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THE DIMENSIONS OF THE MINIMUM AND
MAXIMUM CYLINDRICAL LOCAL DIMENSION SETS

In-Soo Baek*

Abstract. We compute the Hausdorff and packing dimensions of
the cylindrical lower or upper local dimension set for a self-similar
measure having different minimum and maximum of the local di-
mension on a self-similar set satisfying the open set condition.

1. Introduction

Recently using the parameter distribution, we got the parallel results
([3]) for the self-similar set(attractor of the IFS(iterated function system)
consisting of n(≥ 2) similitudes satisfying the OSC(open set condition))
instead of the self-similar Cantor set([1]). We used some parameter axes
to get the results. We also gave an example of the different distribution
sets by the differently chosen parameter axes giving the same cylindrical
local dimension set. In this paper, we give the Hausdorff dimensions
and packing dimensions for the minimum local dimension set and the
maximum local dimension set. We([3]) had some results about the di-
mensions for the minimum local dimension set and the maximum local
dimension set when the self-similar measure has all different values of
{ log pk

log ak
}N

k=1. In this paper, we just assume that the minimum and the

maximum of { log pk
log ak

}N
k=1 are different. Finally we give a concrete exam-

ple such that the dimensions of the minimum and maximum cylindrical
local dimension sets are not zero.
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2. Preliminaries

Let N and R be the set of positive integers and the set of real numbers
respectively. An attractor K in the d-dimensional Euclidean space Rd

of the IFS (f1, · · · , fN ) of contractions where N ≥ 2 makes each point
v ∈ K have an infinite sequence ω = (m1,m2, · · · ) ∈ Σ = {1, · · · , N}N
where

{v} =
∞⋂

n=1

Kω|n

for Kω|n = Km1,··· ,mn = fm1 ◦ · · · ◦ fmn(K)([4]) where ω|n denotes the
truncation of ω to the nth place. In such case, we sometimes write π(ω)
for such v using the natural projection π : Σ → K and call Kω|n the
cylinder of v. We note that Kω|n may be different for the same v ∈ K
since v may have different codes ω. Therefore we write Kω|n for such
distinction for the cylinder of v. We call such Kω|n the cylinders of K
and call K a self-similar set if the IFS (f1, · · · , fN ) are similitudes.

Each infinite sequence ω = (m1,m2, · · · ) in the coding space Σ has
the unique subset A(xn(ω)) of its accumulation points in the simplex
of probability vectors in RN of the vector-valued sequence {xn(ω)} =
{(u1, · · · , uN )n} of the probability vectors where uk for 1 ≤ k ≤ N in
the probability vector (u1, · · · , uN )n for each n ∈ N is defined by

uk =
|{1 ≤ l ≤ n : ml = k}|

n
.

The uk for the nth place gives the frequency of the digit k in ω|n =
(m1, · · · ,mn). Sometimes we write nk(ω|n) for such uk. It is well-
known([5]) that a set A(xn(ω)) of the accumulation points of the vector-
valued sequence {xn(ω)} is a continuum in RN .

For the self-similar measure γp on K associated with the probability
vector p = (p1, · · · , pN ) ∈ (0, 1)N , we recall the cylindrical lower and
upper local dimension sets([3]):

E(p)
α = π{ω ∈ Σ : lim inf

n→∞
log γp(Kω|n)
log |Kω|n|

= α},

E
(p)
α = π{ω ∈ Σ : lim sup

n→∞

log γp(Kω|n)
log |Kω|n|

= α}

where |Kω|n| denotes the diameter of the cylinder Kω|n. In this paper,
we assume that the IFS satisfies the open set condition(OSC)([2, 4, 5]).
In this paper, we assume that 0 log 0 = 0 for convenience.
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From now on, dim(E) denotes the Hausdorff dimension of E and
Dim(E) denotes the packing dimension of E([4]). We note that dim(E) ≤
Dim(E) for every set E([4]).

