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A NOTE ON SURFACES IN THE NORMAL BUNDLE
OF A CURVE

Doohann Lee* and HeungSu Yi**

Abstract. In 3-dimensional Euclidean space, the geometric fig-
ures of a regular curve are completely determined by the curvature
function and the torsion function of the curve, and surfaces are the
fundamental curved spaces for pioneering study in modern geom-
etry as well as in classical differential geometry. In this paper, we
define parametrizations for surface by using parametric functions
whose images are in the normal plane of each point on a given
curve, and then obtain some results relating the Gaussian curva-
ture of the surface with curvature and torsion of the given curve.
In particular, we find some conditions for the surface to have either
nonpositive Gaussian curvature or nonnegative Gaussian curvature.

1. Introduction

In 3-dimensional Euclidean space R3, the geometric figures of a reg-
ular curve are completely determined by the curvature function and the
torsion function of the curve, and geometric properties of some special
curves are studied until quite recently [3],[4],[5]. Also, intrinsic surfaces
are the fundamental curved spaces for pioneering study in modern ge-
ometry as well as in classical differential geometry [1],[2].

In differential geometry, a 2-dimensional differentiable manifold or
simply a surface M is defined by locally assigning several overlapping
parametrizations which cover some open neighborhood of each point of
M , and the Gaussian curvature K(p) of p ∈ M can be extrinsically cal-
culated by means of the differentiable unit normal vector field n [6],[7].
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In this paper, we define parametrizations for surface by using para-
metric functions whose images are in the normal plane of each point
on a given curve, and then obtain some results relating the Gaussian
curvature of the surface with curvature and torsion of the given curve.
In particular, we find some conditions for the surface to have either
nonpositive Gaussian curvature or nonnegative Gaussian curvature.

2. Curvatures of surfaces in the normal bundle of a curve

Let γ be a regular curve with a unit speed in R3. We assume that γ(s)
is of class C3 defined on an open interval I, and use familiar notations
κ, τ,T,N,B for curvature, torsion, tangent vector field, principal normal
vector field, binormal vector field of γ, respectively. Throughout this
paper we use the following Frenet formulas:

dT
ds

= κN ,
dN
ds

= −κT + τB ,
dB
ds

= −τN .

Consider a parametrization x on an open rectangle I × J (⊂ R2)
defined by

x(s, t) = γ(s) + f(s, t)N(s) + g(s, t)B(s) ,

where f(s, t), g(s, t) are smooth real-valued functions defined on I × J .

Definition 2.1. We call the parametrization x defined as above by
the normal sectional parametrization of γ.

For simplicity of notations, we will abbreviate the variables s and t
of scalar functions and vector fields, and denote the partial derivative
∂f
∂s by fs. Then, by the Frenet formulas, we obtain the basic equations
as follows:

Remark 2.2. Let R(s, t) = 1− κf and S(s, t) = fs gt − ft gs. Then,
we have
(1) xs = RT + (fs − τg)N + (gs + τf)B.
(2) xt = ft N + gt B.
(3) xs × xt = [S − τ(fft + ggt)]T−R gt N + R ft B.

The intrinsic properties of surfaces are determined by the first fun-
damental form on the tangent space at each point. We use the following
classical notations:

E = xs · xs , F = xs · xt , G = xt · xt , g = EG− F 2 .
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Proposition 2.3. Let x be a normal sectional parametrization of
γ defined as above. Then, the coefficients of the metric tensor are as
follows:
(1) E = R2 + (f2

s + g2
s) + 2τ(fgs − gfs) + τ2(f2 + g2).

(2) F = (fsft + gsgt) + τ(fgt − gft).
(3) G = f2

t + g2
t .

(4) g = ||xs × xt||2 = [S − τ(fft + ggt)]2 + R2(f2
t + g2

t ).

Theorem 2.4. Assume that γ is a unit speed plane curve. Let p be
a point in the image Im(x) of the normal sectional parametrization x
given in Definition 2.1. Then the Gaussian curvature K at p is

K(p) = − 1
g2

[κ gt (ft gtt − gt ftt) R3 + κ2 f2
t S2 ]

+
RS

g2
[−(2κ fs + κs f)(ft gtt − gt ftt) + 2κ ft(ft gst − gt fst) ]

+
R2

g2
[(ft gss − gt fss)(ft gtt − gt ftt)− (ft gst − gt fst)2 ] .

