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BOUNDEDNESS IN FUNCTIONAL PERTURBED
DIFFERENTIAL SYSTEMS

Doncg MAN IM* AND YOON HOE Goo**

ABSTRACT. This paper shows that the solutions to the perturbed
differential system

v =S+ | " g(s,y())ds + h(t, y(8), Ty (1))

have bounded property. To show this property, we impose condi-
tions on the perturbed part ftto g(s,y(s))ds, h(t,y(t), Ty(t)), and on
the fundamental matrix of the unperturbed system y' = f(¢,y).

1. Introduction and preliminaries

We consider the nonlinear differential system

(L.1) 2(t) = f(t, (1), w(to) = o,

where f € C(RT x R",R"), Rt = [0,00) and R" is the Euclidean n-
space. We assume that the Jacobian matrix f, = 0f/0x exists and is
continuous on R™ x R™ and f(¢,0) = 0. Also, we consider functional
perturbed differential system of (1.1)

t
(12) o = Ft)+ [ glsy(s)ds + hit,u(®). Ty(o), vlto) = .
to
where g € C(R* x R",R"), h € C(R* x R" x R*,R") , g(¢,0) = 0,
h(t,0,0) =0, and T": C(RT,R™) — C(R*,R") is a continuous operator.
For z € R, let [z = (3_7_, x?)l/Z. For an n x n matrix A, define
the norm |A| of A by |A| = supj,<; |Az|.
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Let x(t,tg, o) denote the unique solution of (1.1) with x(to, tg, z¢) =
xg, existing on [tg,00). Then we can consider the associated variational
systems around the zero solution of (1.1) and around z(t), respectively,

(1.3) V' (t) = fo(t,0)v(t), v(to) = vo
and
(1.4) 2(t) = fo(t,z(t, to, m0))2(t), 2(to) = 20.

The fundamental matrix ®(t, g, zo) of (1.4) is given by

0
(I)(tv tO? xO) = Txow(tv th xO)a

and ®(t,10,0) is the fundamental matrix of (1.3).
We recall some notions of h-stability [15].

DEFINITION 1.1. The system (1.1) (the zero solution x = 0 of (1.1))
is called an h-system if there exist a constant ¢ > 1, and a positive
continuous function h on R™ such that

[2(t)] < ¢lzo| A(t) hto) ™

for t > to > 0 and |zo| small enough (here h(t)~! = ﬁ)

DEFINITION 1.2. The system (1.1) (the zero solution z = 0 of (1.1))
is called
(hS)h-stable if there exists 6 > 0 such that (1.1) is an h-system for
|xg| < 0 and h is bounded.

Pinto[14,15] introduced the notion of h-stability (hS) which is the in-
tention of obtaining results about stability for a weakly stable system (at
least, weaker than those given exponential asymptotic stability) under
some perturbations. That is, Pinto extended the study of exponential
asymptotic stability to a variety of reasonable systems called h-systems.
Choi, Ryu [5] and Choi, Koo, and Ryu [6] investigated bounds of so-
lutions for nonlinear perturbed systems. Also, Goo [8,9,10] and Goo
et al. [3] investigated boundedness of solutions for nonlinear perturbed
systems.

Let M denote the set of all n x n continuous matrices A(t) defined on
R* and A be the subset of M consisting of those nonsingular matrices
S(t) that are of class C! with the property that S(t) and S~1(t) are
bounded. The notion of t-similarity in M was introduced by Conti

7).
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DEFINITION 1.3. A matrix A(t) € M is to-similar to a matrix B(t) €
M if there exists an n x n matrix F(t) absolutely integrable over R,
ie.,

/OOO |F(t)|dt < oo
such that
(1.5) S(t) 4+ S(t)B(t) — A(t)S(t) = F(t)
for some S(t) € V.

The notion of ty-similarity is an equivalence relation in the set of
all n x n continuous matrices on R*, and it preserves some stability
concepts [7, 12].

The aim of this paper is to obtain some results on boundedness of
the nonlinear functional differential systems under suitable conditions
on perturbed term using the notion of to.-similarity.

We give some related properties that we need in the sequal.