3. Relation between frequency and density

From now on, we assume that the similarity ratios of the similari-
ties (f1, · · · , fN ) are a1, · · · , aN and K is the self-similar set for the IFS
(f1, · · · , fN ) satisfying the OSC and γp on K is the self-similar measure
associated with the probability vector p and (a1, · · · , aN ) ∈ (0, 1)N sat-
isfying

∑N
k=1 as

k = 1. To avoid the degeneration case, we also assume
that p = (p1, · · · , pN ) 6= (as

1, · · · , as
N ) with

∑N
k=1 as

k = 1( ⇐⇒ log pk
log ak

is not the same for all k = 1, · · · , N). We call the set of the elements
y = (y1, · · · , yN ) satisfying y ∈ [0, 1]N satisfying

∑N
k=1 yk = 1 the sim-

plex in this paper.

Remark 3.1. Let r = (r1, · · · , rN ) ∈ [0, 1]N with
∑N

k=1 rk = 1 and
let

g(r,p) =
∑N

k=1 rk log pk∑N
k=1 rk log ak

.

Then

αmin ≡ min
1≤k≤N

log pk

log ak
≤ g(r,p) ≤ max

1≤k≤N

log pk

log ak
≡ αmax.

We also define a function f : (αmin, αmax) → R by

f(α) = αq + β(q)

for α = −β′(q) where
∑N

k=1 pq
ka

β(q)
k = 1. The following Lemma 3.2 (2)

is the key idea to explain our multifractal results.

Lemma 3.2. Let p = (p1, · · · , pN ) ∈ (0, 1)N with
∑N

k=1 pk = 1 and

consider a function β(q) satisfying
∑N

k=1 pq
ka

β(q)
k = 1. Given αmin ≤ α ≤

αmax,

(1) when α ∈ (αmin, αmax), there exists q0 ∈ R such that g(r,p) = α

for r = (r1, · · · , rN ) where rk = pq0

k a
β(q0)
k such that β′(q0) = −α,

and when α ∈ {αmin, αmax}, there exists a real sequence {qn} such

that g(r,p) = α for r = (r1, · · · , rN ) where rk = limn→∞ pqn

k a
β(qn)
k

and limn→∞ β′(qn) = −α,
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(2) when α ∈ (αmin, αmax), if g(y,p) = α with y in the simplex, then
g(y, r) = g(r, r), conversely if g(y, r) = g(r, r) with q0 6= 0 then
g(y,p) = α,
and when α ∈ {αmin, αmax}, if g(y,p) = α with y in the simplex,
then g(y, r) = g(r, r).

Proof. It follows essentially from [3]. We only need to show the fol-
lowings. Note that r = limn→∞ rn and rn = (rn,1, · · · , rn,N ) where

rn,k = pqn

k a
β(qn)
k for each k = 1, · · · , N . Then since αn =

∑N
k=1 rn,k log pk∑N
k=1 rn,k log ak

,

g(rn, rn) =
∑N

k=1 rn,k log rn,k∑N
k=1 rn,k log ak

= αnqn + β(qn) = f(αn).

When α ∈ {αmin, αmax}, since limn→∞ αn = α where αn = −β′(qn),
noting f(αn) = αnqn + β(qn) for αn = −β′(qn) and we have

g(y, r) =
∑N

k=1 yk log limn→∞[pqn

k a
β(qn)
k ]∑N

k=1 yk log ak

= lim
n→∞[qng(y,p) + β(qn)]

= lim
n→∞[αqn + β(qn)]

= lim
n→∞[αnqn + β(qn)]

= lim
n→∞ f(αn)

= lim
n→∞ g(rn, rn)

= g(r, r).

From now on, without specific mention, we fix distinct i, j respectively
satisfying

log pi

log ai
= min

1≤k≤N

log pk

log ak
< max

1≤k≤N

log pk

log ak
=

log pj

log aj
.

It is obvious that there is a unique z ∈ (0, 1)N for y in the simplex
such that g(y,p) = g(z,p) where z = (z1, · · · , zN ) with zj = 1− zi and
zk = 0 if k 6= i, j. We put zy = zi from now on. More precisely, zy is
the projection of y in the simplex into the unit interval [0, 1] satisfying
zy = zi where g(y,p) = g(z,p).
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Theorem 3.3. ([3], Theorem 3.4) For log pi/ log ai ≤ α ≤ log pj/ log aj ,
we have

E
(p)
α = π(F (t))

where
F (t) = {ω : min

y∈A(xn(ω))
zy = t},

and
t log pi + (1− t) log pj

t log ai + (1− t) log aj
= α.

