parametric approximation

The Hausdorff metric between any two closed and bounded set A an

B is defined as

H(A, B) = max{h(A, B), h(B, A)},

where h(A, B) = supa∈A d(a, B).

It is easy to see that the Hausdorff metric defines a metric on the

collection of all nonempty, closed and bounded sets.

Lemma 2.1. For each f ∈ C1(X)

d(f, S(f)) = d(f, K(f))

In particular,

PK(f)(f) = PS(f)(f).

Proof. Let z ∈ PS(f)(f). Then z ∈ S(f) and ||z|| ≤ r(f). So z ∈

K(f). Hence d(f, S(f)) = d(f, K(f)).
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If z ∈ PS(f)(f), then z ∈ K(f) and ||f − z|| = d(f, K(f)). Thus

z ∈ PK(f)(f). By the converse proof is similar, PK(f)(f) = PS(f)(f).

Lemma 2.2. For each f, g ∈ C1(X)

|d(f, K(f)) − d(g, K(g))| = |d(f, S(f))− d(g, S(g))|

≤ ||f − g|| + H(K(f), K(g)).

Proof. Given ε > 0 there exists z ∈ K(f) such that

d(f, K(f)) +
ε

2
≥ ||f − z||.

Now there exists w ∈ K(g) such that d(z, K(g)) + ε
2
≥ ||z −w||.

d(g, K(g)) ≤ ||g − w|| ≤ ||g − f || + ||f − z|| + ||z − w||

≤ ||f − g|| + d(f, K(f)) + d(z, K(g)) + ε

≤ ||f − g|| + d(f, K(f)) + h(K(f), K(g)) + ε

≤ ||f − g|| + d(f, K(f)) + H(K(f), K(g)) + ε.

Since ε is arbitrary, we have

d(g, K(g)) − d(f, K(f)) ≤ ||f − g|| + H(K(f), K(g)).

Interchanging the roles of f, g we obtain

|d(g, K(g)) − d(f, K(f))| ≤ ||f − g|| + H(K(f), K(g)),

as desired.
The following proposition will be very useful in the main result.

Proposition 2.3. Suppose that {fn} is a monotone decreasing se-

quence in C1(X) which converges to f0 ∈ C1(X). For any sequence

{gn} with

gn ∈ K(fn) = {s ∈ S | s ≤ fn, ||s|| ≤ r(fn)}

has a subsequence which converges to some element g0 ∈ K(f0).
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Proof. Let {fn} be a monotone decreasing sequence in C1(X) which

converges to f0 ∈ C1(X). For each gn ∈ K(fn)

||gn|| ≤ r(fn) and r(fn) → r(f0)

there exists a M > 0 such that ||gn|| ≤ M for all n. Now let {hn} be a

subsequence of {gn} which converges to some element g0 ∈ S.

Suppose that ||g0|| > r(f0) and let ||g0|| − r(f0) = ε. Since ε is

positive there exists N0 ∈ N such that

|r(fn) − r(f0)| < ε/2 for any n > N0.

Since ||hn|| ≤ r(fn)

||hn|| − ||g0|| > ε/2 for any n > N0.

It is contradicts.
Since hn ≤ fn for all n,

f0 − g0 = lim(fn − hn) ≥ 0.

At all, g0 ∈ K(f0).

From Lemma 2.2, we can immediately deduce the following result.

Corollary 2.4. For each f, g ∈ C1(X) with K(f) = K(g) then

|d(f, S(f)) − d(g, S(g))| ≤ ||f − g||.

3. Main result

In this section, using Proposition 2.3 and the two inequalities, we

can immediately establish the following continuity property of the pa-

rameter map with respect to a monotone decreasing sequence.

Theorem 3.1. Suppose that {fn} is a monotone decreasing sequence

in C1(X) which converges to a positive function f0 ∈ C1(X). Then

H(K(fn), K(f0)) → 0 where the set valued map

K : f → K(f) = {g ∈ S(f) | ||g|| ≤ r(f)}

= S(f) ∩ B(0, r(f))
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Proof. Let {fn} be a monotone decreasing sequence in C1(X) which

converges to f0 ∈ C1(X). We have to show that

max{supu∈K(fn)d(u, K(f0)), supv∈K(f0)d(v, K(fn))} → 0.

If supu∈K(fn)d(u, K(f0)) does not converges to 0, then we may assume

that given ε > 0 there exists N0 ∈ N, un ∈ K(fn)

d(un, K(f0)) ≥ ε for each n ≥ N0.

Since {un} is a sequence in S with un ∈ K(fn), there exists a convergent

subsequence {vn} with vn → v0 ∈ K(f0). Thus

0 < ε ≤ d(vn, K(f0)) ≤ ||vn − v0|| → 0

for each n ≥ N0, which is contradicts. Thus supu∈K(fn)d(u, K(f0)) → 0.

Secondly, suppose that supv∈K(f0)d(v, K(fn)) does not converges to

0. For any ε > 0 there exist N ′ ∈ N and vn ∈ K(f0)∩K(fn)
c such that

d(vn, K(fn)) ≥ ε for each n ≥ N ′.

Since K(f0) is compact, there exists a subsequence {un} of {vn} with

un → u0 ∈ K(f0). If u0 = 0 then

0 < ε ≤ d(un, K(fn)) ≤ ||un|| → ||u0|| = 0

for each n ≥ N ′. It is a contradiction.

Eventually, r(f0) − r(fn) ≤ ||u0||, define

u∗

n =
(r(fn) − r(f0) + ||u0||)un

||un||
.

Then u∗

n ∈ K(fn) and u∗

n → un → u0. But

0 < ε ≤ d(un, K(fn)) ≤ ||un − u∗

n||

≤ ||un − u0||+ ||u0 − u∗

n|| → 0

for each n ≥ N ′, which is absurd. Hence

max{supu∈K(fn)d(u, K(f0)), supv∈K(f0)d(v, K(fn))} → 0,
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as desired.

Theorem 3.2 ( [5]). Suppose that K(f) is an approximatively com-

pact and convex subset of C1(X). If the map f → K(f) is Hausdorff

continuous at f0, then the parameter map

P : f → PK(f)(f)

is upper semicontinuous at f0.

Combining Theorems 3.5. and 3.6, we recover the following result.

Corollary 3.3. For each f0 ∈ C1(X) the parameter map

P : f → PK(f)(f)

is upper semicontinuous at f0 with respect to monotone decreasing

sequence {fn} which converges to f0. That is, for any open set O with

PK(f0)(f0) ⊂ O there exists N∗ ∈ N such that

PK(fn)(fn) ⊂ O for each n ≥ N∗.
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