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Y-UNIFORM STABILITY FOR LINEAR IMPULSIVE
DIFFERENTIAL EQUATIONS

YiNHUA Cur*, SUNG SooK KiM**, AND YOON HOE Goo***

ABSTRACT. In this paper, we show the t-uniform stability for lin-
ear impulsive differential equations and their perturbations by using
the impulsive Gronwall’s inequalities.

1. Introduction

Impulsive differential equations and application were introduced by
some authors: A. M. Samoilenko and N. A. Perestyuk [3], V. Lakash-
mikantham, D. D. Bainov and P. S. Simeonov[13], Bainov and Simeonov[4,
6].

Recently, it has been realized that impulsive differential equations
form a natural description of observed evolution phenomena of several
real world problems, and therefore their study has attracted much at-
tention [13].

Akinyele[1] introduced the notion of ¢)—stability of degree k with re-
spect to an increasing function ) € C(R, R, ), which is differentiable on
R, and such that ¢(t) > 1 for t > to and limy_.o ¥ (t) = b, b € [1,00).
Diamandescu in[2], proved some sufficient conditions for i—stability
of the zero solution of a nonlinear Volterra integro-differential system.
Bhanu Gupta and Sanjay K. Srivastava investigated 1 — exponential
stability of non-linear impulsive differential equaions[12].

In this paper we show the -uniform stability for linear impulsive
differential equations at fixed moments and their perturbations by using
impulsive inequality of Gronwall type.
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2. Preliminaries

Let R™ be the n-dimensional real Euclidean space and || - || denotes
the norm on R".

Let v = {t;}32, C [to,00) be an unbounded and increasing sequence.
Denoted by PC([tg,o0),R™ x R™) the set of functions ¢ : [tg,00) —
R™ x R™ which are continuous for ¢ € [tg, c0) \ v, are continuous from
the left for t € [tg, 00), and have discontinuities of the first type at the
points t; for each k € N.

We consider the linear impulsive system

' =A(t)x, t# t,
(2.1) Ax = ka, t= tk,

m(t(J)r) = T0,
where A € PC([tg,00), R" x R™), and its perturbed linear system with
fixed moments of impulse

Yy =At)y+Ct)y, t#t,
(2.2) Ay = Bry + Ry, t=ty,
y(t5) = vo,
where C' € PC([tg, ), R™ x R™), and By, Ry are n X n matrices.

We assume that the solution y(t) of system (2.2) is left continuous
at the moments of impulsive effect ty, i.e., y(t, ) = y(tx), and Ay(ty) =

y(td) — y(te).
LEMMA 2.1. [5, Theorem 1.5] Let (tg,zo9) € R x R™. Then the follow-
ing statements hold:

1. There exists a unique solution of equation (2.1) with z(tJ) = o
(or z(ty) = o) and this solution is defined for t > ty (ort > tg).

2. If det(E + By,) # 0 for each k € Z, then this solution is defined for
allt e R.

The next result follows from a simple calculation.

LEMMA 2.2. [5] Each solution y(t) of (2.2) satisfies the integro-summary
equation

t
y(t) = W(tS*)y(S)Jr/ W(t,T)C(r)y(r)dr+ Y W(t.t)Ruy(ti), t = s,

s<tp<t

where W (t, s) is the Cauchy matrix for equation (2.1).
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LEMMA 2.3. [5, Lemma 1.4] suppose that for t >t the inequality

(2.3) u(t) <c+ /t b(s)u(s)ds + Z Bru(ty)

to to<tp<t

holds, where u € PC(R,R), b € PC(R,R") and 8, > 0, k € Z and c are
constants. Then we have

(2.4) ut)<e [ 0+ e /tb(s)d5>

to<tp<t to
t
(2.5) < cexp (/ b(s)ds + Z ﬁk>, t > to.
to to<tp<t

We will prove that under a general "small” mean condition on the
perturbations C' and Ry, 1-uniform stability of system (2.1) is inherited
by the perturbed system (2.2).

DEFINITION 2.4. [8, Definition 2.5] The zero solution v = 0 of (2.1)
(or system (2.1)) is called -uniform stable if there exist a finite v >
0 and invertible matrix function ¥(t) € PC([ty,00), R™ x R™)(or left
continuous function ¥ (t) € PC([tp,00), RT)) such that for any ¢y and
x(to), the corresponding solution satisfies

(2.6) le@z(®)]] < Attt t > to > 0.

If we choose a convenient value of ¢ , then we see that () is reduced to
the unit matrix of order n. It is easy to see that if ¥(¢) is unit matrix,
then the -uniform stability is equivalent with the uniform stability.

3. Main results

THEOREM 3.1. The linear impulsive system (2.1) is 1-uniform stable
if and only if there exists a v > 0 and invertible matrix function ¢ (t) €
PC([ty,0),R™ x R™) such that for every zy € R",

(31) H@Z’(t)W(tato)U}_l(to)H <7, t=>th> Oa
where W (t,to) is the Cauchy matrix of (2.1).

Proof. Suppose that (2.1) is ¥—uniformly stable. Then, there is a
~ > 0 such that for any ¢y, z(tp), the solutions satisfy

[¥@)z @) < vl (to)z(to)ll, = to.
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Given any to and t, > to, let z, be a vector such that || (to)z.| =1
[ (ta)W (ta, to)all = lt:(ta) W (ta, to) ™" (t0)¥ (to)za]
= 9 (ta)W (ta, to)y ™" (to) |4 (to)al|
= [ (ta) W (ta, to)™ " (to) .
f

So the initial state x(t9) = x, gives a solution of (2.1) so that time t,
satisfies

‘|w(ta>m(ta)u = W(

< yl[¥(to)z(to)]|-

Since ||1(to)xe|| = 1, we see that ||[¢(te)W (ta,to) L (to)|| < 7. Since z,
can be selected for any to and t, > tg, we see that || (to )W (ta, to) 1 (to)]] <
~ for all ¢,tg € R.

