STABILITY FOR A CUBIC FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN NORMED SPACES

Chang Il Kim* and Chang Hyeob Shin**

Abstract. In this paper, we investigate the functional equation
$f(3 x+y)+f(3 x-y)=f(x+2 y)+2 f(x-y)+6 f(2 x)+3 f(x)-6 f(y)$
and prove the generalized Hyers-Ulam stability for it in non-Archimedean normed spaces.

1. Introduction and preliminaries

S. M. Ulam [15] raised a question concerning the stability of functional equations in 1940 : Let G_{1} be a group and let G_{2} be a meric group with the metric $d(\cdot, \cdot)$. Given $\epsilon>0$, does there exist $a \delta>0$ such that if a mapping $h: G_{1} \longrightarrow G_{2}$ satisfies the inequality $d(h(x y), h(x) h(y))<\delta$ for all $x, y \in G_{1}$, then there exists a homomorphism $H: G_{1} \longrightarrow G_{2}$ with $d(h(x), H(x))<\epsilon$ for all $x \in G_{1}$?

In 1941, Hyers [6] solved the Ulam problem for the case of approximately additive functions in Banach spaces. Since then, the stability of several functional equations have been extensively investigated by several mathematicians [2, 5, 7, 8]. Rassias [13], Jun and Kim [9] and Park and Jung [12] introduced the following functional equations

$$
\begin{equation*}
f(x+2 y)+3 f(x)=3 f(x+y)+f(x-y)+6 f(y) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
f(3 x+y)+f(3 x-y)=3 f(x+y)+3 f(x-y)+48 f(x) \tag{1.3}
\end{equation*}
$$

Received November 13, 2014; Accepted July 22, 2015.
2010 Mathematics Subject Classification: Primary 39B82, 39B52.
Key words and phrases: generalized Hyers-Ulam stability, cubic functional equation, non-Archimedean space.

Correspondence should be addressed to Chang Hyeob Shin, seashin@hanmail.net.
and they established general solutions and the generalized Hyers-UlamRassias stability problem for this functional equations, respectively. It is easy to see that the function $f(x)=c x^{3}$ is a solution of the functional equations (1.1), (1.2) and (1.3). Thus, it is natural that (1.1), (1.2) and (1.3) are called a cubic functional equations and every solution of the cubic functional equation is said to be a cubic mapping.

In this paper, we consider the following functional equation

$$
\begin{align*}
& f(3 x+y)+f(3 x-y) \\
= & f(x+2 y)+2 f(x-y)+6 f(2 x)+3 f(x)-6 f(y) . \tag{1.4}
\end{align*}
$$

We prove the generalized Hyers-Ulam stability of (1.4) in complete non-Archimedean normed spaces.

A valuation is a function $|\cdot|$ from a field \mathbb{K} into $[0, \infty)$ such that, for any $r, s \in \mathbb{K}$, the following conditions hold: (i) $|r|=0$ if and only if $r=0$, (ii) $|r s|=|r||s|$, (iii) $|r+s| \leq|r|+|s|$.

A field \mathbb{K} is called a valued field if \mathbb{K} carries a valuation. The usual absolute values of \mathbb{R} and \mathbb{C} are examples of valuations. If the triangle inequality is replaced by $|r+s| \leq \max \{|r|,|s|\}$ for all $r, s \in \mathbb{K}$, then the valuation $|\cdot|$ is called a non-Archimedean valuation and a field with a non-Archimedean valuation is called non-Archimedean field. If $|\cdot|$ is a non-Archimedean valuation on \mathbb{K}, then clearly, $|1|=|-1|$ and $|n| \leq 1$ for all $n \in \mathbb{N}$.

Definition 1.1. Let X be a vector space over a scalar field \mathbb{K} with a non-Archimedean nontrivial valuation $|\cdot|$. A function $\|\cdot\|: X \longrightarrow \mathbb{R}$ is called a non-Archimedean norm (valuation) if it satisfies the following conditions:
(a) $\|x\|=0$ if and only if $x=0$,
(b) $\|r x\|=|r|\|x\|$,
(c) the strong triangle inequality (ultrametric), that is,

$$
\|x+y\| \leq \max \{\|x\|,\|y\|\}
$$

for all $x, y \in X$ and all $r \in \mathbb{K}$.
If $\|\cdot\|$ is a non-Archimedean norm, then $(X,\|\cdot\|)$ is called a nonArchimedean normed space.

