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A NOTE ON A REGULARIZED GAP FUNCTION OF
QVI IN BANACH SPACES

Sangho Kum*

Abstract. Recently, Taji [7] and Harms et al. [4] studied the reg-
ularized gap function of QVI analogous to that of VI by Fukushima
[2]. Discussions are made in a finite dimensional Euclidean space.
In this note, an infinite dimensional generalization is considered in
the framework of a reflexive Banach space. To do so, we introduce
an extended quasi-variational inequality problem (in short, EQVI)
and a generalized regularized gap function of EQVI. Then we in-
vestigate some basic properties of it. Our results may be regarded
as an infinite dimensional extension of corresponding results due to
Taji [7].

1. Introduction

Given a function F : Rn → Rn and a multifunction S : Rn ⇒ Rn with
closed convex values Sx for all x ∈ Rn, the quasi-variational inequality
problem (in short, QVI) is to find a vector x̄ ∈ Sx̄ such that

〈Fx̄, y − x̄〉 ≥ 0 for all y ∈ Sx̄, (1.1)

where 〈·, ·〉 denote the inner product in Rn. If C is a convex closed
subset of Rn and for all x ∈ Rn, Sx = C, then QVI reduces to the
standard variational inequality problem(VI). It is well-known that VI
can be casted as the following equivalent problem:

minimize φ(x) subject to x ∈ C

where φ(x) = −miny∈C 〈Fx, y − x〉 + 1
2‖y − x‖2 is the regularized gap

function by Fukushima [2]. One of the most important features, besides
some excellent global properties, of the regularized gap function φ is
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that it is continuously differentiable if F is so. At this point, a natural
question arises: Is this approach still available for QVI? The answer
is affirmative since Giannessi [3] proposed a gap function for QVI as
follows:

g(x) := − inf
y∈Sx

〈Fx, y − x〉.

But his original gap function is nondifferentiable, possibly extended-
valued. So it is not suitable for dealing with optimization problems. To
resolve this drawback, an extension of the regularized gap function by
Fukushima [2] to QVIs is provided by Taji [7] as follows.

gα(x) := − min
y∈Sx

〈Fx, y − x〉+
α

2
‖y − x‖2

where α > 0 is a parameter. Taji [7] verified characteristic properties of
the regularized gap function gα. However, being different from the case
of VI, gα has no nice differentiablity as φ does. So, recently, Harms et
al. [4] exploited Taji’s approach to take a closer look at the nondiffer-
entiable points so that they could specialize the results to generalized
Nash equilibrium problems. Of course, in [7, 4] only finite dimensional
cases are treated.

Motivated by this observation, in this note, we consider the following
question from a theoretical view point: What happens in an infinite
dimensional case? We introduce an extended quasi-variational inequality
problem (in short, EQVI) and a generalized regularized gap function of
EQVI. Then we investigate some basic properties of it in a reflexive
Banach space. Our results may be regarded as an infinite dimensional
extension of corresponding results due to Taji [7].

2. Preliminaries

Consider the following extended quasi-variational inequality EQVI.

EQVI : Let E be a real Banach space and E∗ be its dual space. Given
a function F : E → E∗, a multifunction S : E ⇒ E with closed convex
values Sx for all x ∈ E (for the simplicity of argument, Sx is assumed
to be nonempty), and a convex and continuous function f : E → R, find
x̄ ∈ Sx̄ such that

〈Fx̄, x− x̄〉 ≥ f(x̄)− f(x) for all x ∈ Sx̄, (2.1)
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where 〈·, ·〉 denote the dual paring on E ×E∗. If f is the zero function,
EQVI (2.1) becomes QVI. The notion EQVI is adopted from Kum and
Lee [6] (originally, Chen et al. [1]).

Throughout this paper, we make the following assumptions.

Assumption 2.1. Let Ω : E × E → R be nonnegative and for each
x ∈ E, Ω(x, ·) be continuously Gâteaux differentiable (not necessarily
convex) on E. Assume that Ω(x, y) = 0 if and only if x = y and
∇yΩ(x, x) = 0 for any x ∈ E.

