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THE RIEMANN-STIELTJES DIAMOND-ALPHA
INTEGRAL ON TIME SCALES

DAFANG ZHAO*, XUEXIAO YOU** AND JIAN CHENG***

ABSTRACT. In this paper, we define and study the Riemann—Stieltjes
diamond-alpha integral on time scales. Many properties of this in-
tegral will be obtained. The Riemann—Stieltjes diamond-alpha in-
tegral contains the Riemann—Stieltjes integral and diamond-alpha
integral as special cases.

1. Introduction

The calculus on time scales was introduced for the first time in 1988
by Hilger [1] to unify the theory of difference equations and the theory of
differential equations. It has been extensively studied on various aspects
by several authors [2-8].

Two versions of the calculus on time scales, the delta and nabla cal-
culus, are now standard in the theory of time scales [3, 4]. In 2006, the
diamond-alpha integral on time scales was introduced by Sheng, Fadag,
Henderson, and Davis [10], as a linear combination of the delta and nabla
integrals. The diamond-alpha integral reduces to the standard delta in-
tegral for @« = 1 and to the standard nabla integral for a = 0. We refer
the reader to [9, 10, 11] for a complete account of the recent diamond-
alpha integral on time scales. In 2009, the Riemann diamond-alpha
integral on time scales, as a more basic notion of diamond-alpha inte-
gral, was introduced by A.B. Malinowska and D.F.M. Torres [12]. In this
paper we define the Riemann—Stieltjes diamond-alpha integral on time
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scales, which give a common generalization of the Riemann diamond-
alpha integral and the Riemann—Stieltjes integral [8]. We also prove the
corresponding main theorems of the Riemann—Stieltjes diamond-alpha
integral.

2. Preliminaries

A time scale T is a nonempty closed subset of real numbers R with the
subspace topology inherited from the standard topology of R. For a,b €
T we define the closed interval [a,b]T by [a,blr = {t € T : a <t < b}.
For t € T we define the forward jump operator o(t) by o(t) = inf{s >
t: s € T} where inf ) = sup{T}, while the backward jump operator p(t)
is defined by p(t) = sup{s < t:s € T} where sup® = inf{T}.

If o(t) > t, we say that t is right-scattered, while if p(t) < ¢, we say
that t is left-scattered. If o(t) = ¢, we say that t is right-dense, while if
p(t) = t, we say that ¢ is left-dense. A point t € T is dense if it is right and
left dense; isolated if it is right and left scattered. The forward graininess
function p(t) and the backward graininess function 7(t) are defined by
w(t) =o(t)—t, n(t) =t—p(t) for all t € T respectively. If sup T is finite
and left-scattered, then we define T* := T\ sup T, otherwise T .= T; if
inf T is finite and right-scattered, then Ty := T\ inf T, otherwise Ty :=
T. We set T§ := T* N Ty.

A function f : [a,b]r — R is called regulated provided its right-sided
limits exist at all right-dense point of [a, b)T and its left-sided limits exist
at all left-dense point of (a, b|

A function f : T — R is delta differentiable at t € T* if there exists
a number f2(t) such that, for each ¢ > 0, there exists a neighborhood
U of t such that

[F(o(t) = £(s) = FA(D)(0(t) = 5)| < elo(t) — s
for all s € U. We call f2(t) the delta derivative of f at t and we say
that f is delta differentiable if f is delta differentiable for all ¢ € T*.
A function f : T — R is nabla differentiable at t € T}, if there exists

a number fV(t) such that, for each ¢ > 0, there exists a neighborhood
V of t such that

[ (p(t) = F(s) = FY()(p(t) — 5)| < elp(t) — s

for all s € V. We call fV(t) the nabla derivative of f at ¢ and we say
that f is nabla differentiable if f is nabla differentiable for all ¢t € Ty.
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Let t,s € T and define iy s :== o(t) —s and 7 s := p(t) —s. A function
f: T — R is diamond-« differentiable at t € Tﬁ if there exists a number
fOo(t) such that, for each & > 0, there exists a neighborhood U of ¢ such
that, for all s € U,

| f (o ()= F(5)),s+(L=) (f(p(£)) = f () pae,s=F O (D) e8] < elpre,stie,s|-
3. The Riemann-Stieltjes diamond-a integral

A partition of [a, b]r is any finite ordered subset

P ={to,t1,...,tp} Cla,blT, where a=ty<t; <...<t, =0

Each partition P = {tg,t1,...,t,} of [a, b]T decomposes it into subin-
tervals [ti—1,t;)T, i = 1,2,...,n, such that for i # j one has [t;_1,t;)r N
[tj-1,tj)T = 0.

