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TOEPLITZ OPERATORS ON BLOCH-TYPE SPACES
AND A GENERALIZATION OF BLOCH-TYPE SPACES

S1 Ho KaNGg*

ABSTRACT. We deal with the boundedness of the n-th derivatives of
Bloch-type functions and Toeplitz operators and give a relationship
between Bloch-type spaces and ranges of Toeplitz operators. Also
we prove that the vanishing property of ||ukZ||, , on the boundary
of D implies the compactness of Toeplitz operaté)rs and introduce a
generalization of Bloch-type spaces.

1. Introduction

Let dA denote the normalized area measure on the unit disk D. aFor
any real number o with v > —1, we define dAq(z) = (a+1)(1 — |z[*)"dA

because/ (1 —|2)*)"dA(2) < ocif and only if or > —1. Since/ (1—|z»)"
D D

dA = H%’ dA, is a probability measure on ID. For p > 1, the weighted
Bergman space L (dA,) consists of analytic functions on I which are
also in LP(D,dA,). Since L2(dA,) is a closed subspace of L?(D,dA,),
for each z € D, there is a function K¢ in L2(dA,) such that f(z) =

1
< f, Kza > for every f in Lg(dAa), where K?(w) = m which
. oy = AP
is called the Bergman kernel and we define k' (w) = e =
(1—Zw)
K2 (w) : : 2
Kl where [| - ||, is the norm in the space L*(D, d4,) and < -, - >
z 112«

is the inner product in the space L?(D, dA,).
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For a linear operator S on L2(dA,), S induces a function S on D
given by S(z) =< Sk% k% >, z € D. The function S is called the
Berezin transform of S.

For u € LY(D, dA,), the Toeplitz operator T* with symbol u is the
operator on L2(dA,) defined by T%(f) = Py (uf), where P, is the or-
thogonal projection from L?(D,dA,) onto L2(dA,), in fact, P, (f)(z) =

/D(l_fz(z)fﬂld/la(w).

For # > 0, the 3—Bloch space Bg is the space of analytic fuctions
f on D such that [|f[|; = sup (1 — ]z]Q)B\f’(z)\ < ooand [[-][5is a
z€D

complete semi-norm on Bgz. Moreover, Bg is a Banach space with norm
of f equals to [|f]| =[£Iz + [f(0)].
Also we define the little 5—Bloch space Bg to be the subspace of

Bg consisting of the elements f such that |1}m1 (1— |z|2)ﬁ]f’(z)\ = 0.

In fact, By and BY are the classical Bloch space and little Bloch space,
respectively.

Since P, is the orthogonal projection, for any f € L*°, T]?‘ is bounded
on the Bergman spaces L% (dA,), p > 1 because the Bergman projection
P, has norm 1 on L2. Since L* is dense in L'(D,dA,), the Toeplitz
operator T with symbol u in L'(DD, dA,) is densely defined on L2(dA,,).

Many mathematicians working in operator theory are characterized
the boundedness and compactness of Toeplitz operators. For references,
see for example, [1], [2], [3].

In this paper, we study Toeplitz operators with special symbols on
the S—Bloch spaces.

Section 2 of this paper contains properties of Bloch-type functions.
Using the dominated property of 5—Bloch-type functions, we investigate
the boundedness of the n—th derivative of Toeplitz operators. We also
prove that T : Bg — Bﬁ+2+ _2he is a compact linear operator under

the vanishing property of u on the boundary and we get codomains
of D) where D™ is the n—th derivative operator. In Section 3, we
introduce a generalization of Bloch-type spaces and we prove that the
compactness of T : at?

: Bg —
Ea+2 ,6

Throughout the paper, we use p’ to denote the conjugate of p, that
1

—|— — =1 and we use the symbol A < B (A = B, respectively) for
pop
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nonnegative constants A and B to indicate that A is dominated by B
times some positive constant (A < B and B =< A, respectively).

2. (-Bloch-type functions

For 3 > 0, the 3—Bloch spaces Bz are Banach spaces with norm of
f equals to [|f||5 + |f(0)| which coincides with the quotient norm on
Bg/K where K is the closed subspace of constant functions. For 0 < g,
(Bg)* = L. and (L})" = Bg (see [5]).

LEMMA 2.1. Suppose f > 1 and f € Bg. If f(0) = 0 then for any

natural numbet n, |f(2)] < 171l for all z € D.
(=[P

Proof. Suppose 3 < 3. Since sup (1 — |z ) If'(2)| < +o0, fis an
z€eD
analytic function in L'(D,dAg) and hence

re- | (1f(w)2+5/df4ﬁ’(w)-

— 2W)

Taking the line integral from 0 to z, we get

dt
6 = [ fw / it)w dAgy(w)
f’ 1
- 17 ﬂ’/ w7 1)dAg (w)
_ f’( )
T ﬂ T
Here the 3rd equality comes from / ﬂ w"dA(w) = 0 and Tay-
lor’s series. Thus we get
B'—p
1£1l5(1 = [w]?)
z —dA(w
R R ey
and
BB
[1F115(1 = Jwl?)
el S dA(w).

