JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 27, No. 1, 2014 http://dx.doi.org/10.14403/jcms.2014.27.1.57

ON A CLOSED DEDUCTIVE SYSTEM OF A CS-ALGEBRA

Yong Hoon Lee* and Min Surp Rhee**

ABSTRACT. It is known that the class of CI-algebras is a generalization of the class of BE-algebras [5]. Recently, K. H. Kim introduced the notion of a CS-algebra [4]. In this paper we discuss a closed deductive system of a CS-algebra, and we find some fundamental properties. Moreover, we study a CS-algebra homomorphism and a congruence relation.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras([1, 2]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. H. S. Kim and Y. H. Kim defined a BE-algebra as a dualization of generalization of a BCK-algebra [3]. In [5], B. L. Meng introduced the notion of a CI-algebra as a generalization of a BE-algebra. In [4], K. H. Kim introduced the notion of a CS-algebra with two binary operations * and \cdot . A CS-algebra is a CI-algebra under *, also having an associative \cdot that is left and right distributive over *. In this paper, we introduce the concept of a closed deductive system of a CS-algebra and discuss some related properties. In Section 2, we recall some definitions for CI- and CS-algebras and their properties. Finally, we prove some theorems for a closed deductive system of a CS-algebra.

2010 Mathematics Subject Classification: Primary 06F35, 03G25, 08A30.

Received October 28, 2013; Accepted January 06, 2014.

Key words and phrases: cs-algebra, closed deductive system, homomorphism, congruence relation.

Correspondence should be addressed to Min Surp Rhee, msrhee@dankook.ac.kr.

2. Preliminaries

In this section we investigate some definitions and properties of a CI- and CS-algebras. The proofs of most properties in this section are omitted. Their proofs may be found in [4, 5].

DEFINITION 2.1. [5] Let X be a nonempty set, and let * be a binary operation on X. Then (X, *, 1) is said to be a CI-algebra if the following axioms hold:

 $\begin{array}{ll} ({\rm CI1}) & x*x=1, \\ ({\rm CI2}) & 1*x=x, \\ ({\rm CI3}) & x*(y*z)=y*(x*z) \mbox{ for all } x,y,z\in X. \end{array}$

PROPOSITION 2.2. [5] For any CI-algebra X, we have following properties:

- (1) y * ((y * x) * x) = 1,
- (2) (x*1)*(y*1) = (x*y)*1 for all $x, y \in X$.

Now, we review some notions which will be used later. A nonempty subset S of a CI-algebra X is said to be a subalgebra of X if $x * y \in S$ for any $x, y \in S$. A CI-algebra X is called *commutative* if

$$(x * y) * y = (y * x) * x$$
 for all $x, y \in X$.

DEFINITION 2.3. [4] An algebra $(X, \cdot, *, 1)$ with two binary operations "·" and "*" is said to be a CS-algebra if the following axioms are satisfied:

- (CS1) $S(X) = (X, \cdot)$ is a semigroup,
- (CS2) C(X) = (X, *) is a CI- algebra,
- (CS3) $x \cdot (y * z) = (x \cdot y) * (x \cdot z)$ and $(x * y) \cdot z = (x \cdot z) * (y \cdot z)$ for all $x, y, z \in X$.

For convenience, we denote the multiplication $x \cdot y$ by xy.

EXAMPLE 2.4. Let $X = \{1, a, b, c\}$ in which "*" and "." are defined by

*	1	a	b	c		•	1	a	b	c
1	1	a	b	c	-	1	1	1	1	1
a	1	1	1	b		a	1	a	b	c
b	1	a	1	b		b	1	b	1	1
c	1	a	1	1		c	1	c	1	1

Then it is easy to check that $(X, \cdot, *, 1)$ is a CS-algebra.

In [6], the author defined a binary relation \leq by $x \leq y$ if and only if x * y = 1, where $x, y \in X$.

PROPOSITION 2.5. [4] Let X be a CS-algebra. Then the following identities hold:

(1) x1 = 1 and 1x = 1 for all $x \in X$,

(2) $x \leq y$ implies $ax \leq ay$ and $xa \leq ya$ for all $x, y, a \in X$.