Let $(X,\|\cdot\|)$ be a non-Archimedean normed space. Let $\left\{x_{n}\right\}$ be a sequence in X. Then $\left\{x_{n}\right\}$ is said to be convergent if there exists an $x \in X$ such that $\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|=0$. In that case, x is called the limit of the sequence $\left\{x_{n}\right\}$ and one denotes it by $\lim _{n \rightarrow \infty} x_{n}=x$. A sequence $\left\{x_{n}\right\}$ is said to be Cauchy in $(X,\|\cdot\|)$ if $\lim _{n \rightarrow \infty}\left\|x_{n+p}-x_{n}\right\|=0$ for all
$p \in \mathbb{N}$. By (c) in Definition 1.1,

$$
\left\|x_{n}-x_{m}\right\| \leq \max \left\{\left\|x_{j+1}-x_{j}\right\| \mid m \leq j \leq n-1\right\} \quad(n>m)
$$

and hence a sequence $\left\{x_{n}\right\}$ is Cauchy in $(X,\|\cdot\|)$ if and only if sequence $\left\{x_{n+1}-x_{n}\right\}$ converges to zero in $(X,\|\cdot\|)$. By a complete nonArchimedean normed space we mean one in which every Cauchy sequence is convergent.

Throughtout this paper, X is a non-Archimedean normed space and Y a complete non-Archimedean normed space.

2. The Generalized Hyers-Ulam stability for (1.4)

In 2003, Jun and Kim [10] introduced the following cubic functional equation

$$
\begin{equation*}
f(x+2 y)+f(x-2 y)+6 f(x)=4 f(x+y)+4 f(x-y) \tag{2.1}
\end{equation*}
$$

and proved the generalized Hyers-Ulam stability for it in Banach spaces. In this section, we prove the generalized Hyers-Ulam stability of functional equation (1.4) in complete non-Archimedean normed spaces. We start the following theorem.

Theorem 2.1. Let $f: X \longrightarrow Y$ be a mapping. Then f satisfies (1.4) if and only if f is cubic.

Proof. Suppose that f satisfies (1.4). Letting $x=y=0$ in (1.4), we have $f(0)=0$. Letting $y=0$ in (1.4), we have

$$
\begin{equation*}
f(3 x)-3 f(2 x)-3 f(x)=0 \tag{2.2}
\end{equation*}
$$

for all $x \in X$ and letting $x=0$ in (1.4) and relpacing y by x, we have

$$
\begin{equation*}
7 f(x)-f(-x)-f(2 x)=0 \tag{2.3}
\end{equation*}
$$

for all $x \in X$. Letting $y=x$ in (1.4), we have

$$
\begin{equation*}
f(4 x)-f(3 x)-5 f(2 x)+3 f(x)=0 \tag{2.4}
\end{equation*}
$$

for all $x \in X$. By (2.2) and (2.4), we get

$$
\begin{equation*}
f(4 x)=2^{3} f(2 x) \tag{2.5}
\end{equation*}
$$

for all $x \in X$. Repalcing $2 x$ by x in (2.5), we get

$$
\begin{equation*}
f(2 x)=2^{3} f(x) \tag{2.6}
\end{equation*}
$$

for all $x \in X$. By (2.2) and (2.6), we get

$$
\begin{equation*}
f(3 x)=3^{3} f(x) \tag{2.7}
\end{equation*}
$$

for all $x \in X$. By (2.3) and (2.6), we get

$$
\begin{equation*}
f(-x)=-f(x) \tag{2.8}
\end{equation*}
$$

for all $x \in X$. Replacing y by $3 y$ in (1.4), by (2.6) and (2.7), we have (2.9) $27 f(x+y)+27 f(x-y)=f(x+6 y)+2 f(x-3 y)+51 f(x)-6 f(3 y)$ for all $x, y \in X$. Interchanging x and y in (2.9), by (2.8), we have
(2.10) $27 f(x+y)-27 f(x-y)=f(6 x+y)-2 f(3 x-y)+51 f(y)-6 f(3 x)$ for all $x, y \in X$. Replacing y by $2 y$ in (2.10), by (2.6), we have