Theorem 3.4. ([3], Theorem 3.5) For log pi/ log ai ≤ α ≤ log pj/ log aj ,
we have

E(p)
α = π(F (t))

where
F (t) = {ω : max

y∈A(xn(ω))
zy = t},

and

t log pi + (1− t) log pj

t log ai + (1− t) log aj
= α.

4. Subset relation and multifratal spectrum

In the following Theorems, let t0 be the real number satisfying
t0 log pi + (1− t0) log pj

t0 log ai + (1− t0) log aj
= g(r0,p)

for r0 = (as
1, · · · , as

N ) with
∑N

k=1 as
k = 1. We note that when α ∈

(αmin, αmax), there exists q0 ∈ R such that g(r,p) = α for r = (r1, · · · , rN )
where rk = pq0

k a
β(q0)
k such that β′(q0) = −α by Lemma 3.2 (1). There-

fore in the following Theorems, given 0 < t < 1, we put r = r(t) =
(r1, · · · , rN ) satisfying rk = pq0

k a
β(q0)
k for β′(q0) = −α where

α = α(t) =
t log pi + (1− t) log pj

t log ai + (1− t) log aj
.

Remark 4.1. For t = 1, we put r(1) = (r1, · · · , rN ) satisfying rk =
limn→∞ pqn

k a
β(qn)
k and limn→∞ β′(qn) = −α(1) = −αmin. In this case,

we can put qn = n. For t = 0, we put r(0) = (r1, · · · , rN ) satisfying
rk = limn→∞ pqn

k a
β(qn)
k and limn→∞ β′(qn) = −α(0) = −αmax. In this

case, we can put qn = −n.
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Remark 4.2. We remark that

lim
n→∞−β′(n) = α(1) = αmin

and
lim

n→∞−β′(−n) = α(0) = αmax

since α(1) and α(0) are the slopes of the asymptotes of the convex
function([4]).

We have the followings.

Theorem 4.3. For every n ∈ N, rn = (r1, · · · , rN ) where rk =
pn

ka
β(n)
k for each k = 1, · · · , N and r−n = (r1, · · · , rN ) where rk =

p−n
k a

β(−n)
k for each k = 1, · · · , N . Then

(1) if 0 < t0 < t ≤ 1, then

E
(p)
α(t) = π(F (t)) = E

(rn)
α(t)n+β(n)

(2) if 0 ≤ t < t0 < 1, then

E
(p)
α(t) = π(F (t)) = E

(r−n)
α(t)(−n)+β(−n)

(3) if 0 < t0 < t ≤ 1, then

E
(p)
α(t) = π(F (t)) = E

(rn)
α(t)n+β(n)

(4) if 0 ≤ t < t0 < 1, then

E
(p)
α(t) = π(F (t)) = E

(r−n)
α(t)(−n)+β(−n).

Proof. For (1), from [3], we only need to show

E
(p)
α(t) = E

(rn)
α(t)n+β(n).

It follows from γrn(Kω|n) = γp(Kω|n)n|Kω|n|β(n) since

E
(p)
α(t) = π{ω ∈ Σ : lim sup

n→∞

log γp(Kω|n)
log |Kω|n|

= α(t)},

and

E
(rn)
α(t)n+β(n) = π{ω ∈ Σ : lim sup

n→∞

log γrn(Kω|n)
log |Kω|n|

= α(t)n + β(n)}.

For (2), from [3], we only need to show

E
(p)
α(t) = E

(r−n)
α(t)(−n)+β(−n).
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It follows from γr−n(Kω|n) = γp(Kω|n)−n|Kω|n|β(−n) since

E
(p)
α(t) = π{ω ∈ Σ : lim sup

n→∞

log γp(Kω|n)
log |Kω|n|

= α(t)},

and

E
(r−n)
α(t)(−n)+β(−n) = π{ω ∈ Σ : lim inf

n→∞
log γr−n(Kω|n)

log |Kω|n|
= α(t)(−n) + β(−n)}.