Now suppose that there exists a y such that ||1(t,)W (ta, to) "1 (to)]| <
~ for all ¢, tp € R. For any to and z(ty) = w0, the solution of (2.1) satisfies

[o@)z ()] = [P &)W (¢, o) (to) |
= W)W (t, o)y~ (to) [ [[4(to)zo
<A (to)z(to)ll, t = to-
Thus, ¥—uniform stability of (2.1) established. O

THEOREM 3.2. If the zero solution x = 0 of (2.1) is v-uniformly
stable and there exists a constant M such that

(3.2) Aw\\w<7>c<r>w<7>1r\d7+ S el Rep M)l < M
0<tr<oco

then the zero solution y = 0 of (2.2) is 1-uniformly stable.

Proof. 1t follows from Lemma 2.2 that the solution y(t) of (2.2) is
given by

t
y(t) = W(tt§)yo+ | W(ts)Cls)y(s)ds+ Y Wt tu)Rey(tr), t = to.
to to<tp<t
Then by Theorem3.1 there exist a constant v > 0 such that
Il @)W (£t~ (to) | <7, t > t0 2 0,
where W (t,to) is the cauchy matrix of (2.1). Thus we obtain
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W(t)y(t) = LW (¢, to) ™" (to)1b(to)y(to)

+ [ W@OW () (1) (r)C(r)y(r)dr
+ Y WY GOSN Rey ™ (b (b y (),

to<trp<t

[Py < ll¥(to)y(to)l +7/t [ () O™ (D) (r)y(r)lldr
+y > ) Red ™ @) Nl ()|

to<tp<t

By the Gronwall impulsive integral inequality [5]
t
[V(@)y ) < vl[e(to)y(to)ll exp[y t [b(m)C ()~ () ldr
+v D ED Ry @), > to

to<trp<t
< W (to)y(to) €™,
<A'|[¥(to)y(to)]|

where 7/ = ve"™ . Hence the zero solution y = 0 of (2.2) is ¥-uniformly
stable. The proof is complete. O

COROLLARY 3.3. If we set ¢ (t) = 1/h(t), then the Theorem 3.2 is
similar to Theorem 2.7 in [10].

COROLLARY 3.4. If the zero solution x = 0 of (2.1) is uniformly
Lipschitz stable and there exists a constant M such that

(3.3) /0 Tomir+ Y Re<M

0<t),<oco
then the zero solution y = 0 of (2.2) is uniformly Lipschitz stable.

In order to obtain -uniformly stability of solutions of nonlinear im-
pulsive differential systems, we need the following assumption.

(H):
(i) f:R*T x R® — R" is continuous in (t;_1,t;] x R™ and for every
yeR" neN

lim t,x) exists for ¢ > tg.
(t,rr)ﬂ(tk,y)f( )



500 Yinhua Cui, Sung Sook Kim, and Yoon Hoe Goo

In addition, there exists A € PC(R™,R) such that
[fE )l < ADlyl, for (ty) € RT xR,

(ii) For every k € N, By is an n x n matrix, and I : R" — R" is
continuous, and satisfies

k()| < Aelyl, y € R™, Ap > 0,
We consider nonlinear impulsive differential system
y/ = A(t)y + f(ta y)a t ?é lk,
(3.4) Ay = By + Ir(y), t=1t
y(ty) = vo,
where f(t,0) = 0.

We can obtain the various stability results from Theorem 3.2.

THEOREM 3.5. Assume that conditions (H) holds, If the zero solu-
tion x = 0 of 2.1 is y-uniformly stable with condition Hy:

Jo @MDY ) ldr + o<y, <o0 [PED AP ()| < 00, for each
t > 0, then the zero solution y = 0 of (3.4) is y-uniformly stable.

The proof of Theorem 3.5 can be proved in a similar manner as that
of Theorem 3.2. So we omit the proof.

COROLLARY 3.6. Assume that the ordinary differential system:
a'(t) = A(t)z(t)

is Y-uniformly stable. Furthermore, suppose that f, It(k € N) and ¢ (t)
satisfy the hypothesis of Theorem 3.5. Then the impulsive system

y'(t) = A)y(t) + f(ty), t # t,
Ay(te) = Ix(y), t = ti.
is @-uniformly stable.

To illustrate our results, we will give an example about ¥-uniformly
stability of linear impulsive differential system.

EXAMPLE 3.7. Consider the linear impulsive differential equation

14y — 1
o (Lo
- kQ ) - k? e

where % € PC(RT,R), & € R, and det(1 + 7) # 0 for each k € Z*.
Then the zero solution x = 0 of (3.5) is Y-uniformly stable.
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Proof. Let (tg,zp) € RT x R. Then we have

1 bt
Witt) = [[ (1+k2)exp(/t0 i), 121> 0,

to<tip<t

and furthermore

e =] T @+ oo ([ )

to<trp<t

it is easy to see that there exists M > 0 such that

exp(/ttTleT+ Z ‘%D < M.

HOW (t.t0)5™ t0)] < [ esp [ L Y [h[)e )

<.

Where 9)(t) = e~ for t >ty >0 and v = M.
Hence the zero solution z = 0 of (3.5) is ¢-uniformly stable by Theorem
3.1. O]
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