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THE RIEMANN-STIELTJES DIAMOND-ALPHA
INTEGRAL ON TIME SCALES

Dafang Zhao*, Xuexiao You**, and Jian Cheng***

Abstract. In this paper, we define and study the Riemann–Stieltjes
diamond-alpha integral on time scales. Many properties of this in-
tegral will be obtained. The Riemann–Stieltjes diamond-alpha in-
tegral contains the Riemann–Stieltjes integral and diamond-alpha
integral as special cases.

1. Introduction

The calculus on time scales was introduced for the first time in 1988
by Hilger [1] to unify the theory of difference equations and the theory of
differential equations. It has been extensively studied on various aspects
by several authors [2-8].

Two versions of the calculus on time scales, the delta and nabla cal-
culus, are now standard in the theory of time scales [3, 4]. In 2006, the
diamond-alpha integral on time scales was introduced by Sheng, Fadag,
Henderson, and Davis [10], as a linear combination of the delta and nabla
integrals. The diamond-alpha integral reduces to the standard delta in-
tegral for α = 1 and to the standard nabla integral for α = 0. We refer
the reader to [9, 10, 11] for a complete account of the recent diamond-
alpha integral on time scales. In 2009, the Riemann diamond-alpha
integral on time scales, as a more basic notion of diamond-alpha inte-
gral, was introduced by A.B. Malinowska and D.F.M. Torres [12]. In this
paper we define the Riemann–Stieltjes diamond-alpha integral on time
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scales, which give a common generalization of the Riemann diamond-
alpha integral and the Riemann–Stieltjes integral [8]. We also prove the
corresponding main theorems of the Riemann–Stieltjes diamond-alpha
integral.

2. Preliminaries

A time scale T is a nonempty closed subset of real numbers R with the
subspace topology inherited from the standard topology of R. For a, b ∈
T we define the closed interval [a, b]T by [a, b]T = {t ∈ T : a ≤ t ≤ b}.
For t ∈ T we define the forward jump operator σ(t) by σ(t) = inf{s >
t : s ∈ T} where inf ∅ = sup{T}, while the backward jump operator ρ(t)
is defined by ρ(t) = sup{s < t : s ∈ T} where sup ∅ = inf{T}.

If σ(t) > t, we say that t is right-scattered, while if ρ(t) < t, we say
that t is left-scattered. If σ(t) = t, we say that t is right-dense, while if
ρ(t) = t, we say that t is left-dense. A point t ∈ T is dense if it is right and
left dense; isolated if it is right and left scattered. The forward graininess
function µ(t) and the backward graininess function η(t) are defined by
µ(t) = σ(t)− t, η(t) = t−ρ(t) for all t ∈ T respectively. If supT is finite
and left-scattered, then we define Tk := T\ supT, otherwise Tk := T; if
inf T is finite and right-scattered, then Tk := T\ inf T, otherwise Tk :=
T. We set Tk

k := Tk
⋂
Tk.

A function f : [a, b]T → R is called regulated provided its right-sided
limits exist at all right-dense point of [a, b)T and its left-sided limits exist
at all left-dense point of (a, b]T

A function f : T → R is delta differentiable at t ∈ Tk if there exists
a number f∆(t) such that, for each ε > 0, there exists a neighborhood
U of t such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|
for all s ∈ U . We call f∆(t) the delta derivative of f at t and we say
that f is delta differentiable if f is delta differentiable for all t ∈ Tk.

A function f : T → R is nabla differentiable at t ∈ Tk if there exists
a number f∇(t) such that, for each ε > 0, there exists a neighborhood
V of t such that

|f(ρ(t))− f(s)− f∇(t)(ρ(t)− s)| ≤ ε|ρ(t)− s|
for all s ∈ V . We call f∇(t) the nabla derivative of f at t and we say
that f is nabla differentiable if f is nabla differentiable for all t ∈ Tk.
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Let t, s ∈ T and define µt,s := σ(t)−s and ηt,s := ρ(t)−s. A function
f : T→ R is diamond-α differentiable at t ∈ Tk

k if there exists a number
f♦α(t) such that, for each ε > 0, there exists a neighborhood U of t such
that, for all s ∈ U ,

|α(f(σ(t))−f(s))ηt,s+(1−α)(f(ρ(t))−f(s))µt,s−f♦α(t)µt,sηt,s| ≤ ε|µt,sηt,s|.