(3), (4) also follow from the similar arguments above.

Remark 4.4. We note that r(1) = limn→∞ rn and r(0) = limn→∞ r−n.

We have the followings.

Theorem 4.5.

(1) dim(π(F (1))) = Dim(π(F (1))) = dim(E(p)
α(1)) = Dim(E(p)

α(1)) =
g(r(1), r(1))

(2) dim(π(F (0))) = dim(E(p)
α(0)) = g(r(0), r(0)) and Dim(π(F (0))) =

Dim(E(p)
α(0)) = s

(3) dim(π(F (1))) = dim(E(p)
α(1)) = g(r(1), r(1)) and Dim(π(F (1))) =

Dim(E(p)
α(1)) = s

(4) dim(π(F (0))) = Dim(π(F (0))) = dim(E(p)
α(0)) = Dim(E(p)

α(0)) =
g(r(0), r(0)).

Proof. From the above Theorem (1) and the proposition 2.1([3]), we
have Dim(π(F (1))) ≤ limn→∞(α(1)n + β(n)). Noting the proof of
Lemma 3.2 (2), we have limn→∞(α(1)n + β(n)) = g(r(1), r(1)). Fur-
ther we have dim(π(F (1))) ≥ g(r(1), r(1)) since {r(1)} ⊂ F (1) and
dim(π({r(1)})) = g(r(1), r(1))([2]). Similar arguments give (4). For
(2), by the above Theorem (2), dim(π(F (0))) ≤ limn→∞(α(0)(−n) +
β(−n)) = g(r(0), r(0)) from the above similar arguments. Since {r(0)} ⊂
F (0) and dim(π({r(0)})) = g(r(0), r(0))([2]), we have dim(π(F (0))) ≥
g(r(0), r(0)). We note that there is {ω : A(xn(ω)) = C} ⊂ F (0) sat-
isfying r0 = (as

1, ..., a
s
N ) ∈ C where

∑N
k=1 as

k = 1 and C is a contin-
uum. Clearly Dim(π({ω : A(xn(ω)) = C})) = s([2]). (2) follows since
Dim(π(F (0))) ≤ Dim(K) = s. (3) follows from the similar arguments
with the proof of (2).
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Remark 4.6. If log pk
log ak

= log pi

log ai
= α(1), then

lim
n→∞ pn

ka
β(n)
k = a

limn→∞ f(−β′(n))
k .

Putting limn→∞ f(−β′(n)) = f(α(1)), we note that

1 = lim
n→∞

N∑

k=1

pn
ka

β(n)
k =

∑

pk=a
α(1)
k

a
f(α(1))
k .

This also gives the information of r(1), that is, its kth component is
a

f(α(1))
k and its k′th component is 0 if pk′ 6= a

α(1)
k′ . We note that f(αn) =

αnn + β(n) where αn = −β′(n) =
∑N

k=1 pn
ka

β(n)
k log pk∑N

k=1 pn
ka

β(n)
k log ak

. Hence we see

that f(α(1)) = g(r(1), r(1)). For, g(r(1), r(1)) = limn→∞ αnn + β(n) =
limn→∞ f(αn) = f(α(1)).

It also holds for the case: log pk
log ak

= log pj

log aj
= α(0). That is, f(α(0)) =

g(r(0), r(0)) where f(α(0)) = limn→∞ f(−β′(−n)). We also have the
information of r(0), that is, its k-th component is a

f(α(0))
k and its k′-th

component is 0 if pk′ 6= a
α(0)
k′ .

Remark 4.7. We have

lim
t↑1

g(r(t), r(t)) = g(r(1), r(1))

and
lim
t↓0

g(r(t), r(t)) = g(r(0), r(0)).

Further for g(rn, rn) = αnn + β(n) where rn = (rn,1, · · · , rn,N ) with
rn,k = pn

ka
β(n)
k for each k = 1, · · · , N , limn→∞ f(αn) = f(α(1)) where

f(αn) = αnn + β(n) with

αn = −β′(n) =
∑N

k=1 pn
ka

β(n)
k log pk∑N

k=1 pn
ka

β(n)
k log ak

→ α(1).