DEFINITION 2.6. [4] A nonempty subset A of a CS-algebra X is said to be *left* (resp. *right*) *stable* if $xa \in A$ (resp. $ax \in A$) for all $x \in X$ and $a \in A$.

It follows from Proposition 2.5 and Definition 2.6 that every stable set contains the element 1.

DEFINITION 2.7. [4] A nonempty subset F of a CS-algebra X is said to be a *left* (resp. *right*) *deductive system* if it satisfies the following axioms:

(DS1) F is a left (resp. right) stable subset of S(X),

(DS2) For any $x, y \in C(X)$, $x * y \in F$ and $x \in F$ imply $y \in F$.

In a CS-algebra X, we have x1 = 1x = 1 for all $x \in X$. If F is a deductive system of X, then $1 = 1a \in F$ for any $a \in F$.

EXAMPLE 2.8. Let $X = \{1, a, b, c\}$ in which "*" and "." are defined by

*	1	a	b	c	•	1	a	b	c
1	1	a	b	c	1	1	1	1	1
a	c	1	c	1	a	1	a	b	c
b	1	c	1	c	b	1	b	b	1
c	c	b	a	1	c	1	c	1	c

Then X is a CS-algebra. It is easy to check that $F = \{1, c\}$ is a deductive system of $(X, \cdot, *, 1)$.

DEFINITION 2.9. [4] Let X be a CS-algebra. A nonempty subset S of X is called a subalgebra of X if $x * y \in S$ and $xy \in S$ for all $x, y \in S$.

3. A closed deductive system of a CS-algebra

In this section we show some properties on a closed deductive system of a CS-algebra.

DEFINITION 3.1. [4] A deductive system F of a CS-algebra X is said to be closed if $x \in F$ implies $x * 1 \in F$.

EXAMPLE 3.2. In Example 2.8, $F = \{1, c\}$ is a closed deductive system of X.

PROPOSITION 3.3. [4] A deductive system of a CS-algebra X is closed if and only if it is a subalgebra of a CS-algebra X.

THEOREM 3.4. If X is a CS-algebra, then the following properties are equivalent:

(1) $(\forall x \in X) A_x = \{y \in X \mid y \cdot x = 1\}$ is a deductive system of X.

(2) $(\forall a, b \in X)$ $a \cdot b = 1$ implies $a \cdot z \cdot b = 1$ for all $z \in X$.

Proof. (1) \Rightarrow (2). Let $a, b \in X$ such that $a \cdot b = 1$. Then $a \in A_b$. Since A_b is stable $a \cdot z \in A_b$ for every $z \in X$. Thus $a \cdot z \cdot b = 1$ for all $z \in X$.

 $(2) \Rightarrow (1)$. Let $x, z \in X$ and $a \in A_x$. Then by hypothesis $a \cdot z \in A_x$. Therefore, $a \cdot z, z \cdot a \in A_x$. Let $a, z, x \in X$ be such that $a * z \in A_x$ and $a \in A_x$. Then

$$= (a * z) \cdot x$$

= $a \cdot x * z \cdot x$
= $1 * z \cdot x$ (since $a \in A_x$)
= $z \cdot x$,

Hence, $z \in A_x$. Therefore, A_x is a deductive system of X.

1

THEOREM 3.5. Let F be a left (resp. right) deductive system of a CS-algebra X. If there exists $b \in F$ such that a = xb (resp. a = bx) for all $a \in F$, then F is closed.

Proof. Let F be a left (resp. right) deductive system of a CS-algebra X such that there exists $b \in F$ satisfying a = xb (resp. a = bx) for all $a \in F$. Then, for any $a \in F$, $a * 1 = xb * 1 = xb * 1b = (x * 1)b \in F$ (resp. a * 1 = bx * 1 = b(x * 1), since F is left (resp. right) stable. Thus, F is a closed left (resp. right)deductive system of X.

DEFINITION 3.6. [4] A CS-algebra X is said to be a near CS-algebra if x * y = xy * y for all $x, y \in X$.