3. The Riemann-Stieltjes diamond-α integral

A partition of [a, b]T is any finite ordered subset

P = {t0, t1, . . . , tn} ⊂ [a, b]T, where a = t0 < t1 < . . . < tn = b.

Each partition P = {t0, t1, . . . , tn} of [a, b]T decomposes it into subin-
tervals [ti−1, ti)T, i = 1, 2, . . . , n, such that for i 6= j one has [ti−1, ti)T ∩
[tj−1, tj)T = ∅.

By P([a, b]T) we denote the set of all partitions of [a, b]T. Let Pn, Pm ∈
P([a, b]T). If Pm ⊂ Pn we call Pn a refinement of Pm. If Pn, Pm are
independently chosen, then the partition Pn∪Pm is a common refinement
of Pn and Pm. Let g : [a, b]T → R be a real-valued non-decreasing
function on [a, b]T. For the partition P we define the set

g(P ) = {g(a) = g(t0), g(t1), . . . , g(tn) = g(b)} ⊂ g([a, b]T).

The image g([a, b]T) is not necessarily an interval in the classical sense,
because our interval [a, b]T may contain scattered points. From now
on let g : [a, b]T → R be always a non-decreasing real function on the
considered interval [a, b]T.

Let f : [a, b]T → R be a real-valued bounded function on [a, b]T. We
denote

M = sup{f(t) : t ∈ [a, b)T}, m = inf{f(t) : t ∈ [a, b)T},
M = sup{f(t) : t ∈ (a, b]T}, m = inf{f(t) : t ∈ (a, b]T},

and for 1 ≤ i ≤ n,

Mi = sup{f(t) : t ∈ [ti−1, ti)T}, mi = inf{f(t) : t ∈ [ti−1, ti)T},
Mi = sup{f(t) : t ∈ (ti−1, ti]T}, mi = inf{f(t) : t ∈ (ti−1, ti]T},

Let α ∈ [0, 1]. The upper Darboux-Stieltjes ¦α-sum of f with respect
to the partition P , denoted by U(f, g, P ), is defined by

U(f, g, P ) =
n∑

i=1

(αMi + (1− α)Mi)(g(ti)− g(ti−1)),
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while the lower Darboux-Stieltjes ¦α-sum of f with respect to the par-
tition P , denoted by L(f, g, P ), is defined by

L(f, g, P ) =
n∑

i=1

(αmi + (1− α)mi)(g(ti)− g(ti−1)).

Note that

U(f, g, P ) ≤
n∑

i=1

(αM + (1− α)M)(g(ti)− g(ti−1))

= (αM + (1− α)M)(g(b)− g(a))

and

L(f, g, P ) ≥
n∑

i=1

(αm + (1− α)m)(g(ti)− g(ti−1))

= (αm + (1− α)m)(g(b)− g(a)).

Thus, we have:
(αm + (1− α)m)(g(b)− g(a))

≤ L(f, g, P ) ≤ U(f, g, P ) ≤ (αM + (1− α)M)(g(b)− g(a)).

Definition 3.1. Let I = [a, b]T, where a, b ∈ T. The upper Darboux-
Stieltjes ¦α−integral from a to b with respect to function g is defined
by ∫ b

a
f(t) ¦α g(t) = inf

P∈P([a,b]T)
U(f, g, P );

The lower Darboux-Stieltjes ¦α−integral from a to b with respect to
function g is defined by

∫ b

a
f(t) ¦α g(t) = sup

P∈P([a,b]T)
L(f, g, P ).

If
∫ b
a f(t) ¦α g(t) =

∫ b
a f(t) ¦α g(t), then we say that f is Riemann–

Stieltjes ¦α−integrable with respect to g on [a, b]T, and the common
value of the integrals, denoted by

∫ b
a f(t) ¦α g(t), is called the Riemann–

Stieltjes ¦α− integral.