LEMMA 1.4. [15] The linear system
(1.6) ¥ = A(t)z, z(ty) = o,

where A(t) is an n X n continuous matrix, is an h-system (respectively
h-stable) if and only if there exist ¢ > 1 and a positive and continuous
(respectively bounded) function h defined on R* such that

(1.7) |6(t, to)| < ch(t) h(to) ™!
for t > to > 0, where ¢(t,to) is a fundamental matrix of (1.6).

We need Alekseev formula to compare between the solutions of (1.1)
and the solutions of perturbed nonlinear system

(1.8) y' = f(ty) +9(t,y), y(to) = yo,

where g € C(R*T x R, R") and g(t,0) = 0. Let y(t) = y(t, to, yo) denote

the solution of (1.8) passing through the point (g, o) in RT x R™.
The following is a generalization to nonlinear system of the variation

of constants formula due to Alekseev [1].

LEMMA 1.5. [2] Let « and y be a solution of (1.1) and (1.8), re-
spectively. If yo € R™, then for all t > ty such that z(t,to,y9) € R,
y(t7t07y0) € R",

t
y(t, to,yo) = x(t, 0, yo) +/ ®(t,5,y(s)) g(s,y(s)) ds.

to



502 Dong Man Im and Yoon Hoe Goo

THEOREM 1.6. [5] If the zero solution of (1.1) is hS, then the zero
solution of (1.3) is hS.

THEOREM 1.7. [6] Suppose that f;(t,0) is too-similar to f(t,z(t,to, z0))
for t >ty > 0 and |zg| < & for some constant 6 > 0. If the solution
v =0 of (1.3) is hS, then the solution z = 0 of (1.4) is hS.

LEMMA 1.8. (Bihari — type inequality) Let u,A\ € C(R"), w €
C((0,00)) and w(u) be nondecreasing in u. Suppose that, for some
c >0,

t
u(t) < c+/ A(s)w(u(s))ds, t > tg > 0.
to
Then .
u(t) < w1 [W(c) +/ )\(s)ds},
to
where top <t < by, W(u) = f;‘o %, W=L(u) is the inverse of W (u),
and

t
by = sup {t >ty :Wi(e)+ | A(s)ds € domW_l}.

to

LEMMA 1.9. [3] Let u, A1, A2, A3, A\g, A5, Ag € C(R+), w € C((0,00))
and w(u) be nondecreasing in u, v < w(u). Suppose that for some ¢ > 0
and 0<ty<t

u(t) §c+/ Al(s)u(s)ds—i-/ A2 (s)w(u(s))ds

to to

+ /t Na(s) [ Ma(r)u(r)drds + /t Na(s) [ Ae(r)w(u(r))drds.

to to

Then
u(t) < Wt [W(c) + /t t(/\l(s) + Xa(s) 4+ As(s) /t ) M (7)dT
+As5(s) /ts AG(T)dT)dS},

where tg < t < by, W, W~ are the same functions as in Lemma 1.8,
and

by = sup {t >to: W(e) + /t()q(S) + A2(s) + A3(s) ) A(T)dT

to to

s (s) / " Ne(r)dr)ds € domW’l}.

to
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For the proof we need the following corollary from Lemma 1.9.

COROLLARY 1.10. Let u, A1, A2, A3, \y € C(RT), w € C((0,00)) and
w(u) be nondecreasing in u, u < w(u). Suppose that for some ¢ > 0 and
0<to<t,

u(t) §c+/ Al(s)u(s)ds—i-/ A2 (s)w(u(s))ds

to to

N /t "(s) /t " a(r)u(r)drds.
Then O 0

u(t) < wt [W(c) + /t()\l(s) + A2(s) + As(s) /S A(T)dT)ds|,

to to

where tg < t < by, W, W~ are the same functions as in Lemma 1.8,
and

by = sup {t >ty W(e) + /t()\l(s) + Aa2(s)

to

+As(s) / CNa(r)dr)ds € domw—l}.

to

LEMMA 1.11. [4] Let u, A1, A2, A3, Aa, A5, Ag, A7 € C(RT), w € C((0,00)),
and w(u) be nondecreasing in u, v < w(u). Suppose that for some ¢ > 0
and 0 <ty <'t,

wy et [ nuis+ [ o) [Ostrutu)

to to to

() /t Ns(r)w(u(r))dr)drds + /tt No(s) /t Ne(r)u(r)drds.