D |1—zw|
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o0

— TmT() T i m 1)

~ m?*~*=1 by Stirling’s formula. Then we get

Notice that for A > 0, 5 =
1 —zw)

s < s i (mt +ﬁ)2B(m+1B’—/3+1)122’”
- I‘(2 5,2 27
N ||f||ﬁ
(1— 23"
and
, 1l & Tm+1+2) , om
IO 2 o a? 2 T Tmary DL A+
m=0
il
(1—12%°

since f7(2) = 2+ ) [ %(1 ) dA(w),

—_ F(2 /B, 2 27
3 i,
(1=l
I1f11g

O

By the mathematical induction, |f(™ (z)| < N
(1—12%)
THEOREM 2.2. Suppose 8 > 1 and f € Bg = {f € B : f(0) = 0}.
Then D™ (Bg) C Bg.y, for all natural number n, where D™ denote the
n-th derivative operator.

Proof. 1t follows immediately from Lemma 2.1. O

The following lemma is Lemma 4.2.2 in [4].

dAg(w) N

LEMMA 2.3. Suppose B > —1 and t > 0. Then / A

D |1 — 2w

(1— 12> " as|z| — 1.
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By the reproducing property, for g € L}, g(z) = / g(w)Kzﬂ(w)dAg(w).
D

Suppose f € Bg. Since sup(l - |z|2) |f/(2)] < oo, fisin LL(D,dAg)

and hence f'(z) = / f/( ))2+/6dA[5 /f w)dAg(w).

D (1— 2w
Taking the line integral from 0 to z, we get

J/tf j/ )2+ﬂdut4ﬁ@u)
=7 —1—5 /D f/w (1 - le>1+ﬂ - 1>dA5(w).

1— |w]®)”

Since /(|w‘)dA( ) =0 = /(‘w’)w” dA(w) for every
D w D w

natural number n, use Taylor series to obtain

/ I sy = o,
D w

1 f'(w)
1+ 6 Jpw(l — 2w)

Thus f(z) =

14_561145(10) +£(0). In particular, for

wnfl

1+ 8 Jpw(1 — 2w)

1
any natural number n, 5 dAg(w) = Ezn and f(n)(z)

nP(n+ﬂ+1)/ oL f(w)
= (-1 dAg(w).
RICET I ST
Notice that
1 - -4—5) _m
—_— = —2W
(1—zm)'*" mzo< mo )
_ r+m+1) m
Z m!T(6 + 1) TG Y
. s
and Stirling’s formula implies b+ ) ~ .

Using a simple calculation to obtain Theorem 2.4 which is Proposition
7 in [5]. The calculation method gives a sharp index to codomains of
Toeplitz operators (see Theorem 2.6).

THEOREM 2.4.

(1) Suppose 8 > 1 and f € Bg. Then (1 — \z|2)’8_1f(z) is bounded on
D.
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(2) If there is a positive real number 3 such that (1 — |z]2)ﬂf(z) is
bounded on D then f € Bi4p and vice versa.

(1= Jw*)” f(w)

Proof. (1) Suppose 3 < 3'. Then f(z) — f(0) = /
D

i) w(1 — zw)'
Since (1 — z@)_%_%’ = i L(m+ 5+ %/) (zw)™
m=0 m'F(% + %) 7
£ (z) = f(0)]
NENC
< Uil | S

Il
=
)
1]
S~

Iflls TG+ +m) 1
= T Y A B 5 8 = B 1)

Wl ST e T e,
i+ 8y = Tm+1)? Tim+y+p8-5+1)

’ 2
i L(m+ 3+ %) T(m+3) P
z

L(m+1)°T(m + 5 + 5 = 5)

m=0
(e} e}
~ Z m1+ﬂ’+§—2—g—ﬁ’+ﬁ|z|2m — Z mP=2 |2
m=0 m=0
1
(1-[=p)"

~
~

Here the last equivalence follows from 8 —1 > 0.
Thus (1 — \z|2)ﬁilf(z) is bounded on D.

(2) Suppose (1 — |z|2)ﬁf(z) is bounded on D for some 3 > 0. If
B < ' then (1/ - \z|2)ﬁlf(z) is bounded on D and hence f(z) = (14 ')

1 _ 2

/ (1 = l®) Zfé,w) dA(w). Differentiating under the integral sign, we
D (1—zw)

get
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2,0’ _
f/(Z) =1 +ﬂ,)(2 +ﬁ,)/ (1 — |w| ) f(w)wdA(w).

