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ON A CLOSED DEDUCTIVE SYSTEM OF A
CS-ALGEBRA

Yong Hoon Lee* and Min Surp Rhee**

Abstract. It is known that the class of CI-algebras is a generaliza-
tion of the class of BE-algebras [5]. Recently, K. H. Kim introduced
the notion of a CS-algebra [4]. In this paper we discuss a closed
deductive system of a CS-algebra, and we find some fundamental
properties. Moreover, we study a CS-algebra homomorphism and
a congruence relation.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras:
BCK-algebras and BCI-algebras([1, 2]). It is known that the class of
BCK-algebras is a proper subclass of the class of BCI-algebras. H. S.
Kim and Y. H. Kim defined a BE-algebra as a dualization of general-
ization of a BCK-algebra [3]. In [5], B. L. Meng introduced the notion
of a CI-algebra as a generalization of a BE-algebra. In [4], K. H. Kim
introduced the notion of a CS-algebra with two binary operations ∗ and
·. A CS-algebra is a CI-algebra under ∗, also having an associative ·
that is left and right distributive over ∗. In this paper, we introduce the
concept of a closed deductive system of a CS-algebra and discuss some
related properties. In Section 2, we recall some definitions for CI- and
CS-algebras and their properties. Finally, we prove some theorems for
a closed deductive system of a CS-algebra.

Received October 28, 2013; Accepted January 06, 2014.
2010 Mathematics Subject Classification: Primary 06F35, 03G25, 08A30.
Key words and phrases: cs-algebra, closed deductive system, homomorphism, con-

gruence relation.
Correspondence should be addressed to Min Surp Rhee, msrhee@dankook.ac.kr.



58 Yong Hoon Lee and Min Surp Rhee

2. Preliminaries

In this section we investigate some definitions and properties of a
CI- and CS-algebras. The proofs of most properties in this section are
omitted. Their proofs may be found in [4, 5].

Definition 2.1. [5] Let X be a nonempty set, and let ∗ be a binary
operation on X. Then (X, ∗, 1) is said to be a CI-algebra if the following
axioms hold:
(CI1) x ∗ x = 1,
(CI2) 1 ∗ x = x,
(CI3) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X.

Proposition 2.2. [5] For any CI-algebra X, we have following prop-
erties:

(1) y ∗ ((y ∗ x) ∗ x) = 1,
(2) (x ∗ 1) ∗ (y ∗ 1) = (x ∗ y) ∗ 1 for all x, y ∈ X.

Now, we review some notions which will be used later. A nonempty
subset S of a CI-algebra X is said to be a subalgebra of X if x ∗ y ∈ S
for any x, y ∈ S. A CI-algebra X is called commutative if

(x ∗ y) ∗ y = (y ∗ x) ∗ x for all x, y ∈ X.

Definition 2.3. [4] An algebra (X, ·, ∗, 1) with two binary operations
“·” and “∗” is said to be a CS-algebra if the following axioms are satisfied:

(CS1) S(X) = (X, ·) is a semigroup,
(CS2) C(X) = (X, ∗) is a CI- algebra,
(CS3) x · (y ∗ z) = (x · y) ∗ (x · z) and (x ∗ y) · z = (x · z) ∗ (y · z) for all

x, y, z ∈ X.

For convenience, we denote the multiplication x · y by xy.

Example 2.4. Let X = {1, a, b, c} in which “∗” and “·” are defined
by

∗ 1 a b c
1 1 a b c
a 1 1 1 b
b 1 a 1 b
c 1 a 1 1

· 1 a b c
1 1 1 1 1
a 1 a b c
b 1 b 1 1
c 1 c 1 1

Then it is easy to check that (X, ·, ∗, 1) is a CS-algebra.
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In [6], the author defined a binary relation ≤ by x ≤ y if and only if
x ∗ y = 1, where x, y ∈ X.

Proposition 2.5. [4] Let X be a CS-algebra. Then the following
identities hold:

(1) x1 = 1 and 1x = 1 for all x ∈ X,
(2) x ≤ y implies ax ≤ ay and xa ≤ ya for all x, y, a ∈ X.

Definition 2.6. [4] A nonempty subset A of a CS-algebra X is said
to be left (resp. right) stable if xa ∈ A (resp. ax ∈ A) for all x ∈ X and
a ∈ A.

It follows from Proposition 2.5 and Definition 2.6 that every stable
set contains the element 1.

Definition 2.7. [4] A nonempty subset F of a CS-algebra X is said
to be a left (resp. right) deductive system if it satisfies the following
axioms:

(DS1) F is a left (resp. right) stable subset of S(X),
(DS2) For any x, y ∈ C(X), x ∗ y ∈ F and x ∈ F imply y ∈ F.