Definition 3.2. Let I = [a, b]T, where a, b ∈ T. The upper Darboux-
Stieltjes ∆−integral from a to b with respect to function g is defined by

∫ b

a
f(t)∆g(t) = inf

P∈P([a,b]T)
U(f, g, P )
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where U(f, g, P ) denote the upper Darboux-Stieltjes sum of f with re-
spect to the partition P and

U(f, g, P ) =
n∑

i=1

Mi(g(ti)− g(ti−1)),Mi = sup{f(t) : t ∈ [ti−1, ti)T}.

The lower Darboux-Stieltjes ∆−integral from a to b with respect to
function g is defined by

∫ b

a
f(t)∆g(t) = sup

P∈P([a,b]T)
L(f, g, P ).

where L(f, g, P ) denote the lower Darboux-Stieltjes sum of f with re-
spect to the partition P and

L(f, g, P ) =
n∑

i=1

mi(g(ti)− g(ti−1)), mi = inf{f(t) : t ∈ [ti−1, ti)T}.

If
∫ b
a f(t)∆g(t) =

∫ b
a f(t)∆g(t), then we say that f is ∆−integrable with

respect to g on [a, b]T, and the common value of the integrals, denoted
by

∫ b
a f(t)∆g(t), is called the Riemann-Stieltjes ∆− integral. Similarly,

we can give the definition of the Riemann-Stieltjes ∇− integral.

We can easily get the following two theorems.

Theorem 3.3. If f : [a, b]T → R is Riemann–Stieltjes ∆−integrable
and Riemann–Stieltjes ∇−integrable with respect to g : [a, b]T → R on
the interval [a, b]T, then it is Riemann–Stieltjes ¦α−integral with respect
to g on [a, b]T and

∫ b

a
f(t) ¦α g(t) = α

∫ b

a
f(t)∆g(t) + (1− α)

∫ b

a
f(t)∇g(t).

Theorem 3.4. Let f : [a, b]T → R is Riemann–Stieltjes ¦α−integrable
with respect to g : [a, b]T → R on the interval [a, b]T.

(i) If α = 1, then f is Riemann–Stieltjes ∆−integrable with respect
to g on [a, b]T.

(ii) If α = 0, then f is Riemann–Stieltjes ∇−integrable with respect
to g on [a, b]T.

(iii) If 0 < α < 1, then f is Riemann–Stieltjes ∆−integrable and
Riemann–Stieltjes ∇−integrable with respect to g on [a, b]T.

(iv) If g ≡ t, then the Riemann–Stieltjes ¦α−integral reduces to the
standard diamond-alpha integral.
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The following theorems may be showed in the same way as Theorem
5.5 and Theorem 5.6 in [4] or Theorem 3.5 and Theorem 3.6 in [8].

Theorem 3.5. Let L(f, g, P ) = U(f, g, P ) for some P ∈ P([a, b]T),
then the function f is Riemann–Stieltjes ¦α−integrable on the interval
[a, b]T with respect to g and

∫ b

a
f(t) ¦α g(t) = L(f, g, P ) = U(f, g, P ).

Theorem 3.6. Let f : [a, b]T → R be a bounded function on the
interval [a, b]T. Then the function f is Riemann–Stieltjes ¦α−integrable
on the interval [a, b]T with respect to g if and only if for every ε > 0 there
exists a partition P ∈ P([a, b]T) such that U(f, g, P )− L(f, g, P ) < ε.

The following Lemma can be found in [8].

Lemma 3.7. Let I = [a, b]T be a closed (bounded) interval in T and
let g be continuous on [a, b]T. For every δ > 0 there is a partition
Pδ = {t0, t1, . . . , tn} ∈ P([a, b]T) such that for each i one has:

g(ti)− g(ti−1) ≤ δ or g(ti)− g(ti−1) > δ ∧ ρ(ti) = ti−1.

Theorem 3.8. A bounded function f on [a, b]T is Riemann-Stieltjes
¦α−integrable if and only if for each ε > 0 there exists δ > 0 such that
Pδ ∈ P([a, b]T) implies

U(f, g, Pδ)− L(f, g, Pδ) < ε.

