SOME APPLICATION OF THE UNION OF TWO &-CONFIGURATIONS IN \mathbb{P}^2

Yong-Su Shin*

ABSTRACT. It has been proved that the union of two linear star-configurations in \mathbb{P}^2 of type s and t for either $3 \leq t \leq 10$ or $\binom{t}{2} - 1 \leq s$ with $3 \leq t$ has maximal Hilbert function. We extend the condition to $\left[\frac{1}{2}\binom{t}{2}\right] \leq s$, so that it is true for either $3 \leq t \leq 10$ or $\left[\frac{1}{2}\binom{t}{2}\right] \leq s$ with $3 \leq t$, which extends the result of [6].

1. Introduction

Let $R = \mathbb{k}[x_0, x_1, \dots, x_n] = \bigoplus_{i \geq 0} R_i$ be the standard graded polynomial ring in (n+1)-variables over an infinite field \mathbb{k} and A = R/I where I is a homogeneous ideal in R. Then $A = \bigoplus_{i \geq 0} A_i$ is also a graded ring. The Hilbert function of A is the function

$$\mathbf{H}(A,t) = \dim_{\mathbb{k}} R_t - \dim_{\mathbb{k}} I_t.$$

If $I := I_{\mathbb{X}}$ is the ideal of a subscheme \mathbb{X} in \mathbb{P}^n , then we denote the Hilbert function of \mathbb{X} by

$$\mathbf{H}_{\mathbb{X}}(t) := \mathbf{H}(R/I_{\mathbb{X}}, t)$$

(see [2, 3]). Let \mathbb{X} be a set of s points in \mathbb{P}^2 . We say that \mathbb{X} has maximal Hilbert function (for sets of s points) if

$$\mathbf{H}_{\mathbb{X}}(t) = \min\left\{s, \binom{t+2}{2}\right\}$$

for every $t \geq 0$.

Let F_1, F_2, \ldots, F_r be general forms in $R = \mathbb{k}[x_0, x_1, \ldots, x_n]$ with $r \geq$

3. Then
$$\bigcap_{1 \leq i < j \leq r} (F_i, F_j) = (\tilde{F}_1, \dots, \tilde{F}_r)$$
, where $\tilde{F}_i = \frac{\prod_{j=1}^r F_j}{F_i}$ for $i = 1$

 $1, \ldots, r$ (see [1, Proposition 2.1]). The variety \mathbb{X} in \mathbb{P}^n of the ideal

Received March 26, 2014; Accepted June 30, 2014.

²⁰¹⁰ Mathematics Subject Classification: Primary 13A02; Secondary 16W50.

Key words and phrases: Hilbert function, k-configuration in \mathbb{P}^2 , star-configuration in \mathbb{P}^2 .

This research was supported by a grant from Sungshin Women's University in 2013.

 $\bigcap_{1\leq i< j\leq r}(F_i,F_j)=(\tilde{F}_1,\ldots,\tilde{F}_r)$ is called a *star-configuration* in \mathbb{P}^n of type r. Furthermore, if the F_i are all general linear forms in R, the star-configuration \mathbb{X} is called a *linear star-configuration* in \mathbb{P}^n of type r.

In this paper, we construct the specific union of two \mathbb{k} -configurations in \mathbb{P}^2 having maximal Hilbert function. As an application, we prove that if \mathbb{X} is the union of two linear star-configurations in \mathbb{P}^2 of type s and t, then \mathbb{X} has maximal Hilbert function for $3 \leq t$ and $\left[\frac{1}{2}\binom{t}{2}\right] \leq s$, which generalizes the interesting result of [6].

2. The union of two k-configurations in \mathbb{P}^2

In this section we will compute the Hilbert functions of some general unions of particular configurations of points in \mathbb{P}^2 . We first recall some standard facts and definitions (see [2, 3]).

DEFINITION 2.1. A \mathbb{R} -configuration of points in \mathbb{P}^2 is a finite set \mathbb{X} of points in \mathbb{P}^2 which satisfy the following conditions: there exist integers $1 \leq d_1 < \cdots < d_m$, and subsets $\mathbb{X}_1, \ldots, \mathbb{X}_m$ of \mathbb{X} , and distinct lines $\mathbb{L}_1, \ldots, \mathbb{L}_m \subseteq \mathbb{P}^2$ such that

- (a) $\mathbb{X} = \bigcup_{i=1}^m \mathbb{X}_i$,
- (b) $|\mathbb{X}_i| = d_i$ and $\mathbb{X}_i \subset \mathbb{L}_i$ for each i = 1, ..., m, and
- (c) \mathbb{L}_i $(1 < i \le m)$ does not contain any points of \mathbb{X}_j for all j < i.

In this case, the \mathbb{k} -configuration in \mathbb{P}^2 is said to be of type (d_1, \ldots, d_m) .