If X is a near CS-algebra with 1, then 1 is the greatest element in X since x * 1 = x1 * 1 = 1 * 1 = 1 for all $x \in X$.

PROPOSITION 3.7. Let X be a near CS-algebra. Define a set H by

 $H = \{ x \in X \mid x * 1 = 1 \}.$

Then H is a closed deductive system of X.

Proof. Let $a \in H$ and $x \in X$. Then by Definition 3.6 ax * 1 = (ax)1 * 1 = 1 * 1 = 1, which implies $ax \in H$. Similarly, $xa \in H$. Obviously, $1 \in H$. If $x * y \in H$ and $x \in H$, then x * 1 = 1 and (x * y) * 1 = 1. By Proposition 2.2 we have

$$y * 1 = 1 * (y * 1) = (x * 1) * (y * 1) = (x * y) * 1 = 1.$$

This shows that H is a deductive system of X. If $x \in H$, then $x * 1 = 1 \in H$. Therefore, H is a closed deductive system of X.

PROPOSITION 3.8. Let X be a near CS-algebra and $a \in X$. Define A(a) by

$$A(a) = \{ x \in X \mid a * x = 1 \}.$$

Then A(a) is a right stable subset of X.

Proof. Let $b \in A(a)$ and $x \in X$. Then 1 = a * b = ab * b. Hence by Definition 3.6 we get a * bx = a(bx) * bx = ((ab) * b)x = 1x = 1, which implies $bx \in A(a)$. Therefore, A(a) is a right stable subset of X. \Box

Now, we study a CS-algebra homomorphism.

DEFINITION 3.9. [4] Let X and Y be CS-algebras. A mapping $f : X \to Y$ is called a CS-algebra homomorphism (briefly, homomorphism) if f(x * y) = f(x) * f(y) and f(xy) = f(x)f(y) for all $x, y \in X$. In particular, the set $\{x \in X | f(x) = 1\}$ is called the kernel of f, and it is denoted by kerf.

PROPOSITION 3.10. Let $f: X \to X$ be a CS-algebra homomorphism. Then kerf is a closed deductive system of X.

Proof. Let $x \in X$ and $a \in kerf$. Then we obtain $f(ax) = f(a)f(x) = 1 \cdot f(x) = 1$ and $f(xa) = f(x)f(a) = f(x) \cdot 1 = 1$. Hence $xa, ax \in kerf$. So kerf is a stable subset of X. Also, let $x * y \in kerf$ and $x \in kerf$. Then 1 = f(x * y) = f(x) * f(y) = 1 * f(y) = f(y). Hence we have $y \in kerf$. Let $x \in kerf$. Then we get f(x * 1) = f(x) * f(1) = 1 * 1 = 1, which implies $x * 1 \in kerf$. Therefore, kerf is a closed deductive system of X. \Box

PROPOSITION 3.11. Let $f : X \to X$ be a CS-algebra homomorphism. Then the following properties are satisfied:

- (1) If $x \leq y$, then $f(x \cdot z) \leq f(y \cdot z)$ and $f(z \cdot x) \leq f(z \cdot y)$ for all $x, y, z \in X$.
- (2) If F is a left (resp. right) deductive system of X, then f(F) is a left (resp. right) deductive system of f(X).

Yong Hoon Lee and Min Surp Rhee

Proof. (1) Let $x, y, z \in X$. If $x \leq y$, then $f(x \cdot z) * f(y \cdot z) = (f(x) \cdot f(z)) * (f(y) \cdot f(z)) = (f(x) * f(y)) \cdot f(z) = f(x * y) \cdot f(z) = f(1) \cdot f(z) = 1 \cdot f(z) = 1$. This implies $f(x \cdot z) \leq f(y \cdot z)$. Similarly, we have $f(z \cdot x) \leq f(z \cdot y)$.

