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APPROXIMATE QUADRATIC MAPPINGS IN

QUASI-β-NORMED SPACES∗

Young Soon Hong* and Hark-Mahn Kim**

Abstract. In this article, we consider a modified quadratic func-
tional equation and then investigate its generalized Hyers–Ulam
stability theorem in quasi-β-normed spaces.

1. Introduction

In 1940, S.M. Ulam [17] raised the question concerning the stability
of group homomorphisms: Let G be a group and let G′ be a metric
group with the metric d(·, ·). Given ε > 0, does there exist a δ > 0 such
that if a mapping f : G→ G′ satisfies the inequality

d(f(xy), f(x)f(y)) < δ

for all x, y ∈ G, then there exists a homomorphism F : G → G′ with
d(f(x), F (x)) < ε for all x ∈ G? The case of approximately additive
mappings was solved by D.H. Hyers [8] under the assumption that X and
Y are Banach spaces. A generalization of Hyers’ theorem was provided
by Th.M. Rassias [12] in 1978 and by P. Gǎvruta [6] in 1994.

We recall that the following functional equation

f(x+ y) + f(x− y) = 2[f(x) + f(y)]

is called a quadratic functional equation which may be originated from
the important parallelogram equality ‖x+y‖2+‖x−y‖2 = 2[‖x‖2+‖y‖2]
in inner product spaces. In particular, every solution of the quadratic
functional equation is said to be a quadratic mapping. The Hyers–Ulam
stability problem for the quadratic functional equation was proved by
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F. Skof [16] for a mapping f : X → Y , where X is a normed space and
Y is a Banach space. S. Czerwik [5] proved the Hyers–Ulam stability of
the quadratic functional equation with the sum of powers of norms in
the sense of Th. M. Rassias approach using direct method as follows.

Theorem 1.1. Let E1 be a normed space and E2 a Banach space
and let ε ≥ 0 and r 6= 2 be given real numbers. Let f : E1 → E2 be a
mapping satisfying the condition

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ ε(‖x‖r + ‖y‖r)

for all x, y ∈ E1 (x, y ∈ E1\{0} if r < 0 ). Then there exists exactly one
quadratic mapping h : E1 → E2 such that

‖f(x)− f(0)

3
− h(x)‖ ≤ 2ε

|2r − 4|
‖x‖r

for all x ∈ E1 (x ∈ E1\{0} if r < 0 ), where f(0) = 0 in case r > 0. If in
addition, f is measurable or the mapping R 3 t → f(tx) is continuous
on R for each fixed x ∈ E1, then the mapping h satisfies the condition

h(tx) = t2h(x)

for all x ∈ E1 and all t ∈ R.

J.M. Rassias [13] proved the Hyers–Ulam stability of the quadratic
functional equation with the product of powers of norms using direct
method as the following theorem.

Theorem 1.2. Let X be a normed linear space, Y a Banach space,
and let f : X → Y be a mapping. If there exist real numbers a, b with
0 ≤ a+ b < 2, and c ≥ 0 such that

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ c‖x‖a‖y‖b

for all x, y ∈ X, then there exists a unique non-linear mapping N : X →
Y such that

‖f(x)−N(x)‖ ≤ c1‖x‖a+b

and

N(x+ y) +N(x− y) = 2N(x) + 2N(y)

for all x, y ∈ X, where c1 = c
4−2a+b .

On the other hand, C. Borelli and G.L. Forti [2] have proved the
generalized Hyers–Ulam stability theorem of the quadratic functional
equation and thus we can obtain the following stability theorem as a
result.
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Theorem 1.3. Let G be an abelian group and E a Banach space,
and let f : G→ E be a mapping satisfying the inequality

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ ϕ(x, y)

for all x, y ∈ G. Assume that one of the series

Φ(x, y) :=

{ ∑∞
k=0

1
22(k+1)ϕ(2kx, 2ky) <∞,∑∞

k=0 22kϕ( x
2k+1 ,

y
2k+1 ) <∞, (a)

converges for all x, y ∈ G. Then there exists a unique quadratic mapping
Q : G→ E such that

‖f(x)− f(0)

3
−Q(x)‖ ≤ Φ(x, x)

for all x ∈ G, where f(0) = 0 in case (a).