By P([a, bT) we denote the set of all partitions of [a, b]t. Let Py, P, €
P([a,b]r). If P,, C P, we call P, a refinement of P,. If P,, P, are
independently chosen, then the partition P,UF,, is a common refinement
of P, and P,,. Let g : [a,b]r — R be a real-valued non-decreasing
function on [a, b]r. For the partition P we define the set

g(P) ={g(a) = g(to),9(t1), .-, 9(tn) = g(b)} C g([a,b]r).

The image g([a, b]r) is not necessarily an interval in the classical sense,
because our interval [a,b]y may contain scattered points. From now
on let g : [a,b]r — R be always a non-decreasing real function on the
considered interval [a, b]T.

Let f : [a,blr — R be a real-valued bounded function on [a, b]r. We
denote

% = Sup{f(t) 1t e (tifl,tih[‘}, m; = 1nf{f(t) S (tifl,ti]’]r},
Let a € [0, 1]. The upper Darboux-Stieltjes ¢,-sum of f with respect
to the partition P, denoted by U(f, g, P), is defined by

n

U(f,9,P) =Y (aMi+ (1= a)My)(g(ti) — g(ti-1)),
i=1
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while the lower Darboux-Stieltjes ¢,-sum of f with respect to the par-
tition P, denoted by L(f, g, P), is defined by

n

L(f,9.P) = Z(aﬁﬁ' (1 —a)mq)(g(ti) — g(ti-1))-

i=1
Note that
U(f,9,P) <Y (oM + (1 —a)M)(g(t;) — g(ti-1))
i=1
= (aM + (1 = a)M)(g(b) — g(a))
and

L(faga >Zam+(1_a) )(g(tl) g(tlfl))

= (am + (1 = a)m)(g(b) — g(a)).
Thus, we have:
(am + (1 — a)m)(g(b) — g(a))
< L(f,9.P) <U(f,9,P) < (aM + (1 — a)M)(g(b) — g(a)).

DEFINITION 3.1. Let I = [a, b|T, where a,b € T. The upper Darboux-
Stieltjes ¢, —integral from a to b with respect to function g is defined
by

b
[ t@eas = _int U(f.9.P)

The lower Darboux-Stieltjes ¢, —integral from a to b with respect to

function ¢ is defined by

b
/ F(H)eag(t) = swp  L(f,g.P)
Ja _ PeP([a,b]T)

If f;f( ) o g(t f f(t) oq g(t), then we say that f is Riemann—
Stieltjes <>a—1ntegrable with respect to g on [a,b]r, and the common
value of the integrals, denoted by f; f(t)oq g(t), is called the Riemann—
Stieltjes ¢, — integral.

DEFINITION 3.2. Let I = [a, b|T, where a,b € T. The upper Darboux-
Stieltjes A—integral from a to b with respect to function g is defined by

/ 7t inf  U(f,g,P)

PGP([CL b]'ﬂ‘
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where U(f, g, P) denote the upper Darboux-Stieltjes sum of f with re-
spect to the partition P and

U(f.g. P ZM -1)); Mi = sup{f(t) : t € [ti-1,ti)1}.

The lower Darboux-Stieltjes A—integral from a to b with respect to
function ¢ is defined by

b
[ H0800) = s Lifg.P)
Ja_ PeP([ab]r)
where L(f, g, P) denote the lower Darboux-Stieltjes sum of f with re-
spect to the partition P and

f,g, Zmz z ti_ 1)),77% = inf{f(t) :t e [tiflyti)’ll‘}-

If f; f(t)Ag f f(t) , then we say that f is A—integrable with
respect to g on [a blT, and the common value of the integrals, denoted

by ff f(t)Ag(t), is called the Riemann-Stieltjes A— integral. Similarly,
we can give the definition of the Riemann-Stieltjes V— integral.

We can easily get the following two theorems.

THEOREM 3.3. If f : [a,blr — R is Riemann-Stieltjes A—integrable
and Riemann-Stieltjes V—integrable with respect to g : [a,blr — R on
the interval [a, b]T, then it is Riemann—Stieltjes ¢, —integral with respect
to g on [a,b]T and

/f S gt —a/f (1) Ag(t) 1—@)/abf(t)Vg(t)

THEOREM 3.4. Let f : [a,blr — R is Riemann—Stieltjes o, —integrable
with respect to g : [a,b]lr — R on the interval [a, b]T.

(i) If « = 1, then f is Riemann—Stieltjes A—integrable with respect
to g on [a, b|t.

(ii) If & = 0, then f is Riemann—Stieltjes V—integrable with respect
to g on |[a, b|t.