Proof. If for each ε > 0 there exists δ > 0 such that Pδ ∈ P([a, b]T)
implies

U(f, g, Pδ)− L(f, g, Pδ) < ε,

then we have that f on [a, b]T is integrable by Theorem 3.6.
Conversely, suppose that f is Riemann–Stieltjes ¦α−integrable with

respect to g on [a, b]T. If α = 1 or α = 0 then, f is Riemann–Stieltjes
∆−integrable or ∇−integrable with respect to function g on [a, b]T.
Therefore condition holds from [8,Theorem 2.6]. Now, let 0 < α < 1,
f is Riemann–Stieltjes ¦α− integrable with respect to function g, then
f is Riemann–Stieltjes ∆−integrable or ∇−integrable. According to
[8,Theorem 2.6], for each ε > 0 there exists δ′ > 0 and δ′′ > 0 such that
Pδ′ ∈ P([a, b]T), Pδ′′ ∈ P([a, b]T) we have

U(f, g, Pδ′) <

∫ b

a
f(t) ¦α g(t) +

ε

2
,

∫ b

a
f(t) ¦α g(t)− ε

2
< L(f, g, Pδ′′).
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If Pδ ∈ P([a, b]T) where δ = min{δ′, δ′′}, then we have
∫ b

a
f(t) ¦α g(t)− ε

2
< L(f, g, Pδ) ≤ U(f, g, Pδ) <

∫ b

a
f(t) ¦α g(t) +

ε

2
.

Because
∫ b
a f(t) ¦α g(t) =

∫ b
a f(t) ¦α g(t), then

U(f, g, Pδ)− L(f, g, Pδ) < ε.

The proofs of the following three results are very similar to the proofs
of Theorems 3.5, 3.6 and 3.7 in [8] respectively and hence the proofs are
omitted.

Theorem 3.9. Let functions f1, f2 : T → R be Riemann-Stieltjes
¦α−integrable with respect to g : T → R on the interval [a, b]T, and
α, β be arbitrary real numbers. Then, αf1 ± βf2 is Riemann-Stieltjes
¦α−integrable with respect to g : T→ R on [a, b]T and
∫ b

a
(αf1(t)± βf2(t)) ¦α g(t) = α

∫ b

a
f1(t) ¦α g(t)± β

∫ b

a
f2(t) ¦α g(t).

Theorem 3.10. Let f : T → R be Riemann-Stieltjes ¦α−integrable
with respect to g1, g2 : T → R on the interval [a, b]T, and α, β be
arbitrary real numbers. Then, f is Riemann-Stieltjes ¦α−integrable with
respect to αg1 + βg2 on [a, b]T and
∫ b

a
f(t) ¦α (αg1(t) + βg2(t)) = α

∫ b

a
f(t) ¦α g1(t) + β

∫ b

a
f(t) ¦α g2(t).

Theorem 3.11. Let a, b, c ∈ T and a < b < c. If f : T → R is
bounded on [a, c]T and g : T→ R is non-decreasing on [a, c]T, then

∫ c

a
f(t) ¦α g(t) =

∫ b

a
f(t) ¦α g(t) +

∫ c

b
f(t) ¦α g(t).

Theorem 3.12. Let I = [a, b]T, where a, b ∈ T. Every constant
function f : T → R, f(t) ≡ c, is Riemann-Stieltjes ¦α−integrable with
respect to g on [a, b]T and

∫ b

a
f(t) ¦α g(t) = c(g(b)− g(a)).

Proof. Let P ∈ P([a, b]T) and P = {t0, · · · , tn}. Then we have

U(f, g, P ) = L(f, g, P ) = c

n∑

i=1

(g(ti)− g(ti−1)) = c(g(b)− g(a)).



60 Dafang Zhao, Xuexiao You, and Jian Cheng

Hence,
∫ b
a f(t) ¦α g(t) =

∫ b
a f(t) ¦α g(t) = c(g(b)− g(a)).

The following theorem may be proved in much the same way as [4,
Theorem 5.18, 5.19, 5.20, 5.21.].

Theorem 3.13. Let I = [a, b]T, where a, b ∈ T.

(i) Every monotone function f is Riemann–Stieltjes ¦α−integrable
with respect to g on [a, b]T.

(ii) Every continuous function f is Riemann–Stieltjes ¦α−integrable
with respect to g on [a, b]T.

(iii) Every bounded function f with only finitely many discontinuity
points is Riemann–Stieltjes ¦α−integrable with respect to g on
[a, b]T.

(iv) Every regulated function f is Riemann–Stieltjes ¦α−integrable
with respect to g on [a, b]T.