Our concern is to show that the function φ : E → R is a continuous gap
function for EQVI (2.1) under suitable conditions;

φ(x) := − inf
y∈Sx

{〈F (x), y − x〉+ f(y)− f(x) + Ω(x, y)}. (2.2)

Before going to the main result, it is necessary to recall continuity no-
tions of multifunctions in Harms et al. [4, Definition 3.1].

Definition 2.2. Let X ⊆ E1, Y ⊆ E2, and T : X ⇒ Y be a
multifunction where E1, E2 are Banach spaces. Then T is called

(i) lower semicontinuous at x̄ ∈ X if for all sequences {xk} ⊆ X
with xk → x̄ and all ȳ ∈ T x̄, there exists k0 ∈ N and a sequence
{yk} ⊆ Y with yk → ȳ and yk ∈ Txk for all k ≥ k0;

(ii) closed at x̄ ∈ X if for all sequences {xk} ⊆ X with xk → x̄ and all
sequences {yk} → ȳ with yk ∈ Txk for all k ∈ N sufficiently large,
we have ȳ ∈ T x̄;

(iii) continuous at at x̄ ∈ X if it is lower semicontinuous and closed at
x̄ ∈ X;

(iv) lower semicontinuous, closed or continuous on X if it is lower semi-
continuous, closed or continuous at every x ∈ X, respectively.

3. Main result

Theorem 3.1. The function φ in (2.2) is a gap function of EQVI,
that is, it satisfies

(i) φ(x) ≥ 0 for all x ∈ Sx;
(ii) x̄ is a solution of EQVI if and only if x̄ ∈ Sx̄ and φ(x̄) = 0.

Proof. (i) Taking y = x in (2.2) yields the result.

(ii) (⇒) If x̄ solves EQVI, then we have

〈Fx̄, x− x̄〉 ≥ f(x̄)− f(x) for all x ∈ Sx̄.
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As Ω is nonnegative on E ×E,

〈Fx̄, x− x̄〉 ≥ f(x̄)− f(x)− Ω(x̄, x) for all x ∈ Sx̄.

Hence

〈Fx̄, x− x̄〉+ f(x)− f(x̄) + Ω(x̄, x) ≥ 0 for all x ∈ Sx̄.

This implies that φ(x̄) ≤ 0. Obviously, x̄ ∈ Sx̄ and φ(x̄) ≥ 0 by (i).
Thus φ(x̄) = 0.

(⇐) Assume that x̄ ∈ Sx̄ and φ(x̄) = 0. Define a function

φ̃(x) = − inf
y∈Sx̄

{〈Fx, y − x〉+ f(y)− f(x) + Ω(x, y)} for all x ∈ E.

In fact, this function φ̃(x) is nothing but the gap function of EVI in
Kum and Lee [6] for the fixed closed convex subset Sx̄ of E. Also, it is
obvious that φ̃(x) ≥ 0 for all x ∈ Sx̄. Moreover, φ̃(x̄) = φ(x̄) = 0 and
x̄ ∈ Sx̄. This means that x̄ is a solution of EVI by virtue of Kum and
Lee [6, Theorem 3.1]. That is, 〈Fx̄, x− x̄〉 ≥ f(x̄)−f(x) for all x ∈ Sx̄,
which amounts to saying that x̄ is a solution of EQVI, as desired.

For more discussions of φ, from now on, it is further assumed that E
is a reflexive Banach space and Ω(x, ·) is strongly convex in the second
variable for each x ∈ E. Recall that a function g : E → R is said to be
strongly convex with modulus a (a > 0) if for all x, y ∈ E, and α ∈ [0, 1],
we have

g(αx + (1− α)y) ≤ αg(x) + (1− α)g(y)− 1
2
aα(1− α)‖x− y‖2.

Thus for each fixed x, the function

ψ(y) = 〈Fx, y − x〉+ f(y)− f(x) + Ω(x, y)

is strongly convex with respect to y, so it is coercive in the sense that
lim‖y‖→+∞

ψ(y)
‖y‖ ≥ +∞. (For a proof, see Kum and Lee [6, Proposition

4.2].) As the closed unit ball B in E is weakly compact, ψ(y) has a
unique minimizer z(x) ∈ Sx over the closed convex subset Sx so that

φ(x) = − min
y∈Sx

ψ(y) = −ψ(z(x))

= −〈Fx, z(x)− x〉 − f(z(x)) + f(x)− Ω(x, z(x)). (3.1)