(iii) If 0 < a < 1, then f is Riemann-Stieltjes A—integrable and
Riemann-Stieltjes V—integrable with respect to g on [a,bt.

(iv) If g = t, then the Riemann—Stieltjes o,—integral reduces to the
standard diamond-alpha integral.
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The following theorems may be showed in the same way as Theorem
5.5 and Theorem 5.6 in [4] or Theorem 3.5 and Theorem 3.6 in [8].

THEOREM 3.5. Let L(f,g,P) = U(f,g,P) for some P € P([a,b|T),
then the function f is Riemann—Stieltjes ¢,—integrable on the interval
[a, blT with respect to g and

b
/f@%dﬂ=Mﬂ%ﬂ=U%%H-

THEOREM 3.6. Let f : [a,b]r — R be a bounded function on the
interval [a, b|r. Then the function f is Riemann—Stieltjes o, —integrable
on the interval [a, bl with respect to g if and only if for every € > 0 there
exists a partition P € P([a,b]|T) such that U(f,g,P) — L(f,g,P) < e.

The following Lemma can be found in [8].

LEMMA 3.7. Let I = [a,b]r be a closed (bounded) interval in T and
let g be continuous on [a,bly. For every 6 > 0 there is a partition
Ps = {to,t1,...,tn} € P([a,b]r) such that for each i one has:

g(ti) —g(ti=1) <6 or g(ti) — g(ti—1) > 5 A p(t;) = ti1.

THEOREM 3.8. A bounded function f on [a,b]T is Riemann-Stieltjes
oq—Integrable if and only if for each € > 0 there exists § > 0 such that
Ps € P([a,b]r) implies

U(fagvp5)_L(f,g,P§) < €.

Proof. If for each € > 0 there exists § > 0 such that Py € P([a,b]T)
implies
U(f,g,P(;) —L(f,g,P(;) <€,

then we have that f on [a, b]r is integrable by Theorem 3.6.

Conversely, suppose that f is Riemann—Stieltjes ¢, —integrable with
respect to g on [a,b]r. If @ =1 or @ = 0 then, f is Riemann—Stieltjes
A—integrable or V—integrable with respect to function g on [a,b]r.
Therefore condition holds from [8,Theorem 2.6]. Now, let 0 < @ < 1,
f is Riemann—Stieltjes ¢, — integrable with respect to function g, then
f is Riemann—Stieltjes A—integrable or V—integrable. According to
[8,Theorem 2.6], for each € > 0 there exists &’ > 0 and §” > 0 such that
Ps: € P(la, blT), Ps» € P([a,b]T) we have

b € b €
U9 o) < [ F000ag®)+ 5. [ 50 easlt) ~ § < Lf.9. Py,
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If Ps € P([a,b]r) where § = min{d’, "}, then we have
b b
[ 1009t - ; <Lf.9.P) U9, ) < [ f(®0aglt)+

Because f;f(t) oa g(t f f(t) oq g(t), then

(fa!],P(S)—L(f,g,Pg) < €.
O

The proofs of the following three results are very similar to the proofs
of Theorems 3.5, 3.6 and 3.7 in [8] respectively and hence the proofs are
omitted.

THEOREM 3.9. Let functions f1, fo : T — R be Riemann-Stieltjes
oq—Integrable with respect to g : T — R on the interval [a,b]|T, and
«, B be arbitrary real numbers. Then, af; + [(fs is Riemann-Stieltjes
oq—Integrable with respect to g : T — R on [a, b]T and

b b b
/ (afi(t) £ Bfa(t)) oa g(t) —04/ fi(t) oa g(t)iB/ Ja(t) oa g(t).

a

THEOREM 3.10. Let f : T — R be Riemann-Stieltjes ¢, —integrable
with respect to g1, g2 : T — R on the interval [a,b]t, and o, be
arbitrary real numbers. Then, f is Riemann-Stieltjes ¢, —integrable with
respect to agy + gz on [a,blr and

b b b
/ £(t) 0 (ag1(t) + Bga(t)) = a / F(8) 00 g1 (8) + 8 / F(t) 0 g2(0).

THEOREM311 Let a,b,c € Tanda < b <c Iff:T — R is
bounded on [a,c|t and g : T — R is non-decreasing on [a, ¢|t, then

/f % g(t /f % g(t /f % g(t

THEOREM 3.12. Let I = [a,b]y, where a,b € T. Every constant
function f : T — R, f(t) = ¢, is Riemann-Stieltjes ¢, —integrable with
respect to g on [a,blr and

/ £() 00 g(t) = c(g(b) — g(a)).