In a CS-algebra X, we have x1 = 1x = 1 for all x ∈ X. If F is a
deductive system of X, then 1 = 1a ∈ F for any a ∈ F.

Example 2.8. Let X = {1, a, b, c} in which “∗” and “·” are defined
by

∗ 1 a b c
1 1 a b c
a c 1 c 1
b 1 c 1 c
c c b a 1

· 1 a b c
1 1 1 1 1
a 1 a b c
b 1 b b 1
c 1 c 1 c

Then X is a CS-algebra. It is easy to check that F = {1, c} is a deductive
system of (X, ·, ∗, 1).

Definition 2.9. [4] Let X be a CS-algebra. A nonempty subset S
of X is called a subalgebra of X if x ∗ y ∈ S and xy ∈ S for all x, y ∈ S.

3. A closed deductive system of a CS-algebra

In this section we show some properties on a closed deductive system
of a CS-algebra.

Definition 3.1. [4] A deductive system F of a CS-algebra X is said
to be closed if x ∈ F implies x ∗ 1 ∈ F.
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Example 3.2. In Example 2.8, F = {1, c} is a closed deductive sys-
tem of X.

Proposition 3.3. [4] A deductive system of a CS-algebra X is closed
if and only if it is a subalgebra of a CS-algebra X.

Theorem 3.4. If X is a CS-algebra, then the following properties
are equivalent:

(1) (∀x ∈ X) Ax = {y ∈ X | y · x = 1} is a deductive system of X.
(2) (∀ a, b ∈ X) a · b = 1 implies a · z · b = 1 for all z ∈ X.

Proof. (1) ⇒ (2). Let a, b ∈ X such that a ·b = 1. Then a ∈ Ab. Since
Ab is stable a · z ∈ Ab for every z ∈ X. Thus a · z · b = 1 for all z ∈ X.

(2) ⇒ (1). Let x, z ∈ X and a ∈ Ax. Then by hypothesis a · z ∈ Ax.
Therefore, a · z, z · a ∈ Ax. Let a, z, x ∈ X be such that a ∗ z ∈ Ax and
a ∈ Ax. Then

1 = (a ∗ z) · x
= a · x ∗ z · x
= 1 ∗ z · x ( since a ∈ Ax)
= z · x,

Hence, z ∈ Ax. Therefore, Ax is a deductive system of X.

Theorem 3.5. Let F be a left (resp. right) deductive system of a
CS-algebra X. If there exists b ∈ F such that a = xb (resp. a = bx) for
all a ∈ F, then F is closed.

Proof. Let F be a left (resp. right) deductive system of a CS-algebra
X such that there exists b ∈ F satisfying a = xb (resp. a = bx) for all
a ∈ F. Then, for any a ∈ F, a ∗ 1 = xb ∗ 1 = xb ∗ 1b = (x ∗ 1)b ∈ F (resp.
a ∗ 1 = bx ∗ 1 = b(x ∗ 1), since F is left (resp. right) stable. Thus, F is
a closed left (resp. right)deductive system of X.

Definition 3.6. [4] A CS-algebra X is said to be a near CS-algebra
if x ∗ y = xy ∗ y for all x, y ∈ X.

If X ia a near CS-algebra with 1, then 1 is the greatest element in
X since x ∗ 1 = x1 ∗ 1 = 1 ∗ 1 = 1 for all x ∈ X.

Proposition 3.7. Let X be a near CS-algebra. Define a set H by

H = {x ∈ X | x ∗ 1 = 1}.
Then H is a closed deductive system of X.
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Proof. Let a ∈ H and x ∈ X. Then by Definition 3.6 ax ∗ 1 = (ax)1 ∗
1 = 1 ∗ 1 = 1, which implies ax ∈ H. Similarly, xa ∈ H. Obviously,
1 ∈ H. If x ∗ y ∈ H and x ∈ H, then x ∗ 1 = 1 and (x ∗ y) ∗ 1 = 1. By
Proposition 2.2 we have

y ∗ 1 = 1 ∗ (y ∗ 1) = (x ∗ 1) ∗ (y ∗ 1) = (x ∗ y) ∗ 1 = 1.

This shows that H is a deductive system of X. If x ∈ H, then x ∗ 1 =
1 ∈ H. Therefore, H is a closed deductive system of X.

Proposition 3.8. Let X be a near CS-algebra and a ∈ X. Define
A(a) by

A(a) = {x ∈ X | a ∗ x = 1}.
Then A(a) is a right stable subset of X.

Proof. Let b ∈ A(a) and x ∈ X. Then 1 = a ∗ b = ab ∗ b. Hence by
Definition 3.6 we get a ∗ bx = a(bx) ∗ bx = ((ab) ∗ b)x = 1x = 1, which
implies bx ∈ A(a). Therefore, A(a) is a right stable subset of X.