Similarly for g(rn, rn) = αn(−n)+β(−n) where rn = (rn,1, · · · , rn,N )
with rn,k = p−n

k a
β(−n)
k for each k = 1, · · · , N , limn→∞ f(αn) = f(α(0))

where f(αn) = αn(−n) + β(−n) with

αn = −β′(−n) =
∑N

k=1 p−n
k a

β(−n)
k log pk∑N

k=1 p−n
k a

β(−n)
k log ak

→ α(0).
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The above facts also assure that the continuous function

f : (αmin, αmax) → R

can be extended to the continuous function

f : [αmin, αmax] → R.

Noting that t determines the distribution set F (t) and π(F (t)) and its
Hausdorff dimension g(r(t), r(t)) = αq + β(q) = f(α)(see [3]), we have
that the dimension function dim(π(F (t))) is continuous on [0, 1]. More
precisely, t ∈ (0, 1) determines α = α(t) and α determines q ∈ R such
that β′(q) = −α and they determine f(α) = αq+β(q). Further t ∈ [0, 1]
also determines f(α) since t = 1 gives f(αmin) and t = 0 gives f(αmax).

We have the followings.

Corollary 4.8. If there are unique i, j such that

log pi

log ai
= min

1≤k≤N

log pk

log ak
< max

1≤k≤N

log pk

log ak
=

log pj

log aj
:

(1) dim(π(F (1))) = Dim(π(F (1))) = dim(E(p)
α(1)) = Dim(E(p)

α(1)) = 0

(2) dim(π(F (0))) = dim(E(p)
α(0)) = 0, Dim(π(F (0))) = Dim(E(p)

α(0)) = s

(3) dim(π(F (1))) = dim(E(p)
α(1)) = 0, Dim(π(F (1))) = Dim(E(p)

α(1)) = s

(4) dim(π(F (0))) = Dim(π(F (0))) = dim(E(p)
α(0)) = Dim(E(p)

α(0)) = 0.

Proof. It is not difficult to show that g(r(1), r(1)) = 0 = g(r(0), r(0)),
if there are unique i, j such that

log pi

log ai
= min

1≤k≤N

log pk

log ak
< max

1≤k≤N

log pk

log ak
=

log pj

log aj
.

This is a variation of the exercise 11.2([4]). It easily follows from the
above Theorem.

Remark 4.9. The above Corollary is a more generalized form of the
theorem 4.4([3]) since the assumption of the above Corollary is weaker
than the condition of all different values of { log pk

log ak
}N

k=1.

Example 4.10. Let K = [0, 1] be the self-similar set for the IFS
(f1, f2, f3) satisfying the OSC whose similarity ratios are (a1, a2, a3) =
(1/9, 5/9, 1/3) and γp on K be the self-similar measure associated with
p = (p1, p2, p3) = (1/4, 1/4, 1/2). We([3]) had two different distribution
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structures fixing distinct i, j, that is, for (i, j) = (1, 2) and (i, j) = (3, 2)
respectively

log pi

log ai
= min

1≤k≤3

log pk

log ak
=

log 2
log 3

<
log 4

log 9/5
= max

1≤k≤3

log pk

log ak
=

log pj

log aj
.

In this case, we have dim(E(p)
α(1)) = Dim(E(p)

α(1)) = g(r(1), r(1)) and

dim(E(p)
α(1)) = g(r(1), r(1)), and Dim(E(p)

α(1)) = 1 where α(1) = log 2
log 3 ,

r(1) = (3−√5
2 , 0,

√
5−1
2 ), and g(r(1), r(1)) = log

√
5−1
2

− log 3 > 0. However since

there is unique j(= 2) such that max1≤k≤3
log pk
log ak

= log pj

log aj
, we have

dim(E(p)
α(0)) = 0 and Dim(E(p)

α(0)) = 1, and dim(E(p)
α(0)) = Dim(E(p)

α(0)) = 0.

In this case, α(0) = log 4
log 9/5 , r(0) = (0, 1, 0), and g(r(0), r(0)) = 0.
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