The stability problems of several functional equations and several
functional inequalities have been extensively investigated by a number of
authors and there are many interesting result concerning the stability of
various functional equations and inequalities ([4],[7],[9],[10]). Recently,
A. Zivari-Kazempour and M. Eshaghi Gordji [18] have determined the
general solution of the quadratic functional equation

f(x+ 2y) + f(y + 2z) + f(z + 2x)

= 2f(x+ y + z) + 3[f(x) + f(y) + f(z)]

and then have investigated its generalized Hyers–Ulam stability. Moti-
vated from this quadratic functional equation, we consider a modified
functional equation

f(x+ 2y) + f(y + 2z) + f(z + 2x) + f(y + 2x) + f(z + 2y)(1.1)

+f(x+ 2z) = 4f(x+ y + z) + 6[f(x) + f(y) + f(z)]

and then we establish its generalized Hyers–Ulam stability of the equa-
tion (1.1) in quasi-β-normed spaces. As results, we generalize stability
results of the equation (1.1) in normed spaces.

2. Generalized Hyers–Ulam stability of Eq. (1.1).

First of all, we remark that the above functional equation (1.1) is
equivalent to the original quadratic functional equation [11].

Now, we recall some basic facts concerning the quasi-β-normed spaces
[14]. Let β be a fixed real number with 0 < β ≤ 1 and let X be a linear
space over K, where K denote either R or C. A quasi-β-norm is a real-
valued function on X satisfying the following:
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(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0;
(2) ‖λx‖ = |λ|β‖x‖ for all λ ∈ K and all x ∈ X;
(3) There is a constant M ≥ 1 such that ‖x+ y‖ ≤M(‖x‖+ ‖y‖) for

all x, y ∈ X.
In this case, the pair (X, ‖ · ‖) is called a quasi-β-normed space. A

quasi-β-Banach space is a complete quasi-β-normed space. Let p be a
real number with (0 < p ≤ 1). Then, the quasi-β-norm ‖ · ‖ on X is
called a (β, p)-norm if, moreover, ‖ · ‖p satisfies the following triangle
inequality

‖x+ y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a quasi-β-Banach space is called a (β, p)-
Banach space. We notice that quasi-1-normed spaces are equivalent to
quasi-normed spaces and that (1, p)-Banach spaces with (1, p)-norm are
equivalent to p-Banach spaces with p-norm. We can refer to [1, 15] for
the concept of quasi-normed spaces and p-Banach spaces. Given a p-
norm, the formula d(x, y) := ‖x − y‖p gives us a translation invariant
metric on X. By the Aoki–Rolewicz theorem [15], each quasi-norm is
equivalent to some p-norm [1].

Before making up the main subject, we use the following abbreviation
for notational convenience :

Df(x, y, z)

:= f(x+ 2y) + f(y + 2z) + f(z + 2x) + f(y + 2x) + f(z + 2y)

+f(x+ 2z)− 4f(x+ y + z)− 6[f(x) + f(y) + f(z)]

for all x, y, z ∈ X.

Theorem 2.1. Suppose X is a vector space and Y is a (β, p)-Banach
space. Let ϕ : X ×X ×X → [0,∞) be a function such that

Φ1(x, y, z) :=
∞∑
k=0

1

9kβp
ϕ(3kx, 3ky, 3kz)p(2.1)

is convergent for all x, y, z ∈ X. If a mapping f : X → Y satisfies

‖Df(x, y, z)‖ ≤ ϕ(x, y, z)(2.2)

for all x, y, z ∈ X, then there exists a unique quadratic mapping F :

X → Y defined by F (x) := limn→∞
f(3nx)

9n , x ∈ X, which satisfies the
equation (1.1) and

‖f(x)− F (x)‖ ≤ 1

18β
[Φ1(x, x, x)]

1
p(2.3)

for all x ∈ X.