Then a solution x̄ of EQVI has the following fixed point characterization
analogous to the case of VI [2]:

Theorem 3.2. x̄ is a solution of EQVI if and only if x̄ = z(x̄).
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Proof. (⇒) Let x̄ be a solution of EQVI. Since z(x̄) is a minimizer of
the convex function ψ(y) over the closed convex set Sx̄, we have

0 ∈ Fx̄ + ∂f(z(x̄)) +∇yΩ(x̄, z(x̄)) + NSx̄(z(x̄)) (3.2)

where ∂f(z(x̄)) is the subdifferential of f at z(x̄) and NSx̄(z(x̄)) = {x∗ ∈
E∗ | 〈x∗, x− z(x̄)〉 ≤ 0 for all x ∈ Sx̄} is the normal cone of Sx̄ at z(x̄).
Hence there exists x∗ ∈ ∂f(z(x̄)) such that

−Fx̄− x∗ −∇yΩ(x̄, z(x̄)) ∈ NSx̄(z(x̄)).

That is,

〈Fx̄ + x∗ +∇yΩ(x̄, z(x̄)), x− z(x̄)〉 ≥ 0 for all x ∈ Sx̄.

Taking x = x̄ ∈ Sx̄, we obtain

〈x∗ +∇yΩ(x̄, z(x̄)), x̄− z(x̄)〉 ≥ 〈Fx̄, z(x̄)− x̄〉 ≥ f(x̄)− f(z(x̄))

≥ 〈x∗, x̄− z(x̄)〉
because x̄ is a solution of EQVI and x∗ ∈ ∂f(z(x̄)). Thus we get

〈∇yΩ(x̄, z(x̄)), x̄− z(x̄)〉 ≥ 0. (3.3)

From the strong convexity of Ω(x̄, ·) with (3.3) it follows that

0 ≤ 〈∇yΩ(x̄, z(x̄)), x̄− z(x̄)〉+ µ‖x̄− z(x̄)‖2 ≤ Ω(x̄, x̄)− Ω(x̄, z(x̄)) ≤ 0

for some µ > 0. Here the second inequality comes from Kum and Lee
[6, (4.3) of Proposition 4.2]. This implies that Ω(x̄, x̄) − Ω(x̄, z(x̄)) =
−Ω(x̄, z(x̄)) = 0, hence x̄ = z(x̄) by Assumption 2.1.

(⇐) Assume that x̄ = z(x̄). By (3.2), for some x∗ ∈ ∂f(z(x̄)), we again
obtain that

〈Fx̄ + x∗ +∇yΩ(x̄, z(x̄)), x− z(x̄)〉 ≥ 0 for all x ∈ Sx̄.

Thus
〈Fx̄ + x∗ +∇yΩ(x̄, x̄), x− x̄〉 ≥ 0 for all x ∈ Sx̄.

Hence
〈Fx̄ + x∗, x− x̄〉 ≥ 0 for all x ∈ Sx̄.

On the other hand,

〈x∗, x− x̄〉 = 〈x∗, x− z(x̄)〉 ≤ f(x)− f(z(x̄)) = f(x)− f(x̄).

Therefore

〈Fx̄, x− x̄〉 ≥ 〈x∗, x̄− x〉 ≥ f(x̄)− f(x) for all x ∈ Sx̄,

which means that x̄ is a solution of EQVI.
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Now we deal with the continuity of the gap function φ of EQVI in terms
of that of z(x).

Theorem 3.3. Let the function F : E → E∗ be continuous and let
the multifunction S : E ⇒ E be continuous. Then the gap function
φ : E → R has a closed graph in E × R.

Proof. By Hogan [5, Theorem 8], z : x 7→ {z(x)} is closed on E,
i.e., the function z has a closed graph in E × E. It follows from (3.1)
that φ(x) = −〈Fx, z(x)− x〉− f(z(x)) + f(x)−Ω(x, z(x)) has the same
property.

Theorem 3.4. Let F and S be as in Theorem 3.3. Assume that the
image S(E) is relatively compact. Then the gap function φ : E → R is
continuous.

Proof. By Hogan [5, Corollary 8.1], the function z : E → E is con-
tinuous, hence φ : E → R is continuous, too.
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