(2) Let $a' \in f(F)$ and $x' \in f(F)$. Then f(a) = a' and f(x) = x' for some $a, x \in F$. Since $ax, xa \in F$, we get $f(a) \cdot f(x) = f(a \cdot x) \in f(F)$ and $f(x) \cdot f(a) = f(x \cdot a) \in f(F)$, which imply that f(F) is a stable subset of X. Now, suppose that $x' \in f(F), y' \in f(X)$ and $x' * y' \in f(F)$. Then x' = f(x), y' = f(y) and x' * y' = f(z) for some $x, z \in F$ and $y \in X$. Then $f(x) \in f(F)$ and $f(x) * f(y) = f(x * y) \in f(F)$. Since F is a deductive system of X, we get $y \in F$ and $y' = f(y) \in f(F)$. Therefore, f(F) is a deductive system of f(X).

PROPOSITION 3.12. Let $f: X \to Y$ be a CS-algebra homomorphism and $kerf = \{1\}$. If $f(x) \leq f(y)$, then $x \leq y$.

Proof. If $f(x) \leq f(y)$, then f(x * y) = f(x) * f(y) = 1. Hence x * y is an element of kerf and x * y = 1. Therefore $x \leq y$.

An element e of X is called a *unity* in a CS-algebra if ex = xe = x for all $x \in X$.

PROPOSITION 3.13. Let $f: X \to Y$ be a homomorphism. Then

- (1) If X is commutative, then so is f(X).
- (2) If X is a near CS-algebra with unity e, then so is f(X) with unity f(e).

Proof. Let $x', y', z' \in f(X)$. Then f(x) = x', f(y) = y' and f(z) = z' for some $x, y, z \in X$.

(1) Suppose that X is commutative. Then (y'*x')*x' = (f(y)*f(x))*f(x) = f(y*x)*f(x) = f((y*x)*x) = f((x*y)*y) = f(x*y)*f(y) = (f(x)*f(y))*f(y) = (x'*y')*y'. Therefore f(X) is commutative.

(2) Suppose that X is a near CS-algebra with unity e. Then $x' * y' = f(x) * f(y) = f(x * y) = f(x \cdot y * y) = f(x \cdot y) * f(y) = (f(x) \cdot f(y)) * f(y) = x' \cdot y' * y'$. Let f(e) = e'. Then $e' \cdot x' = f(e) \cdot f(x) = f(e \cdot x) = f(x) = x' = f(x \cdot e) = f(x) \cdot f(e) = x' \cdot e'$. Therefore f(X) is a near CS-algebra with unity f(e).

Let's consider a binary relation on X.

DEFINITION 3.14. [4] Let X be a CS-algebra and let ρ be a binary relation on X. Then we define following:

- (1) ρ is said to be *right* (resp. *left*) compatible if $(x, y) \in \rho$ implies $(x * z, y * z) \in \rho$ (resp. $(z * x, z * y) \in \rho$) and $(x \cdot z, y \cdot z) \in \rho$ (resp. $(z \cdot x, z \cdot y) \in \rho$) for all $x, y, z \in X$,
- (2) ρ is said to be *compatible* if $(x, y) \in \rho$ and $(u, v) \in \rho$ imply $(x * u, y * v) \in \rho$ and $(x \cdot u, y \cdot v) \in \rho$ for all $x, y, u, v \in X$,
- (3) A compatible equivalence relation is called a *congruence relation*.

THEOREM 3.15. Let X be a CS-algebra. Then an equivalence relation ρ on X is a congruence if and only if it is both left and right compatible.

Proof. Assume that ρ is a congruence relation on X. Let $(x, y) \in \rho$. Since ρ is reflexive, we get $(z, z) \in \rho$ for all $z \in X$. It follows from the compatibility of ρ that $(x * z, y * z) \in \rho$ and $(x \cdot z, y \cdot z) \in \rho$. Hence ρ is right compatible. Similarly, ρ is left compatible.