Then

u(t) < W W) + [ (als) + Aals) Jis (a(r) + Malr) f As(r)dr)dr
FAo(s) fip Ma(r)dr)ds)],

where tg < t < by, W, W~ are the same functions as in Lemma 1.8,
and

by = sup {t >t )+ ft (A1(s) + Ao )fts (A3(7) 4+ (1) ftz A5 (r)dr)dT

FA6(5) fi2 Ar(r)dr)ds € domW ! |
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2. Main results

In this section, we investigate boundedness for solutions of the func-
tional perturbed differential systems via too-similarity.
We need the following lemma to prove Theorem 2.2.

LEMMA 2.1. Let u, A1, A2, A3, Mg, As, Ag, A7 € C(R+), w € C((O, OO))
and w(u) be nondecreasing in u, u < w(u). Suppose that, for some ¢ > 0
and t > ty, we have

(2.1)
u(t) < c+ / () w(u(s))ds + / t xa(s)( / " Oa(r)ulr)

+ Ay (1) /tT As(s)w(u(r))dr)dr + Ag(s) /ts )\7(T)u(7-)d7-> ds.
Then
(2.2)

u(t) < W [w(e) + / t[)\l(s)—i-)\g(s)( / s (r) + Aa(7) / " As(r)dr)dr

to to to

s

Fag(s) / ’ Me(r)dr)lds]. ¢ > o,

to

Proof. Define a function v(t) by the right member of (2.1). Then, we
have v(tg) = ¢ and

V() = M ()w(u(t)) + )\Q(t)</ (As(s)u(s)

to

+uls) / s(Dw(u(r)dr)ds + As(t) / e (s)u(s)ds)

to to

< [u + 20 / O(s) + Ma(s) / " s(r)dr)ds

to to
t
+a(t) / Me(s)ds) [w(v(t)).
to
t > tp, since v(t) is nondecreasing, v < w(u), and u(t) < v(t). Now, by
integrating the above inequality on [to, ] and v(tg) = ¢, we have

o o() < e+ /: (Ma(s) + ha(s) /tOS(A3(7)+A4(T) /t Ns(r)dr)dr

+26(s) / ) e ()i (=) ds.

to
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Thus, (2.3) yields the estimate (2.2). O

To obtain the bounded result, the following assumptions are needed:

(H1) f4(t,0)is too-similar to fu (¢, z(t, to, o)) for t > to > 0 and |zo| < 9
for some constant § > 0.

(H2) The solution x = 0 of (1.1) is hS with the increasing function h.

(H3) w(u) be nondecreasing in u such that v < w(u) and Lw(u) < w(¥)
for some v > 0.

THEOREM 2.2. Let a,b,c,k,q,u,w € C(R"). Suppose that (HI),
(H2), (H3), and g in (1.2) satisfies

(2.4) lg(t,y(1)] < a(t)]y(@)] + b(t)/ k(s)w(ly(s)[)ds

and
(2.5)
|h(t,y(t), Ty())| < c()(w(ly(@)]) + [Ty@)]), [Ty®)] < /t a(s)ly(s)lds,

where t >t > 0, [ a(s)ds < oo, [ b(s)ds < oo, [ c(s)ds < oo,
[ k(s)ds < oo, and [;°q(s)ds < oo. Then, any solution y(t) =
y(t, to,yo) of (1.2) is bounded on on [ty, c0) and it satisfies

o) < AW W)+ [ o)+ [ (@t

to to

+b(7) / " k(r)dr)dr + cfs) /

to to

S

a(r)drlds|.
where W, W1 are the same functions as in Lemma 1.8, and

b= sup {£ >ty W(e) + 3 / e(s) + / (a(7) + b(r) / " k(r)dr)dr

to to to

+c(s)/ q(r)dr)ds € domW_l}.
to

Proof. Let x(t) = x(t,to,yo) and y(t) = y(t,t0,y0) be solutions of
(1.1) and (1.2), respectively. By Theorem 1.6, since the solution = 0
of (1.1) is hS, the solution v = 0 of (1.3) is hS. Therefore, from (H1), by
Theorem 1.7, the solution z = 0 of (1.4) is hS. Applying the nonlinear
variation of constants formula , the hS condition of z = 0 of (1.1),
together with (2.4) and (2.5), we have
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ly(t)]

<lz@)+ [ 1 s,y()I( ] lg(r,y(7))ldT + [h(s,y(s), Ty(s))|)ds

to to

< alwln®h(t0) " + [ eannts) ([ (ar)ly(o)

+r) [ k()i + cls)wlue)) + [ aly(ldr))ds.
By the assumptions (H2) and (H3), we obtain

(o) < exlul(®) )+ [ eante) (e 22)

to

° ly(7)] 7 ly(r)
+/t0 (a(T)W + b(T) /to k(r)w( >

+ ¢(s) /t: q(7) |ZE:;| dT) ds.