Proof. From the condition for a plane curve γ and the above propo-
sition, we have
(1) E = R2 + (f2

s + g2
s),

(2) F = (fsft + gsgt),
(3) G = f2

t + g2
t ,

(4) g = S2 + R2(f2
t + g2

t ).
Also, by (3) in Remark 2.2, the unit normal vector field n is

n =
1√
g

[S T−R gt N + R ft B] .

By differentiating xs = RT + fs N + gs B and xt = ft N + gt B, we
obtain that

xss = (−κsf − 2κfs)T + (κR + fss)N + gss B,

xst = (−κft)T + fst N + gst B,

and
xtt = ftt N + gtt B.

Hence, we obtain the coefficients of the second fundamental form as
follows:

L = xss · n =
1√
g
[S(−κs f − 2κ fs)−R(κ gt R + fss gt − ft gss)],

M = xst · n =
1√
g
[−κft S + R (ft gst − fst gt)],
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and

N = xtt · n =
R√
g
(ftgtt − fttgt).

Therefore,

LN −M2 = −1
g
[κ gt (ft gtt − gt ftt) R3 + κ2 f2

t S2 ]

+
RS

g
[−(2κfs + κsf)(ftgtt − gt ftt) + 2κft(ftgst − gtfst) ]

+
R2

g
[(ft gss − gt fss)(ft gtt − gt ftt)− (ft gst − gt fst)2 ].

Since K = LN−M2

g , we obtain the desired result. 2

As a consequence of the theorem, we obtain the following corollary.

Corollary 2.5. If γ is a unit speed straight line, then

K(p) =
(ft gss − gt fss)(ft gtt − gt ftt)− (ft gst − gt fst)2

(S2 + f2
t + g2

t )2
.

Proof. Since any straight line has the constant curvature κ = 0, we
have R = 1. 2

Proposition 2.6. Assume that γ is a unit speed space curve. If the
parametrization x is defined by

x(s, t) = γ(s) + f(s, t)N(s) + tB(s) ,

that is, g(s, t) = t, then the coefficients of the second fundamental form
of x are as follows:

L =
1√
g
[(fs − τ(fft + t))(Rs + κ(tτ − fs))

−R(κR + fss − tτs − τ2f) + ftR(2τfs − tτ2 + τsf)],

M =
1√
g
[−fsft + τft(fft + t) + R(τ + τf2

t − fst)],

and

N =
−fttR√

g
,

where g = [fs − τ(fft + t)]2 + R2(1 + f2
t ).
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Proof. At first, we note that S(s, t) = fs(s, t). By Remark 2.2, we
have

xs = RT + (fs − t τ)N + (f τ)B , xt = ftN + B,

and
xs × xt = [fs − τ(fft + t)]T−RN + R ft B.

Also, since

xss = (Rs+κ(tτ−fs))T+(κR+fss−tτs−τ2f)N+(2τfs−tτ2+τsf)B,

xst = −ft T + (fst − τ)N + τft B ,

and
xtt = fttN,

we obtain the desired results. 2

3. Curvature of a surface defined by a homogeneous normal
sectional parametrization

In this section, we assume that both f and g are functions of a
single variable t, that is, f(s, t) = f(t) and g(s, t) = g(t). Although
we use ordinary differentiation under these assumptions, we still use the
notations ft of partial differential, instead of the ordinary differential
f ′(t). Then, fs = 0 and gs = 0, and so we have S = 0. Thus, the results
given in Section 2 are simply expressed.

Definition 3.1. Let γ be a regular curve with a unit speed in R3. If
the parametrization x is defined by

x(s, t) = γ(s) + f(t)N(s) + g(t)B(s) ,

that is, f(s, t) = f(t) and g(s, t) = g(t) are both single variable functions,
then we call the parametrization x by the homogeneous normal sectional
parametrization of γ.