REMARK 2.2. Any two k-configurations in \mathbb{P}^2 of the same type have the same minimal free resolution, and so the same Hilbert function ([2, 3]). We recall that if \mathbb{X} is a linear star-configuration in \mathbb{P}^2 of type r with $3 \leq r$, then \mathbb{X} is a k-configuration in \mathbb{P}^2 of type $\mathcal{T} = (1, 2, \ldots, r-1)$ (see [2, 3] for the definition of a (standard) k-configuration in \mathbb{P}^n).

The following lemma is immediate from the definition of a k-configuration in \mathbb{P}^n , and so we omit the proof.

LEMMA 2.3. Let \mathbb{X} be a \mathbb{k} -configuration in \mathbb{P}^2 of type $\mathcal{T} = (1, 2, 3, ..., d-1, d+1, d+2, ..., s)$ with $s \geq 3$. Then \mathbb{X} has maximal Hilbert function

$$\mathbf{H}_{\mathbb{X}}$$
 : $1 \begin{pmatrix} 1+2 \\ 2 \end{pmatrix}$ \cdots $\begin{pmatrix} 2+(s-2) \\ 2 \end{pmatrix}$ $\begin{pmatrix} 2+(s-1) \\ 2 \end{pmatrix} - d \rightarrow .$

We introduce the following example for the proof of Proposition 2.5.

EXAMPLE 2.4. Let \mathbb{X} and \mathbb{Y} be linear star-configurations in \mathbb{P}^2 of type s and t defined by linear forms L_1, \ldots, L_s and M_1, \ldots, M_t , respectively.

FIGURE 1. a \mathbb{k} -configuration in \mathbb{P}^2 of type (2,3,4,5,6)

FIGURE 2. a k-configuration in \mathbb{P}^2 of type $(1, 2, \dots, 8)$

- (a) Let t = 5 and s = 5. As shown in Figure 1, X ∪ Y is a k-configuration in P² of type (2, 3, 4, 5, 6).
 (b) Let t = 6 and s = 7. As shown in Figure 2, X ∪ Y is a k-configuration in P² of type (1, 2, ..., 8).

PROPOSITION 2.5. Let $\mathbb X$ and $\mathbb Y$ be linear star-configurations in $\mathbb P^2$ of type s and t, respectively, with $3 \le t \le s$. If $s \ge \left[\frac{1}{2}\binom{t}{2}\right]$, then $\mathbb{X} \cup \mathbb{Y}$ has maximal Hilbert function.

Proof. By Corollary 2.2 in [6], the result hold for $s \ge {t \choose 2} - 1$. So we assume that $\left[\frac{1}{2}{t \choose 2}\right] \le s < {t \choose 2} - 1$.

Let \mathbb{X} and \mathbb{Y} be defined by lines $\mathbb{L}_1, \ldots, \mathbb{L}_s$ and $\mathbb{M}_1, \ldots, \mathbb{M}_t$, respectively, where \mathbb{L}_i and \mathbb{M}_j are defined by linear forms L_i and M_j . By Theorems 3.1 and 3.2 in [4], the result holds for t=3 and 4. So we assume that $t \geq 5$. Recall that \mathbb{X} and \mathbb{Y} are \mathbb{K} -configurations in \mathbb{P}^2 of type $(1, 2, \ldots, s-1)$ and $(1, 2, \ldots, t-1)$, respectively. For convenience and simplicity of the figure, we shall use Figure 3. First, we use the matrix

$$1 \quad 2 \quad \cdots \quad s-1$$

as a standard k-configuration (a linear star-configuration \mathbb{X}) in \mathbb{P}^2 of type $(1,2,\ldots,s-1)$ in Figure 3, i.e., we consider \mathbb{X} a standard k-configuration in \mathbb{P}^2 . Second, we spread out the $\binom{t}{2}$ -points of the other k-configuration (linear star-configuration \mathbb{Y}) in \mathbb{P}^2 of type $(1,2,\ldots,t-1)$ as points on a line, and make a partition as follows:

s-points lie on the line \mathbb{N}_1 the other $\alpha := \binom{t}{2} - s$ -points lie on the line \mathbb{N}_2 .

FIGURE 3. $(1, 2, ..., s - \alpha, s - \alpha + 2, ..., s - 1, s, s + 1)$

Notice that it is always possible for every line \mathbb{L}_i to pass through either a single point or two points in \mathbb{Y} for $1 \leq i \leq s$. More precisely, we can prove this by induction on t, and it suffices to show when $s = \left[\frac{1}{2}\binom{t}{2}\right]$. By Example 2.4 (a) and (b), if t = 5 or t = 6, then it holds.

Now suppose t > 6. Consider a set \mathbb{Z} of 2(t-2)-points on two lines \mathbb{M}_{t-1} and \mathbb{M}_t except a single point \wp defined by M_{t-1} and M_t . Then we make (t-2)-lines $\mathbb{L}_{s-t+3}, \ldots, \mathbb{L}_s$ pass through two distinct points in \mathbb{Z} (see Example 2.4 (b)). Note that $\mathbb{W} := \mathbb{Y} - (\mathbb{Z} \cup {\wp})$ is a linear star-configuration in \mathbb{P}^2 of type (t-2) defined by M_1, \ldots, M_{t-2} , and

$$s - (t - 2) - \left[\frac{1}{2} {t - 2 \choose 2}\right] = \left[\frac{1}{2} {t \choose 2}\right] - (t - 2) - \left[\frac{1}{2} {t - 2 \choose 2}\right]$$

$$\geq \frac{1}{2} ({t \choose 2} - 1) - (t - 2) - \frac{1}{2} {t - 2 \choose 2}$$

$$= 0.$$

In other words, $s - (t - 2) - \left[\frac{1}{2} {t-2 \choose 2}\right] = 0$ or 1.