Set u(t) = |y(t)||h(t)| . Then, by Lemma 2.1, we have

t s T

] < BOW W) + e [ o)+ [ (ot +r) [ Kdnar

to to to
S
+e(s) [ aryarids),
to
where ¢ = c1|yo| h(to)~'. The above estimation yields the desired result

since the function A is bounded, and so the proof is complete. O

REMARK 2.3. Letting ¢(¢) = 0 in Theorem 2.2, we obtain the similar
result as that of Theorem 3.4 in [8].

THEOREM 2.4. Let a, b, k,q,u,w € C(R"). Suppose that (H1), (H2),
(H3), and g in (1.2) satisfies

@26) [ lg(r.y(m)ldr < a(s)ly(s)| + b(s) / k() y()ldr
to to

and

(2.7)

At y(t), Ty()] < b(t) (w(ly(®)]) + [Ty@)]), 1Ty (?)] </ q(s)ly(s)lds,

to
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where ftzo a(s)ds < oo, ftzo b(s)ds < oo, ftzo k(s)ds < oo, ftzo q(s)ds <
oo. Then, any solution y(t) = y(t,to,yo) of (1.2) is bounded on [ty, o)
and it satisfies

)] < ROW IV (0)+ex [ (als)+0(6) +0(5) [ (k) +a(r))arlas].

to to

t

where tg <t < by, W, W™ are the same functions as in Lemma 1.8,
and

t
by = sup {t > to: W(e) + 62/ (a(s) + b(s)
to
+b(s) / (k(r) + q(r))dr]ds € domW '}
to
Proof. Let x(t) = x(t,to,yo) and y(t) = y(t,to,y0) be solutions of
(1.1) and (1.2), respectively. By the same argument as in the proof in
Theorem 2.2, the solution z = 0 of (1.4) is hS. Using the nonlinear vari-
ation of constants formula, the hS condition of x = 0 of (1.1), together
with (2.6) and (2.7), we have

ly(®)] < c1lyolh(t) h(to) ™! + /t cah(t)h(s)™! (a(S)\y(S)I +o(s)w(ly(s))

+0s) [ K@l +65) [ a(ly(rlar) s

to to

It follows from (H2) and (H3) that

(01 < calioln@) h(t0) "+ [ ean(o)(a() 2 + b5y L
+0(5) [ )+ a() 2D ar)as.

Set u(t) = |y(t)||h(t)| L. Then, by Corollary 1.10, we have

O] < BOW W) + o [ lals) +8(s) +b0s) [ (k) + a(r)rlas].

to to
where ¢ = c1|yo|h(t) h(to)~!. Thus, any solution y(t) = y(t,to,yo) of
(1.2) is bounded on [tg, ), and so the proof is complete. O

REMARK 2.5. Letting b(s) = 0 in Theorem 2.4, we obtain the same
result as that of Theorem 3.3 in [11].

REMARK 2.6. Letting w(u) = w and h(¢t,y(t),Ty(t)) = 0 in Theorem
2.4, we obtain the same result as that of Theorem 3.1 in [10].
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THEOREM 2.7. Let a,b,c,k,q,u,w € C(R"). Suppose that (H1),
(H2), (H3), and g in (1.2) satisfies

(2.8) l9(t, y()] < a(t)w(ly@)]) + b(t)/ k(s)w(ly(s)|)ds

to

and
(2.9)

\h(t, y(t), Ty(t)| < c®)(ly()] + [Ty@)]), [ Ty(t)] < /t q(s)y(s)|ds,
Wheret>tg>0flt ds<ooandft ds<ooft s)ds <