Remark 3.2. Let x be a homogeneous normal sectional parametriza-
tion of γ with f(s, t) = f(t) and g(s, t) = g(t). Then xs = RT− τg N+
τf B and xt = ft N + gt B. Also, we have

(1) xs × xt = −τ(fft + ggt)T−R gt N + R ft B, and so

g = τ2(f ft + g gt)2 + R2(f2
t + g2

t ).

(2) E = R2 + τ2(f2 + g2).
(3) F = τ(fgt − gft).
(4) G = f2

t + g2
t .
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Moreover, if γ is a plane curve, then the above equations imply that
(1) g = R2(f2

t + g2
t ).

(2) E = R2.
(3) F = 0.
(4) G = f2

t + g2
t .

We assume that R 6= 0 and ft gt 6= 0. Then xs × xt 6= O, and so the
parametrization x satisfies the regularity condition for surface.

Theorem 3.3. Assume that γ is a unit speed regular curve in R3. Let
p be a point in the image Im(x) of the homogeneous normal sectional
parametrization x defined by

x(s, t) = γ(s) + f(t)N(s) + g(t)B(s)

on some open rectangle I × J . Then the Gaussian curvature K at p is

K =
R2

g2
[−κgtPR + P (fgtτ

2 − gftτ
2 + ggtτs + fftτs)− (f2

t + g2
t )

2τ2]

+
τ(fft + ggt)

g2
[PR(κsf − κτg)− κ2τ(fft + ggt)f2

t − 2κτft(f2
t + g2

t )R],

where P denotes ft gtt − gt ftt.

Proof. By the straightforward computations, we have that
(1) xss = −(κs f − κτg)T + (κR− τsg − τ2f)N + (τsf − τ2g)B.
(2) xst = −κftT + (−τgt)N + (τft)B.
(3) xtt = fttN + gttB.
Also, we obtain that

L =
1√
g
[τ(fft+ggt)(κsf−κτg)−Rgt(κR−τsg−τ2f)+Rft(τsf−τ2g)] ,

M =
τ√
g
[κft(fft + ggt) + R(f2

t + g2
t )] ,

and

N =
R√
g
(ftgtt − gtftt) =

RP√
g

.

Therefore, we have

LN −M2

=
R2

g
[−κgtPR + P (fgtτ

2 − g ftτ
2 + ggtτs + fftτs)− (f2

t + g2
t )

2τ2]

+
τ(fft + ggt)

g
[PR(κsf − κτg)− κ2τ(fft + ggt)f2

t − 2κτft(f2
t + g2

t )R].
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Since K = LN−M2

g , we obtain the desired result. 2

Corollary 3.4. (1) If γ is a straight line in Theorem 3.3, then the
Gaussian curvature is constant zero, namely, K(p) = 0, for every
point p.

(2) If γ is a plane curve in Theorem 3.3, then

K(p) =
−κ gt(ft gtt − gt ftt)

R (f2
t + g2

t )2
.

Remark 3.5. If γ is a plane curve, f(s, t) = f(t) and g(s, t) = t, then
the above corollary implies that

K(p) =
κ ftt

R (f2
t + 1)2

.

Hence, if R > 0, that is, 1 > κf , then the sign of Gaussian curvature of
the surface defined by the homogeneous normal sectional parametriza-
tion of a curve γ is determined by the sign of ftt. Thus, if a smooth
function f has a convex downward (or upward) graph on an open inter-
val J , then ftt > 0 (or ftt < 0), and so the Gaussian curvature is always
nonnegative (or nonpositive).

For example, let γ be a circle of radius r and 0 < a < r. Then the
torus defined by f(t) =

√
a2 − t2 and g(t) = t in the parametrization x

has the Gaussian curvature at p ∈ Im(x) as follows:

K(p) =
−√a2 − t2

a2(r −√a2 − t2)
.

The following example is the case that f(s, t) = t and g(s, t) = g(t):

Example 3.6. Let γ be a circle of radius r and 0 < a < r. Then,
the curvature κ(s) = 1

r and τ(s) = 0 for γ(s), and hence, Theorem 3.3

implies that the torus defined by using f(t) = t and g(t) =
√

a2 − t2

in the parametrization x in Theorem 3.3 has the Gaussian curvature at
p ∈ Im(x) as follows:

K(p) =
t

a2(t− r)
.
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