Approximate Quadratic mappings in quasi-β-normed spaces 315

Proof. Letting y = z := x in (2.2), we obtain

‖f(3x)

9
− f(x)‖ ≤ 1

18β
ϕ(x, x, x), (x ∈ X).(2.4)

By induction on n, one can prove the following functional inequality

‖f(x)− f(3nx)

9n
‖p ≤ 1

18βp

n−1∑
k=0

1

9kβp
ϕ(3kx, 3kx, 3kx)p(2.5)

for all x ∈ X. In fact, it is true for n = 1. Assume that the inequality
(2.5) holds true for n. If we replace x by 3nx in (2.4), then we get

‖f(3n+1x)

9n+1
− f(3nx)

9n
‖p ≤ 1

18βp · 9nβp
ϕ(3nx, 3nx, 3nx)p(2.6)

for all x ∈ X. Thus, by triangle inequality on ‖ · ‖p, we deduce

‖f(3n+1x)

9n+1
− f(x)‖p(2.7)

≤ ‖f(3n+1x)

9n+1
− f(3nx)

9n
‖p + ‖f(3nx)

9n
− f(x)‖p

≤ 1

18βp

n∑
k=0

1

9kβp
ϕ(3kx, 3kx, 3kx)p,

which proves (2.5) for n+ 1. Now, replacing x by 3mx in (2.5), we have

‖f(3n+mx)

9n+m
− f(3mx)

9m
‖p ≤ 1

18βp

n+m−1∑
k=m

1

9kβp
ϕ(3kx, 3kx, 3kx)p(2.8)

which converges to zero as m → ∞ by the assumption (2.1). Thus the

above inequality implies that the sequence {f(3
nx)

9n } is Cauchy for all
x ∈ X and so it is convergent in Y since the space Y is complete. Thus,
we may define F : X → Y as

F (x) := lim
n→∞

f(3nx)

9n
, (x ∈ X).

Then by the definition of F , we can see by taking n→∞ in (2.5) that
the approximation (2.3) holds. To show that F satisfies the equation
(1.1), we set (x, y, z) := (3nx, 3ny, 3nz) in (2.2), and divide the resulting
inequality by 9n. Then we get

‖Df(3nx, 3ny, 3nz)

9n
‖p ≤ 1

9nβp
ϕ(3nx, 3ny, 3nz)p
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for all x, y, z ∈ X. Taking the limit as n→∞, one obtains DF (x, y, z) =
0 for all x, y, z ∈ X. Hence F satisfies the equation (1.1) and so it is
quadratic.

To show the uniqueness of F , we assume that there exists a quadratic
mapping G : X → Y which satisfies the inequality

‖f(x)−G(x)‖ ≤ 1

18β

[ ∞∑
k=0

ϕ(3kx, 3kx, 3kx)p

9kβp

] 1
p

for all x ∈ X, but suppose F (y) 6= G(y) for some y ∈ X. Then there
exists a positive constant ε > 0 such that 0 < ε < ‖F (y)−G(y)‖p. For
such given ε > 0, it follows from (2.1) that there is a positive integer

n0 ∈ N such that 2
18βp

∑∞
k=n0

ϕ(3ky,3ky,3ky)p

9kβp
< ε. Since F and G are

quadratic mappings, we see from the equality F (3n0y) = 9n0F (y) and
G(3n0y) = 9n0G(y) that

‖F (y)−G(y)‖p =
1

9n0βp
‖F (3n0y)−G(3n0y)‖p

≤ 1

9n0βp
[‖F (3n0y)− f(3n0y)‖p + ‖f(3n0y)−G(3n0y)‖p]

≤ 1

9n0βp
· 2

18βp

∞∑
i=0

ϕ(3i+n0y, 3i+n0y, 3i+n0y)p

9iβp

=
2

18βp

∞∑
k=n0

ϕ(3ky, 3ky, 3ky)p

9kβp
< ε,

which leads a contradiction. Hence the mapping F is a unique quadratic
mapping satisfying (2.3).