$$
\begin{align*}
& 27 f(x+2 y)-27 f(x-2 y) \\
= & 8 f(3 x+y)-2 f(3 x-2 y)+408 f(y)-6 f(3 x) \tag{2.11}
\end{align*}
$$

for all $x, y \in X$. Letting $y=-y$ in (2.11), by (2.8), we have

$$
\begin{align*}
& 27 f(x-2 y)-27 f(x+2 y) \\
= & 8 f(3 x-y)-2 f(3 x+2 y)-408 f(y)-6 f(3 x) \tag{2.12}
\end{align*}
$$

for all $x, y \in X$. By (2.11) and (2.12), we get
(2.13) $8[f(3 x+y)+f(3 x-y)]-2[f(3 x+2 y)+f(3 x-2 y)]-12 f(3 x)=0$
for all $x, y \in X$. Letting $x=\frac{x}{3}$ in (2.13), we have

$$
f(x+2 y)+f(x-2 y)+6 f(x)=4 f(x+y)+4 f(x-y)
$$

for all $x, y \in X$ and so f is additive-quadratic-cubic [10]. By (2.6), f is cubic. The converse is trivial.

For a given mapping $f: X \longrightarrow Y$, we define the difference operator $D f: X^{2} \longrightarrow Y$ by

$$
\begin{aligned}
& D f(x, y)=f(3 x+y)+f(3 x-y) \\
& \quad-f(x+2 y)-2 f(x-y)-6 f(2 x)-3 f(x)+6 f(y)
\end{aligned}
$$

for all $x, y \in X$.
Theorem 2.2. Let $\phi: X^{2} \longrightarrow[0, \infty)$ be a mapping such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\phi\left(2^{n} x, 2^{n} y\right)}{|2|^{3 n}}=0 \tag{2.14}
\end{equation*}
$$

for all $x, y \in X$ and let for each $x \in X$, the following limit

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \max \left\{\left\{\frac{1}{|2|} \frac{\phi\left(2^{j-1} x, 0\right)}{\mid 2^{3(j-1)}}: 0 \leq j<n\right\} \cup\right. \tag{2.15}\\
& \left.\left\{\frac{\phi\left(2^{j-1} x, 2^{j-1} x\right)}{\mid 22^{3(j-1)}}: 0 \leq j<n\right\}\right\}
\end{align*}
$$

Stability for a cubic functional equations in non-Archimedean normed spaces 357
denoted by $\widetilde{\phi}(x)$, exist. Suppose that $f: X \longrightarrow Y$ is a mapping satisfying

$$
\begin{equation*}
\|D f(x, y)\| \leq \phi(x, y) \tag{2.16}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a cubic mapping $C: X \longrightarrow Y$ such that

$$
\begin{equation*}
\|C(x)-f(x)\| \leq \frac{1}{|2|^{6}} \widetilde{\phi}(x) \tag{2.17}
\end{equation*}
$$

for all $x \in X$. In addition, if the limit

$$
\begin{align*}
& \lim _{i \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\left\{\frac{1}{|2|} \frac{\phi\left(2^{j-1} x, 0\right)}{|2|^{3(j-1)}}: i \leq j<n+i\right\} \cup\right. \\
& \left.\left\{\frac{\phi\left(2^{j-1} x, 2^{j-1} x\right)}{\mid 22^{3(j-1)}}: i \leq j<n+i\right\}\right\}=0 \tag{2.18}
\end{align*}
$$

exists for all $x \in X$, then C is the unique cubic mapping satisfying (2.17).

Proof. Putting $x=y=0$ in (2.16), we have

$$
\|f(0)\| \leq \frac{1}{|2|^{2}} \phi(0,0)
$$

and since $1 \leq \frac{1}{|2|}$, we get

$$
\|f(0)\| \leq \frac{1}{|2|^{3}} \phi(0,0) \leq \frac{1}{|2|^{3 n}} \phi(0,0)
$$

for all $n \in \mathbb{N}$. By (2.14), $f(0)=0$.
Putting $y=0$ in (2.16), we have

$$
\begin{equation*}
\|f(3 x)-3 f(2 x)-3 f(x)\| \leq \frac{1}{|2|} \phi(x, 0) \tag{2.19}
\end{equation*}
$$