Now, we study a CS-algebra homomorphism.

Definition 3.9. [4] Let X and Y be CS-algebras. A mapping f :
X → Y is called a CS-algebra homomorphism (briefly, homomorphism)
if f(x ∗ y) = f(x) ∗ f(y) and f(xy) = f(x)f(y) for all x, y ∈ X. In
particular, the set {x ∈ X|f(x) = 1} is called the kernel of f , and it is
denoted by kerf .

Proposition 3.10. Let f : X → X be a CS-algebra homomorphism.
Then kerf is a closed deductive system of X.

Proof. Let x ∈ X and a ∈ kerf. Then we obtain f(ax) = f(a)f(x) =
1 · f(x) = 1 and f(xa) = f(x)f(a) = f(x) · 1 = 1. Hence xa, ax ∈ kerf.
So kerf is a stable subset of X. Also, let x ∗ y ∈ kerf and x ∈ kerf.
Then 1 = f(x ∗ y) = f(x) ∗ f(y) = 1 ∗ f(y) = f(y). Hence we have
y ∈ kerf. Let x ∈ kerf. Then we get f(x ∗ 1) = f(x) ∗ f(1) = 1 ∗ 1 = 1,
which implies x∗1 ∈ kerf. Therefore, kerf is a closed deductive system
of X.

Proposition 3.11. Let f : X → X be a CS-algebra homomorphism.
Then the following properties are satisfied:

(1) If x ≤ y, then f(x · z) ≤ f(y · z) and f(z · x) ≤ f(z · y) for all
x, y, z ∈ X.

(2) If F is a left (resp. right) deductive system of X, then f(F ) is a
left (resp. right) deductive system of f(X).
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Proof. (1) Let x, y, z ∈ X. If x ≤ y, then f(x · z) ∗ f(y · z) =
(f(x) · f(z)) ∗ (f(y) · f(z)) = (f(x) ∗ f(y)) · f(z) = f(x ∗ y) · f(z) =
f(1) · f(z) = 1 · f(z) = 1. This implies f(x · z) ≤ f(y · z). Similarly, we
have f(z · x) ≤ f(z · y).

(2) Let a′ ∈ f(F ) and x′ ∈ f(F ). Then f(a) = a′ and f(x) = x′ for
some a, x ∈ F . Since ax, xa ∈ F , we get f(a) · f(x) = f(a · x) ∈ f(F )
and f(x) · f(a) = f(x · a) ∈ f(F ), which imply that f(F ) is a stable
subset of X. Now, suppose that x′ ∈ f(F ), y′ ∈ f(X) and x′ ∗y′ ∈ f(F ).
Then x′ = f(x), y′ = f(y) and x′ ∗ y′ = f(z) for some x, z ∈ F and
y ∈ X. Then f(x) ∈ f(F ) and f(x) ∗ f(y) = f(x ∗ y) ∈ f(F ). Since F is
a deductive system of X, we get y ∈ F and y′ = f(y) ∈ f(F ). Therefore,
f(F ) is a deductive system of f(X).

Proposition 3.12. Let f : X → Y be a CS-algebra homomorphism
and kerf = {1}. If f(x) ≤ f(y), then x ≤ y.

Proof. If f(x) ≤ f(y), then f(x ∗ y) = f(x) ∗ f(y) = 1. Hence x ∗ y is
an element of kerf and x ∗ y = 1. Therefore x ≤ y.

An element e of X is called a unity in a CS-algebra if ex = xe = x
for all x ∈ X.

Proposition 3.13. Let f : X → Y be a homomorphism. Then

(1) If X is commutative, then so is f(X).
(2) If X is a near CS-algebra with unity e, then so is f(X) with unity

f(e).

Proof. Let x′, y′, z′ ∈ f(X). Then f(x) = x′, f(y) = y′ and f(z) = z′
for some x, y, z ∈ X.

(1) Suppose that X is commutative. Then (y′∗x′)∗x′ = (f(y)∗f(x))∗
f(x) = f(y ∗x) ∗ f(x) = f((y ∗x) ∗x) = f((x ∗ y) ∗ y) = f(x ∗ y) ∗ f(y) =
(f(x) ∗ f(y)) ∗ f(y) = (x′ ∗ y′) ∗ y′. Therefore f(X) is commutative.

(2) Suppose that X is a near CS-algebra with unity e . Then x′∗y′ =
f(x)∗f(y) = f(x∗y) = f(x·y∗y) = f(x·y)∗f(y) = (f(x)·f(y))∗f(y) =
x′ · y′ ∗ y′. Let f(e) = e′. Then e′ · x′ = f(e) · f(x) = f(e · x) = f(x) =
x′ = f(x · e) = f(x) · f(e) = x′ · e′. Therefore f(X) is a near CS-algebra
with unity f(e).