Theorem 2.2. Let X be a vector space and Y a (β, p)-Banach space.
If there exists a function ϕ : X ×X ×X → [0,∞) for which a mapping
f : X → Y satisfies

‖Df(x, y, z)‖ ≤ ϕ(x, y, z), and

Φ2(x, y, z) :=
∞∑
k=1

9kβpϕ(
x

3k
,
y

3k
,
z

3k
) <∞,

for all x, y, z ∈ X, then there exists a unique quadratic mapping F :
X → Y , defined as F (x) = limn→∞ 9nf( x

3n ), x ∈ X, which satisfies the
equation (1.1) and

‖f(x)− F (x)‖ ≤ 1

18β
[Φ2(x, x, x)]

1
p
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for all x ∈ X.

Proof. We see from (2.4) that

‖f(x)− 9f(
x

3
)‖p ≤ 1

2βp
ϕ(
x

3
,
x

3
,
x

3
)p

for all x ∈ X. Then it follows by induction that

‖f(x)− 9nf(
x

3n
)‖p ≤ 1

18βp

n∑
k=1

9kβpϕ(
x

3k
,
x

3k
,
x

3k
)p

for all x ∈ X. Applying the same argument as in the proof of Theorem
2.1, we get the desired results.

As applications, we obtain the following stability results of the equa-
tion (1.1), which generalize stability results in normed spaces.

Corollary 2.3. Suppose X is a vector space and Y is a (β, p)-
Banach space. Let f : X → Y be a mapping satisfying

‖Df(x, y, z)‖ ≤ ε
for some ε > 0 and for all x, y, z ∈ X. Then there exists a unique
quadratic mapping F : X → Y which satisfies (1.1) and

‖f(x)− F (x)‖ ≤ ε

2β
p
√

9βp − 1
, (x ∈ X).(2.9)

Proof. Let ϕ(x, y, z) := ε for all x, y, z ∈ X. Then by Theorem 2.1,
we have

‖f(x)− F (x)‖ ≤ 1

18β

[ ∞∑
k=0

εp

9kβp

] 1
p

=
ε

2β(9βp − 1)
1
p

for all x ∈ X, as desired.

Corollary 2.4. Suppose X is a quasi-α-normed space and Y is
a (β, p)-Banach space. For given positive real numbers ε and r with
αr 6= 2β, let f : X → Y be a mapping satisfying

‖Df(x, y, z)‖ ≤ ε(‖x‖r + ‖y‖r + ‖z‖r)
for all x, y, z ∈ X. Then there exists a unique quadratic mapping F :
X → Y such that

‖f(x)− F (x)‖ ≤ 3ε

2β p
√
|32βp − 3rαp|

‖x‖r

for all x ∈ X.
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Proof. Considering a function ϕ(x, y, z) := ε(‖x‖r + ‖y‖r + ‖z‖r)
and applying Theorem 2.1 and Theorem 2.2 to each cases rα < 2β or
rα > 2β, respectively, we obtain the required approximation for each
cases rα < 2β or rα > 2β, respectively.

Corollary 2.5. Suppose X is a quasi-α-normed space and Y is a
(β, p)-Banach space. For a given positive real number θ and three real
numbers ri, let f : X → Y be a mapping satisfying

‖Df(x, y, z)‖ ≤ θ‖x‖r1‖y‖r2‖z‖r3(2.10)

for all x, y, z ∈ X, where r := r1 + r2 + r3 > 0, rα 6= 2β. Then there
exists a unique quadratic mapping F : X → Y such that

‖f(x)− F (x)‖ ≤ θ

2β p
√
|32βp − 3rαp|

‖x‖r

for all x ∈ X.

Proof. Considering a function ϕ(x, y, z) := θ‖x‖r1‖y‖r2‖z‖r3 and then
applying Theorem 2.1 and Theorem 2.2 to each cases rα < 2β or
rα > 2β, respectively, we obtain the desired result for each cases rα < 2β
or rα > 2β, respectively.

Remark 2.6. In Corollary 2.5, let r3 be a positive real number
without loss of generality. If a mapping f : X → Y with regularity
condition f(0) = 0 satisfies the assumption (2.10), then we find that
Df(x, y, 0) = 0, which yields the equation

f(x+ 2y) + f(2x+ y) = 4f(x+ y) + f(x) + f(y)

for all x, y ∈ X. Thus, it follows from Theorem 2.1 in [3] that f is itself
a quadratic mapping in this case.
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