for all $x \in X$. Putting $y=x$ in (2.16), we have

$$
\begin{equation*}
\|f(4 x)-f(3 x)-5 f(2 x)+3 f(x)\| \leq \phi(x, x) \tag{2.20}
\end{equation*}
$$

for all $x \in X$. By (2.19) and (2.20), we get

$$
\begin{equation*}
\|f(4 x)-8 f(2 x)\| \leq \max \left\{\frac{1}{|2|} \phi(x, 0), \phi(x, x)\right\} \tag{2.21}
\end{equation*}
$$

for all $x \in X$. Replacing x by $2^{n-1} x$ and dividing by $|2|^{3(n+1)}$ in (2.21), we get

$$
\begin{align*}
& \left\|\frac{f\left(2^{n+1} x\right)}{2^{3(n+1)}}-\frac{f\left(2^{n} x\right)}{2^{3 n}}\right\| \\
\leq & \frac{1}{|2|^{6}} \max \left\{\frac{1}{|2|} \frac{\phi\left(2^{n-1} x, 0\right)}{|2|^{3(n-1)}}, \frac{\phi\left(2^{n-1} x, 2^{n-1} x\right)}{|2|^{3(n-1)}}\right\} \tag{2.22}
\end{align*}
$$

for all $x \in X$. By (2.14) and (2.22), we get $\left\{\frac{f\left(2^{n} x\right)}{2^{3 n}}\right\}$ is Cauchy sequence. Since Y is complete, we conclude that $\left\{\frac{f\left(2^{n} x\right)}{2^{3 n}}\right\}$ is convergent. Set

$$
C(x):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{3 n}} .
$$

Using induction one can show that

$$
\begin{align*}
& \left\|\frac{f\left(2^{n} x\right)}{2^{3 n}}-f(x)\right\| \leq \frac{1}{|2|^{6}} \max \left\{\left\{\frac{1}{|2|} \frac{\phi\left(2^{j-1} x, 0\right)}{|2|^{3(j-1)}}: 0 \leq j<n\right\} \cup\right. \\
& \left.\left\{\frac{\phi\left(2^{j-1} x, 2^{j-1} x\right)}{|2|^{3(j-1)}}: 0 \leq j<n\right\}\right\} \tag{2.23}
\end{align*}
$$

for all $n \in \mathbb{N}$ and all $x \in X$. By taking n to infinity in (2.23) and by (2.15), we obtain (2.17). Replacing x and y by $2^{n} x$ and $2^{n} y$, respectively, and dividing by $|2|^{3 n}$ in (2.16) and taking the limit as $n \rightarrow \infty$, by (2.14), we get
$C(3 x+y)+C(3 x-y)=C(x+2 y)+2 C(x-y)+6 C(2 x)+3 C(x)-6 C(y)$ for all $x, y \in X$. Therefore the mapping $C: X \longrightarrow Y$ satisfies (1.4) and so by Theorem 2.1, C is cubic.

Suppose that (2.18) holds. If C^{\prime} is another cubic mapping satisfying (2.17), then by (2.18),

$$
\begin{gathered}
\left\|C(x)-C^{\prime}(x)\right\|=\lim _{i \rightarrow \infty} \frac{1}{|2|^{3 i}}\left\|C\left(2^{i} x\right)-C^{\prime}\left(2^{i} x\right)\right\| \\
\leq \lim _{i \rightarrow \infty} \frac{1}{|2|^{3 i}} \max \left\{\left\|C\left(2^{i} x\right)-f\left(2^{i} x\right)\right\|,\left\|f\left(2^{i} x\right)-C^{\prime}\left(2^{i} x\right)\right\|\right\} \\
\leq \frac{1}{|2|^{6}} \lim _{i \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\left\{\frac{1}{|2|} \frac{\phi\left(2^{j-1} x, 0\right)}{|2|^{3(j-1)}}: i \leq j<n+i\right\} \cup\right. \\
\left.\left\{\frac{\phi\left(2^{j-1} x, 2^{j-1} x\right)}{|2|^{3(j-1)}}: i \leq j<n+i\right\}\right\}=0
\end{gathered}
$$

for all $x \in X$ and so $C=C^{\prime}$.