Let’s consider a binary relation on X.

Definition 3.14. [4] Let X be a CS-algebra and let ρ be a binary
relation on X. Then we define following:
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(1) ρ is said to be right (resp. left) compatible if (x, y) ∈ ρ implies
(x ∗ z, y ∗ z) ∈ ρ (resp. (z ∗ x, z ∗ y) ∈ ρ) and (x · z, y · z) ∈ ρ (resp.
(z · x, z · y) ∈ ρ) for all x, y, z ∈ X,

(2) ρ is said to be compatible if (x, y) ∈ ρ and (u, v) ∈ ρ imply
(x ∗ u, y ∗ v) ∈ ρ and (x · u, y · v) ∈ ρ for all x, y, u, v ∈ X,

(3) A compatible equivalence relation is called a congruence relation.

Theorem 3.15. Let X be a CS-algebra. Then an equivalence re-
lation ρ on X is a congruence if and only if it is both left and right
compatible.

Proof. Assume that ρ is a congruence relation on X. Let (x, y) ∈ ρ.
Since ρ is reflexive, we get (z, z) ∈ ρ for all z ∈ X. It follows from the
compatibility of ρ that (x ∗ z, y ∗ z) ∈ ρ and (x · z, y · z) ∈ ρ. Hence ρ is
right compatible. Similarly, ρ is left compatible.

Conversely, suppose that ρ is both left and right compatible. Let
(x, y) ∈ ρ and (u, v) ∈ ρ. Then (x ∗ u, y ∗ u) ∈ ρ and (x · u, y · u) ∈ ρ
by the right compatibility. Using the left compatibility of ρ, we have
(y ∗ u, y ∗ v) ∈ ρ and (y · u, y · v) ∈ ρ. It follows from the transitivity of ρ
that (x ∗ u, y ∗ v) ∈ ρ and (x · u, y · v) ∈ ρ. Hence ρ is a congruence.

Using the notion of left (resp. right) compatible relation, we give a
characterization of a congruence relation.

For a binary relation ρ on a CS-algebra X, we denote

xρ = {y ∈ X | (x, y) ∈ ρ} and X/ρ = {xρ | x ∈ X}.
Theorem 3.16. Let ρ be a congruence relation on a CS-algebra X.

Then X/ρ is a CS-algebra under the operations

xρ ∗ yρ = (x ∗ y)ρ and (xρ) · (yρ) = (x · y)ρ

for all xρ, yρ ∈ X/ρ.

Proof. Since ρ is a congruence relation, the operations are well-defined.
Clearly, (X/ρ, ∗) is a CI-algebra and (X/ρ, ·) is a semigroup. For every
xρ, yρ, zρ ∈ X/ρ, we have

xρ · (yρ ∗ zρ) = xρ · (y ∗ z)ρ = (x · (y ∗ z))ρ
= (x · y ∗ x · z)ρ = (x · y)ρ ∗ (x · z)ρ
= (xρ · yρ) ∗ (xρ · zρ),

and
(xρ ∗ yρ) · zρ = (x ∗ y)ρ · zρ = ((x ∗ y) · z)ρ

= (x · z ∗ y · z)ρ = (x · z)ρ ∗ (y · z)ρ
= (xρ · zρ) ∗ (yρ · zρ).

Thus X/ρ is a CS-algebra.
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Theorem 3.17. If ρ is a congruence relation on a CS-algebra X,
then 1ρ is a closed deductive system of X.

Proof. Let a ∈ 1ρ and x ∈ X. Then (1, a) ∈ ρ. By Theorem 3.15 ρ
is both left and right compatible. Note that (1 · x, a · x) = (1, a · x) ∈ ρ
and (x · 1, x · a) = (1, x · a) ∈ ρ. Hence a · x ∈ 1ρ and x · a ∈ 1ρ.

Assume x ∗ y ∈ 1ρ and x ∈ 1ρ. Then (1, x ∗ y) ∈ ρ and (1, x) ∈ ρ. It
follows that (1∗y, x∗y) = (y, x∗y) ∈ ρ. Since ρ is reflexive and transitive,
we get (1, y) ∈ ρ, which implies y ∈ 1ρ. Thus 1ρ is a deductive system
of X.

If x ∈ 1ρ, then (1, x) ∈ ρ and hence (1 ∗ 1, x ∗ 1) = (1, x ∗ 1) ∈ ρ, that
is, x ∗ 1 ∈ 1ρ. Therefore, 1ρ is a closed deductive system of X.
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