00, [ k(s)ds < oo, and [ q(s)ds < oo. Then, any so]umon y(t) =
y(t, to,yo) of (1.2) is bounded on [to, o0) and

ol < hOW = [wie+ e [ (@(s)+ [ (atr)

to to

+ b(7) /T k(r)dr)dr + c(s) /

to to

s

a(r)dr)ds|,

where W, W~ are the same functions as in Lemma 1.8, and

by = sup {t >t W(e)+ e fj (c(s) + ftj (a(r) +b(r) [T k(r)dr)dr
(s) Jy, a(r)dr)ds € domW 1},

Proof. Let x(t) = x(t,to,yo) and y(t) = y(¢,to,y0) be solutions of
(1.1) and (1.2), respectively. By the same argument as in the proof in
Theorem 2.2, the solution z = 0 of (1.4) is hS. By Lemma 1.4, Lemma
1.5, the hS condition of x = 0 of (1.1), together with (2.8) and (2.9), we
have

(6 < etlaln®) i)™ + [ eanoynts) ([ (atmyullotr)

to to

e / " k(ryw(ly(r) dr)dr + e(s)(u(s)] + /

to to

S

a(7)ly(r)ldr) ) ds

Using the assumptions (H2) and (H3), we obtain
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+ c(s) /t: q(7) |ZE:;| dT) ds.

Set u(t) = |y(t)||h(t)|~. Then, it follows from Lemma 1.11 that we have

t

)] <hOW [0+ [ (els)+ [ (alr)

to to

+ b(7) /T k(r)dr)dT + c(s) /8 q(T)dT)ds} ,

to to

where ¢ = c1|yo| h(to)~!. From the above estimation, we obtain the

desired result. Thus, the theorem is proved. O

REMARK 2.8. Letting ¢(¢) = 0 in Theorem 2.7, we obtain the similar
result as that of Theorem 3.6 in [9].

THEOREM 2.9. Let a,b,c,k,q,u,w € C(RT). Suppose that (HI),
(H2), (H3), and g in (1.2) satisfies

210) [ Jg(r.y(r)ldr < a(s)ully(s)]) + b(s) / " k(ryw(|y(r))dr,

and
(2.11)
(h(t, y(t), Ty(t)| < c®)(ly()] + [Ty@)]), [ Ty(t)] < /t q(s)ly(s)|ds,

where [, a(s)ds < oo, [*b(s)ds < oo, [ c(s)ds < oo, [ k(s)ds <
o0, and ftzo q(s)ds < oo. Then, any solution y(t) = y(t,to,yo) of (1.2) is
bounded on [tg, 00) and it satisfies

t

O] < BOW W) + o [ (als) + ) +b(s) [ kr)dr

to to

S

+c(s)/ q(T)dT)ds},
to

where ty <t < by, W, W~ are the same functions as in Lemma 1.8,

and

by = sup {t >to: W(e)+ e /tt(a(s) + ¢(s)
+b(s) /S k(T)dT + c(s) /S

to to

q()d7)ds € domW ™! }
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Proof. Let x(t) = x(t,to,yo) and y(t) = y(t,to,y0) be solutions of
(1.1) and (1.2), respectively. By the same argument as in the proof in
Theorem 2.2, the solution z = 0 of (1.4) is hS. Using the nonlinear vari-
ation of constants formula, the hS condition of x = 0 of (1.1), together
with (2.10) and (2.11), we have

[y(£)| < c1lyol A(t) h(to) ™! +/t CQh(t)h(S)*l((a(S)w(!y(S)l)

+els)ly(s)| +00s) [ krullur)Dr +e(s) [ alur)ldr )ds.

to to
Using (H2) and (H3), we obtain

[y(8)] < erlyolA(t) h(to) ™" +/

to

+ b(s) /ts E(m)w( |zE:;| )dT + ¢(s) /ts q(7) |zE:;| dT) ds.

Set u(t) = |y(t)||h(t)|~!.Then, an application of Lemma 1.9 yields

O] < BOW W) + o [ (als) +els)+b(s) [ kr)dr

to to

+ ¢(s) /s q(T)dT)ds},

to

t

eoh(t) (a(s)w( ho ) +cls) 6

where ¢ = c1|yo|h(t) h(to)~'. Then, any solution y(t) = y(t,to,yo) of
(1.2) is bounded on [ty, o), and so the proof is complete. O

REMARK 2.10. Letting ¢(¢) = 0 in Theorem 2.9, we obtain the same
result as that of Theorem 3.2 in [8].
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