From Theorem 2.2, we obtain the following corollary concerning the stability of (1.4).

Corollary 2.3. Let $\alpha_{i}:[0, \infty) \longrightarrow[0, \infty)(i=1,2,3)$ be mappings satisfying
(i) $\alpha_{i}(|2|) \neq 0$,
(ii) $\alpha_{i}(|2| t) \leq \alpha_{i}(|2|) \alpha_{i}(t)$ for all $t \geq 0$, and
(iii) $\alpha_{1}(|2|)<|2|^{\frac{3}{2}}, \alpha_{2}(|2|)<|2|^{3}$, and $\alpha_{3}(|2|)<|2|^{3}$.

Let $f: X \longrightarrow Y$ be a mapping such that

$$
\|D f(x, y)\| \leq \delta\left[\alpha_{1}(\|x\|) \alpha_{1}(\|y\|)+\alpha_{2}(\|x\|)+\alpha_{3}(\|y\|)\right]
$$

for all $x, y \in X$ and some $\delta>0$. Suppose that $|2|<1$. Then there exists a unique cubic mapping $C: X \longrightarrow Y$ such that

$$
\|C(x)-f(x)\| \leq \frac{1}{|2|^{6}} \widetilde{\phi}(x)
$$

for all $x \in X$, where

$$
\widetilde{\phi}(x)=\delta|2|^{2} \max \left\{\frac{\alpha_{2}(\|x\|)}{\alpha_{2}(|2|)},|2|\left[\left(\frac{\alpha_{1}(\|x\|)}{\alpha_{1}(|2|)}\right)^{2}+\frac{\alpha_{2}(\|x\|)}{\alpha_{2}(|2|)}+\frac{\alpha_{3}(\|x\|)}{\alpha_{3}(|2|)}\right]\right\} .
$$

Proof. Let $\phi(x, y)=\delta\left[\alpha_{1}(\|x\|) \alpha_{1}(\|y\|)+\alpha_{2}(\|x\|)+\alpha_{3}(\|y\|)\right]$. Then for any $n \in \mathbb{N}$

$$
\begin{aligned}
& \frac{\phi\left(2^{n} x, 2^{n} y\right)}{|2|^{3 n}} \\
& =\frac{\delta}{|2|^{3 n}}\left[\alpha_{1}\left(|2|^{n}\|x\|\right) \alpha_{1}\left(|2|^{n}\|y\|\right)+\alpha_{2}\left(|2|^{n}\|x\|\right)+\alpha_{3}\left(|2|^{n}\|y\|\right)\right] \\
& \leq \delta\left[\left(\frac{\left(\alpha_{1}(|2|)\right)^{2}}{|2|^{3}}\right)^{n} \alpha_{1}(\|x\|) \alpha_{1}(\|y\|)+\left(\frac{\alpha_{2}(|2|)}{|2|^{3}}\right)^{n} \alpha_{2}(\|x\|)\right. \\
& \left.\quad+\left(\frac{\alpha_{3}(|2|)}{|2|^{3}}\right)^{n} \alpha_{3}(\|y\|)\right]
\end{aligned}
$$

for all $x, y \in X$. By (iii), we have

$$
\lim _{n \rightarrow \infty} \frac{\phi\left(2^{n} x, 2^{n} y\right)}{\mid 2^{3 n}}=0
$$

for all $x, y \in X$. Hence ϕ satisfies (2.14) in Theorem 2.2.
Let $x \in X$ and $j \in \mathbb{N} \cup\{0\}$. Then

$$
\frac{1}{|2|} \frac{\phi\left(2^{j-1} x, 0\right)}{|2|^{3(j-1)}} \leq \frac{\delta}{|2|}\left(\frac{\alpha_{2}(|2|)}{|2|^{3}}\right)^{j-1} \alpha_{2}(\|x\|)
$$

and

$$
\begin{aligned}
\frac{\phi\left(2^{j-1} x, 2^{j-1} x\right)}{|2|^{3(j-1)}} \leq & \delta\left[\left(\frac{\left(\alpha_{1}(|2|)\right)^{2}}{|2|^{3}}\right)^{j-1}\left(\alpha_{1}(\|x\|)\right)^{2}\right. \\
& \left.+\left(\frac{\alpha_{2}(|2|)}{|2|^{3}}\right)^{j-1} \alpha_{2}(\|x\|)+\left(\frac{\alpha_{3}(|2|)}{|2|^{3}}\right)^{j-1} \alpha_{3}(\|x\|)\right]
\end{aligned}
$$