Conversely, suppose that ρ is both left and right compatible. Let $(x, y) \in \rho$ and $(u, v) \in \rho$. Then $(x * u, y * u) \in \rho$ and $(x \cdot u, y \cdot u) \in \rho$ by the right compatibility. Using the left compatibility of ρ , we have $(y * u, y * v) \in \rho$ and $(y \cdot u, y \cdot v) \in \rho$. It follows from the transitivity of ρ that $(x * u, y * v) \in \rho$ and $(x \cdot u, y \cdot v) \in \rho$. Hence ρ is a congruence. \Box

Using the notion of left (resp. right) compatible relation, we give a characterization of a congruence relation.

For a binary relation ρ on a CS-algebra X, we denote

$$x\rho = \{y \in X \mid (x, y) \in \rho\} \text{ and } X/\rho = \{x\rho \mid x \in X\}.$$

THEOREM 3.16. Let ρ be a congruence relation on a CS-algebra X. Then X/ρ is a CS-algebra under the operations

$$x\rho * y\rho = (x * y)\rho$$
 and $(x\rho) \cdot (y\rho) = (x \cdot y)\rho$

for all $x\rho, y\rho \in X/\rho$.

Proof. Since ρ is a congruence relation, the operations are well-defined. Clearly, $(X/\rho, *)$ is a *CI*-algebra and $(X/\rho, \cdot)$ is a semigroup. For every $x\rho, y\rho, z\rho \in X/\rho$, we have

$$\begin{array}{ll} x\rho \cdot (y\rho \ast z\rho) &= x\rho \cdot (y \ast z)\rho = (x \cdot (y \ast z))\rho \\ &= (x \cdot y \ast x \cdot z)\rho = (x \cdot y)\rho \ast (x \cdot z)\rho \\ &= (x\rho \cdot y\rho) \ast (x\rho \cdot z\rho), \end{array}$$

and

$$(x\rho * y\rho) \cdot z\rho = (x * y)\rho \cdot z\rho = ((x * y) \cdot z)\rho = (x \cdot z * y \cdot z)\rho = (x \cdot z)\rho * (y \cdot z)\rho = (x\rho \cdot z\rho) * (y\rho \cdot z\rho).$$

Thus X/ρ is a CS-algebra.

THEOREM 3.17. If ρ is a congruence relation on a CS-algebra X, then 1ρ is a closed deductive system of X.

Proof. Let $a \in 1\rho$ and $x \in X$. Then $(1, a) \in \rho$. By Theorem 3.15 ρ is both left and right compatible. Note that $(1 \cdot x, a \cdot x) = (1, a \cdot x) \in \rho$ and $(x \cdot 1, x \cdot a) = (1, x \cdot a) \in \rho$. Hence $a \cdot x \in 1\rho$ and $x \cdot a \in 1\rho$.

Assume $x * y \in 1\rho$ and $x \in 1\rho$. Then $(1, x * y) \in \rho$ and $(1, x) \in \rho$. It follows that $(1*y, x*y) = (y, x*y) \in \rho$. Since ρ is reflexive and transitive, we get $(1, y) \in \rho$, which implies $y \in 1\rho$. Thus 1ρ is a deductive system of X.

If $x \in 1\rho$, then $(1, x) \in \rho$ and hence $(1 * 1, x * 1) = (1, x * 1) \in \rho$, that is, $x * 1 \in 1\rho$. Therefore, 1ρ is a closed deductive system of X. \Box

References

- K. Iseki and S. Tanaka, An introduction to theory of BCK-algebras, Sci. Math. Jpn. 23 (1978), 1-26.
- [2] K. Iseki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
- $[3]\,$ H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Jpn. e-2006, 1199-1202.
- [4] K. H. Kim, On CS-algebras, Pure Mathematical. Sciences 1 (2012), no. 3, 115-121.
- [5] B. L. Meng, *CI-algebras*, Sci. Math. Jpn. e-2009, 695-701.
- B. L. Meng, Atoms in CI-algebras and singular CI-algebras, Sci. Math. Jpn. e-2010, 319-324.

*

Department of Mathematics Dankook University Cheonan 330-714, Republic of Korea *E-mail*: yonghoon@dankook.ac.kr

**

Department of Mathematics Dankook University Cheonan 330-714, Republic of Korea *E-mail*: msrhee@dankook.ac.kr