Proof. Let P € P([a,b]T) and P = {tg,--- ,t,}. Then we have

n

i=1
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Hence, [ f(1) o g(t) = Jof () 0a g(t) = c(g(b) — g(a)). -

The following theorem may be proved in much the same way as [4,
Theorem 5.18, 5.19, 5.20, 5.21.].

THEOREM 3.13. Let I = [a,b]r, where a,b € T.
(i) Every monotone function f is Riemann-Stieltjes ©,—Integrable
with respect to g on [a, b|T.
(ii) Every continuous function f is Riemann-Stieltjes o,—integrable
with respect to g on [a, b|T.
(iii) Every bounded function f with only finitely many discontinuity
points is Riemann—Stieltjes ¢,—integrable with respect to g on
[a, b]T.
(iv) Every regulated function f is Riemann—Stieltjes o,—integrable
with respect to g on [a, b|t.

THEOREM 3.14. Let f : T — R and t € T. Then, f is Riemann-
Stieltjes oo —integrable with respect to g on [t,o(t)]T and
o(t)
t (s) 0a g(s) = (af(t) + (1 —a)f(a(t)))(g(a(t)) — g(t)).
Moreover, if 0 < a < 1 and g is ¢,—differentiable at t, then

o(t)
t (5) a () = u()g™ () (af(t) + (1 — ) f(a(1))).

Proof. If t = o(t), then the equality is obvious. If ¢ < o(t), then

P([t,o(t)]T) contains only one element given by
t=s0<s1=o0(t).

Since [so, s1)T = {t} and (so, s1]t = {o(t)}, we have

U(f.g9,P) = L(f,9,P)

= af(t)(g(o(t)) —g(t)) + (1 —a)f(a(t))(g(a(t)) — g(t)).
By Theorem 3.5, f is Riemann-Stieltjes ¢,—integrable with respect to
g on [t,o(t)]r and
o(t)
t (s) 0 g(s) = (af(t) + (1 = a) f(a(t)))(g(c(t)) — g(t)).

By [9, Corollary 3.5., Theorem 3.9.], if 0 < o < 1 and g is oq—
differentiable at ¢, then g is A differentiable at ¢ and g(o(t)) — g(t) =
p(t)g> (t).

O
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THEOREM 3.15. Let f : T — R andt € T. Then, f is Riemann-
Stieltjes ¢, —integrable with respect to g on [p(t),t]T and

/( ) f(s) 0a g(s) = (af(p(t)) + (1 = ) f(1))(g(t) = g(p(1)))-
p(t

Moreover, if 0 < a < 1 and g is ¢, —differentiable at t, then

/}yﬂﬁoag@)—n@mvﬁﬂaf@6»+%1—a%ﬂ0)
p(t

Proof. If t = p(t), then the equality is obvious. If ¢ > p(t), then
[p(t), t]T contains only one element given by
p(t) =s0 < s =t.
Since [so, s1)T = {p(t)} and (so, s1]T = {t}, we have

U(f,9,P) = L(f.9,P)
= af(p()(g(t) — g(p(t)) + (1 = ) F{)(g(t) — g(p(1)))-

By Theorem 3.5, f is Riemann-Stieltjes ¢,—integrable with respect to
g on [p(t),t]r and

/(t) f(s) 0 g(s) = (af(p(t)) + (1 — ) f(£))(g(t) — g(p(1)))-

By [9,Corollary 3.5.,Theorem 3.9.], if 0 < a < 1 and g is ¢4— dif-
ferentiable at ¢, then g is V differentiable at ¢ and g(t) — g(p(t)) =

n(t)gY (t). O

By the definition of the Riemann-Stieltjes ¢,—integral, we have the
following Corollary:

COROLLARY 3.16. Let a,b € T and a < b. Then we have the follow-

ing:

(i) If T = R, then a bounded function f is Riemann-Stieltjes ©,—
integrable with respect to g on the interval [a, b|t if and only if f
is Riemann-Stieltjes integrable with respect to g on [a,b|r in the
classical sense. Moreover, then

b b
/f@%mnz/fm@w
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(ii) If T = Z, then each function f : Z — R is Riemann-Stieltjes
oo —integrable with respect to function g : Z — R on the interval
[a, b]T. Moreover
b b—1

/ F(t) o g(t) =D (af(t) + (1 —a)f(t+ 1) (gt +1) - g(t).

a t=a

(iii) If T = hZ, then each function f : hZ — R is Riemann-Stieltjes
oo —Integrable with respect to function g : hZ — R on the interval
[a, b]T. Moreover

b il
/ F#)oag(t) = [af(kh—h)+(1—a)f(kh))(g(kh) — g(kh— h)).
a k=%+41
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