for all $x \in X$. By (iii), we obtain

$$
\begin{gathered}
\lim _{i \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\left\{\frac{1}{|2|} \frac{\phi\left(2^{j-1} x, 0\right)}{|2|^{3(j-1)}}: i \leq j<n+i\right\} \cup\right. \\
\left.\left\{\frac{\phi\left(2^{j-1} x 2^{j-1} x\right)}{|2|^{3(j-1)}}: i \leq j<n+i\right\}\right\}=0
\end{gathered}
$$

for all $x \in X$ and so ϕ satisfies (2.18) in Theorem 2.2. Hence by Theorem 2.2, we have the result.

Example 2.4. Let $\delta>0$ and p be a real number with $p>\frac{3}{2}$. Suppose that $|2|<1$. Let $f: X \longrightarrow Y$ is a mapping satisfying

$$
\|D f(x, y)\| \leq \delta\left(\|x\|^{p}\|y\|^{p}+\|x\|^{2 p}+\|y\|^{2 p}\right)
$$

for all $x, y \in X$. Then there exists a unique cubic mapping $C: X \longrightarrow Y$ satisfying (1.4) such that

$$
\|C(x)-f(x)\| \leq \delta|2|^{-2(p+2)} \max \{1,3|2|\}\|x\|^{2 p}
$$

for all $x \in X$.
We have the following result which is analogous Theorem 2.2 for the functional equation (1.4).

Theorem 2.5. Let $\phi: X^{2} \longrightarrow[0, \infty)$ be a mapping such that

$$
\lim _{n \rightarrow \infty}|2|^{3 n} \phi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)=0
$$

for all $x, y \in X$ and for each $x \in X$, and let for each $x \in X$, the following limit

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \max \left\{\left\{\frac{|2|^{3(j+2)}}{|2|} \phi\left(\frac{x}{2^{j+2}}, 0\right): 0 \leq j<n\right\} \cup\right. \\
\left.\left\{|2|^{3(j+2)} \phi\left(\frac{x}{2^{j+2}}, \frac{x}{2^{j+2}}\right): 0 \leq j<n\right\}\right\}
\end{gathered}
$$

denoted by $\phi_{1}(x)$, exist. Suppose that $f: X \longrightarrow Y$ is a mapping satisfying $f(0)=0$ and

$$
\|D f(x, y)\| \leq \phi(x, y)
$$

Stability for a cubic functional equations in non-Archimedean normed spaces 361
for all $x, y \in X$. Then there exists a cubic mapping $C: X \longrightarrow Y$ satisfying (1.4) such that

$$
\begin{equation*}
\|C(x)-f(x)\| \leq \frac{1}{|2|^{6}} \phi_{1}(x) \tag{2.24}
\end{equation*}
$$

for all $x \in X$. In addition, if the limit

$$
\begin{gathered}
\lim _{i \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\left\{\frac{|2|^{3(j+2)}}{|2|} \phi\left(\frac{x}{2^{j+2}}, 0\right): i \leq j<n+i\right\} \cup\right. \\
\left.\left\{|2|^{3(j+2)} \phi\left(\frac{x}{2^{j+2}}, \frac{x}{2^{j+2}}\right): i \leq j<n+i\right\}\right\}=0
\end{gathered}
$$

then C is the unique cubic mapping satisfying (2.24).
The following corollary is an immediate consequence of Theorem 2.5.
Corollary 2.6. Let $\alpha_{i}:[0, \infty) \longrightarrow[0, \infty)(i=1,2,3)$ be mappings satisfying
(i) $\alpha_{i}\left(\frac{1}{|2|}\right) \neq 0$,
(ii) $\alpha_{i}\left(\frac{t}{|2|}\right) \leq \alpha_{i}\left(\frac{1}{|2|}\right) \alpha_{i}(t)$ for all $t \geq 0$, and
(iii) $\alpha_{1}\left(\frac{1}{|2|}\right)<\frac{1}{|2|^{\frac{3}{2}}}, \alpha_{2}\left(\frac{1}{|2|}\right)<\frac{1}{|2|^{3}}$, and $\alpha_{3}\left(\frac{1}{|2|}\right)<\frac{1}{|2|^{3}}$.