Theorem 3.14. Let f : T → R and t ∈ T. Then, f is Riemann-
Stieltjes ¦α−integrable with respect to g on [t, σ(t)]T and

∫ σ(t)

t
f(s) ¦α g(s) = (αf(t) + (1− α)f(σ(t)))(g(σ(t))− g(t)).

Moreover, if 0 < α ≤ 1 and g is ¦α−differentiable at t, then
∫ σ(t)

t
f(s) ¦α g(s) = µ(t)g∆(t)(αf(t) + (1− α)f(σ(t))).

Proof. If t = σ(t), then the equality is obvious. If t < σ(t), then
P([t, σ(t)]T) contains only one element given by

t = s0 < s1 = σ(t).

Since [s0, s1)T = {t} and (s0, s1]T = {σ(t)}, we have

U(f, g, P ) = L(f, g, P )

= αf(t)(g(σ(t))− g(t)) + (1− α)f(σ(t))(g(σ(t))− g(t)).

By Theorem 3.5, f is Riemann-Stieltjes ¦α−integrable with respect to
g on [t, σ(t)]T and

∫ σ(t)

t
f(s) ¦α g(s) = (αf(t) + (1− α)f(σ(t)))(g(σ(t))− g(t)).

By [9, Corollary 3.5., Theorem 3.9.], if 0 < α ≤ 1 and g is ¦α−
differentiable at t, then g is ∆ differentiable at t and g(σ(t)) − g(t) =
µ(t)g∆(t).
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Theorem 3.15. Let f : T → R and t ∈ T. Then, f is Riemann-
Stieltjes ¦α−integrable with respect to g on [ρ(t), t]T and

∫ t

ρ(t)
f(s) ¦α g(s) = (αf(ρ(t)) + (1− α)f(t))(g(t)− g(ρ(t))).

Moreover, if 0 ≤ α < 1 and g is ¦α−differentiable at t, then
∫ t

ρ(t)
f(s) ¦α g(s) = η(t)g∇(t)(αf(ρ(t)) + (1− α)f(t)).

Proof. If t = ρ(t), then the equality is obvious. If t > ρ(t), then
[ρ(t), t]T contains only one element given by

ρ(t) = s0 < s1 = t.

Since [s0, s1)T = {ρ(t)} and (s0, s1]T = {t}, we have

U(f, g, P ) = L(f, g, P )

= αf(ρ(t))(g(t)− g(ρ(t))) + (1− α)f(t)(g(t)− g(ρ(t))).

By Theorem 3.5, f is Riemann-Stieltjes ¦α−integrable with respect to
g on [ρ(t), t]T and

∫ t

ρ(t)
f(s) ¦α g(s) = (αf(ρ(t)) + (1− α)f(t))(g(t)− g(ρ(t))).

By [9,Corollary 3.5.,Theorem 3.9.], if 0 ≤ α < 1 and g is ¦α− dif-
ferentiable at t, then g is ∇ differentiable at t and g(t) − g(ρ(t)) =
η(t)g∇(t).

By the definition of the Riemann-Stieltjes ¦α−integral, we have the
following Corollary:

Corollary 3.16. Let a, b ∈ T and a < b. Then we have the follow-
ing:

(i) If T = R, then a bounded function f is Riemann-Stieltjes ¦α−
integrable with respect to g on the interval [a, b]T if and only if f
is Riemann-Stieltjes integrable with respect to g on [a, b]T in the
classical sense. Moreover, then

∫ b

a
f(t) ¦α g(t) =

∫ b

a
f(t)dg(t).
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(ii) If T = Z, then each function f : Z → R is Riemann-Stieltjes
¦α−integrable with respect to function g : Z → R on the interval
[a, b]T. Moreover

∫ b

a
f(t) ¦α g(t) =

b−1∑
t=a

(αf(t) + (1− α)f(t + 1))(g(t + 1)− g(t)).

(iii) If T = hZ, then each function f : hZ → R is Riemann-Stieltjes
¦α−integrable with respect to function g : hZ→ R on the interval
[a, b]T. Moreover

∫ b

a
f(t) ¦α g(t) =

b
h
−1∑

k= a
h
+1

[αf(kh− h) + (1−α)f(kh)](g(kh)− g(kh− h)).
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