Case 1. Let $s-(t-2)-\left[\frac{1}{2}\binom{t-2}{2}\right]=0$. By induction on t, we can make s-(t-2) lines $\mathbb{L}_1,\ldots,\mathbb{L}_{s-t+2}$ pass through two distinct points in \mathbb{W} (see Example 2.4 (a)). Hence $\mathbb{X}\cup(\mathbb{Y}-\{\wp\})$ is a \mathbb{k} -configuration in \mathbb{P}^2 of type $(2,3,\ldots,s+1)$, and so $\mathbb{X}\cup\mathbb{Y}$ is a \mathbb{k} -configuration in \mathbb{P}^2 of type $(1,2,3,\ldots,s+1)$.

Case 2. Let $s-(t-2)-\left[\frac{1}{2}\binom{t-2}{2}\right]=1$. By induction on $t, \mathbb{L}_2, \ldots, \mathbb{L}_{s-t+2}$ pass through two distinct points in \mathbb{W} , which implies that $\mathbb{X} \cup (\mathbb{Y} - \{\wp\})$ is a \mathbb{K} -configuration in \mathbb{P}^2 of type $(3,4,\ldots,s+1)$, and so $\mathbb{X} \cup \mathbb{Y}$ is a \mathbb{K} -configuration in \mathbb{P}^2 of type $(1,3,4,\ldots,s+1)$.

Therefore, it is from Cases 1, 2, and Lemma 2.3 that $\mathbb{X} \cup \mathbb{Y}$ has maximal Hilbert function, as we wished.

If we couple the results in [4, 5] with Proposition 2.5, we obtain the following proposition.

PROPOSITION 2.6. Let \mathbb{X} and \mathbb{Y} be linear star-configurations in \mathbb{P}^2 of type s and t, respectively, with $3 \leq t \leq s$. If either $3 \leq t \leq 10$ or $\left[\frac{1}{2}\binom{t}{2}\right] \leq s$, then $\mathbb{X} \cup \mathbb{Y}$ has maximal Hilbert function.

3. Additional comments and a question

First, the concept of a star-configuration in \mathbb{P}^n has been developed to calculate the dimension of secant varieties to the variety of reducible forms (see [4]). We extend the definition of a star-configuration in \mathbb{P}^n , i.e., we call the variety \mathbb{X} of the ideal

$$\bigcap_{1 \leq i_1 < \dots < i_r \leq s} (F_{i_1}, \dots, F_{i_r})$$

a star-configuration in \mathbb{P}^n of type (r, s) with $2 \leq r$. In particular, if r = n, then \mathbb{X} is a set of points in \mathbb{P}^n , which is call a point star-configuration in \mathbb{P}^n of type s.

Hence we have a natural question of the union of two linear point star-configuration in \mathbb{P}^n .

QUESTION 3.1. Let L_1, \ldots, L_s and M_1, \ldots, M_t be general linear forms in $R = \mathbb{K}[x_0, x_1, \ldots, x_n]$. Assume that \mathbb{X} and \mathbb{Y} are linear point star-configurations in \mathbb{P}^n defined by L_i 's and M_j 's. Does $\mathbb{X} \cup \mathbb{Y}$ have maximal Hilbert function?

References

- [1] J. Ahn and Y. S. Shin. The Minimal Free Resolution of a Fat Star-Configuration in \mathbb{P}^n , Algebra Colloquium **21** (2014), no. 1, 157-166.
- [2] A. V. Geramita, T. Harima, and Y. S. Shin. Extremal point sets and Gorenstein ideals, Adv. Math. 152 (2000), no. 1, 78-119.
- [3] A. V. Geramita and Y. S. Shin. k-configurations in \mathbb{P}^3 All have extremal resolutions, J. Algebra **213** (1999), no. 1, 351-368.
- [4] Y. S. Shin, Secants to The Variety of Completely Reducible Forms and The Union of Star-Configurations, J. of Algebra and its Applications 11 (2012), no. 6, 1250109 (27 pages).
- [5] Y. S. Shin, On the Hilbert Function of the Union of Two Linear Starconfigurations in P², J. of the Chungcheong Math. Soc. 25 (2012), no. 3, 553-562.
- [6] Y. S. Shin, Some Examples of The Union of Two Linear Star-configurations in ℙ² Having Generic Hilbert Function, J. of the Chungcheong Math. Soc. 26 (2013), no. 2, 403-409.

*

Department of Mathematics Sungshin Women's University Seoul 136-742, Republic of Korea *E-mail*: ysshin@sungshin.ac.kr