Let $f: X \longrightarrow Y$ be a mapping such that $f(0)=0$ and

$$
\|D f(x, y)\| \leq \delta\left[\alpha_{1}(\|x\|) \alpha_{1}(\|y\|)+\alpha_{2}(\|x\|)+\alpha_{3}(\|y\|)\right]
$$

for all $x, y \in X$ and some $\delta>0$. Then there exists a unique cubic mapping $C: X \longrightarrow Y$ such that

$$
\|C(x)-f(x)\| \leq \frac{1}{|2|^{6}} \phi_{1}(x)
$$

for all $x \in X$, where

$$
\begin{gathered}
\phi_{1}(x)=\delta|2|^{6} \max \left\{\frac{1}{|2|}\left(\alpha_{2}\left(\frac{1}{|2|}\right)\right)^{2} \alpha_{2}(\|x\|),\left(\alpha_{1}\left(\frac{1}{|2|}\right)\right)^{4}\left(\alpha_{1}(\|x\|)\right)^{2}+\right. \\
\left.\left(\alpha_{2}\left(\frac{1}{|2|}\right)\right)^{2} \alpha_{2}(\|x\|)+\left(\alpha_{3}\left(\frac{1}{|2|}\right)\right)^{2} \alpha_{3}(\|x\|)\right\} .
\end{gathered}
$$

Example 2.7. Let $\delta>0$ and p be a real number with $p<\frac{3}{2}$. Suppose that $|2|<1$. Let $f: X \longrightarrow Y$ is a mapping satisfying $f(0)=0$ and

$$
\|D f(x, y)\| \leq \delta\left(\|x\|^{p}\|y\|^{p}+\|x\|^{2 p}+\|y\|^{2 p}\right)
$$

for all $x, y \in X$. Then there exists a unique cubic mapping $C: X \longrightarrow Y$ satisfying (1.4) such that

$$
\|C(x)-f(x)\| \leq \delta|2|^{-(4 p+1)} \max \{1,3|2|\}\|x\|^{2 p}
$$

for all $x \in X$.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
[2] S. Czerwik, Functional equations and Inequalities in several variables, World Scientific, New Jersey, London, 2002.
[3] M. E. Gordji and M. B. Savadkouhi Stability of cubic and quartic fucntional equations in non-Archimedean spaces, Acta Appl. Math. (2010), 1321-1329.
[4] M. E. Gordji and M. B. Savadkouhi Stability of a mixed type cubic-quartic fucntional equation in non-Archimedean spaces, Applied Mathematics Letter 23 (2010), 1198-1202.
[5] G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), 143-190.
[6] D. H. Hyers, On the stability of linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224.
[7] D. H. Hyers, G. Isac, and T. M. Rassias, Stability of functional equations in several variables, Birkhäuser, Boston, 1998.
[8] D. H. Hyers and T. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125-153.
[9] K.-W. Jun and H.-M. Kim The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), 867-878.
[10] K.-W. Jun and H.-M. Kim On the Hyers-Ulam-Rassias stability of a general cubic functional equation, Math. Inequal. Appl. 6 (2003), 289-302.
[11] M. Sal Moslehian and G. Sadeghi, Stability of two types of cubic functional equations in non-Archimedean spaces, Real Analysis Exchange 33 (2007), no. 2, 375-384.
[12] K. H. Park and Y. S. Jung, Stability of a cubic functional equation on groups, Bull. Korean Math. Soc. 41 (2004), 347-357.
[13] J. M. Rassias, Solution of the Ulam stability problem for cubic mappings, Glasnik Matematički 36 (2001), 63-72.
[14] F. Skof, Approssimazione di funzioni δ-quadratic su dominio restretto, Atti. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 118 (1984), 58-70.
[15] S. M. Ulam, A collection of mathematical problems, Interscience Publ., New York, 1960.

*

Department of Mathematics Education Dankook University
Yongin 448-701, Republic of Korea
E-mail: kci206@hanmail.net
**
Department of Mathematics
Soongsil University
Seoul 156-743, Republic of Korea
E-mail: seashin@hanmail.net