D (1—zw)*

00 3.8
Since v = Z —F(m +32 +ﬁ’2 )(zw)m,
(1—2w)2t7 oo MTG+5)

’ 2

F(m—l—%+%)

Fel = /ﬂ»mor(mH)QF(%@')

o0

_ B=B\_1om|_12m
2@l [wl*)” w2 dA(w)

Q

X T(m+ 3+ 2)° 3 )
222 Blm+=,08 —pB+1)z™
2 T(m + 1) ( 270 )H

0o ’ 2

Pm+§+%)  Tm+3) o
) I VS e B

m=0

&

m=0

oo - e
Z 38 +3 2= =By 2m Z mP|z|*"
m—0 m=0

1
(1— "

’6+1]f’(z)] is bounded on D, that is, f € Bi4. O

1£115
(1 — [w?)’

%

Q

Thus (1 — |2]?)

LEMMA 2.5. Suppose f € Bg. If 3 > 0 then | f(w)] <
allw € D, that is, the growth condition of f is dominated by

(1 — Jwt*)’ | £ (wt)]

3 dt

Proof. Since |f(w)| = |w fol f(wt)dt] < ‘w/

1
0 (1— |wt]?)
14115 1£115
< —— | f(w)] < —————— for all w € D. O
(1 — [w]?) (1= [w]?)”

«

Let k2 = 2 _ be the normalized repreducing kernel. Then for any

K] 1
analytic function f, < f, K¢ >= f(z). Since K (w) = ———ray
(1 —-Zw)
)/3

2 z 1 — |wl?
LB Since (1 - fut)’| | < LML
(1—zw) (1—7zw) (1—wl)
= (14 |w])?(1 = |w)?~*73, for B = 3+ a, we get K@ € Bg, while for

(K2) (w) =
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B>3+a, K € Bg. Since L N L}(dA,) is dense in Ll(dA,) and the
dual space of Bg is Ll k¢ — 0 weakly in Bg as z — 0D because for
any fin L®NLL(dAy), < f, k¥ > = (1 — |z|2)1+§f(z) — 0 as z — JD.
Notice that for u € L'(D,dA,), TS(f) = Pa(uf), that is, T¥(f)(z) =
/ %f(yzdfl (w) and there is a natural connection between the
p (1 —zw)* ™
Bloch space and the Toeplitz operators via Py (L%°) = By, where P is the
orthogonal projection from L?(D,dA) onto L2(dA). For u € LY(D, dA,)
and f € Bg, we define T)(f)(2) = / (1u(w>f()2+)adA (w). Let WR(«)
p (1—zw

= {u € L}(D,dA,) : sup ||ukS |50 < +o0 for some s € (2,00)}.
zeD

a1 1 \?2 1

Define f(z) = 23, on (2n+1> ST < on , where n is a natural
0 , otherwise

number.

For each z € D, let f(z) = f(|z|), that is, f is a radlal function. If

0<athen/yf ) dAg(w /|f Y| dA(w Z/n( 25 dr

2n+1)

1 (-l
< . 1 ] 1 o) 1 —— : —
<1 Thus f is in L'(D,dA,). Since sup{ PEEWES lw| < 5
and = € D} < 2%, Ifkel, = [ Ikt >|3dA (w) < 20+
oo 1
Z ’ ,2tdr = 2(2+a)3=2 — 94432 — oo Thus f € WR(a) and
1 1

n=1 27"7(2714»1 )

f is unbounded on D, that is, L>°(D) is a proper subset of W R(«). Since

FES 50 = I1f52]l5 o and for t € C, [[tfh2], o, = [t fES ] 00 WR(a) is
closed under the formation of conjugatlons and a Vector Space
Suppose f € WR(a) and z € D. Since |f|(z) = T = [p [k(

|[f(w)|dAa(w) < [IfRZ 10 < [IfAS]ls0 < [1fllwre): Where HfHWR
= suprkaHSQ, sup{\f\( ) : z € D} is bounded and hence |f|dA, is

zeD
a Carleson measure on . Thus for each u € WR(«), T is bounded

on Lo(dAy) for 1 < p < oo and [|T]], < Cllfllw p(a) for some con-

stant C, where |[T}7'||, is the operator norm on Lh(dA,) and f 1w R

= sup||fk2||,, because P, is bounded on L5(dA,). If f € L2(dA,)
zeD ’

then for any w € D, (T3 f)(w) = < T2 f, K& > = < f,(T$)*'K§ > =
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/f (ToV K2)(2)dAa( /f (TOK2)(w)dAqs(2). Thus T is

the integral operator with kernel TS K%(w) on L2(dA,).
Let’s consider Toeplitz operators on the G-Bloch space. Suppose u €
WR(a), that is, ||ullyp@) = supllukf]l;, < +oo for some s > 2.
z€D ’

For f € By, T2 (f)() = / w(w) f () Ke(@)dAq(w), T is the integral
D _
operator with kernel u(w)Kg(z). Suppose § > 0 and f € Bg. Since

o z) = uwTw—f(w) w
T20)G) = [ utw)ke I )

ke, . 111 p N7
(6% 9y - ; _ A
Tl 2 / e aa)

uk? a—Bs' 7
_ H ZHs,oz | (1—‘111’2) B dA
2\ 1+5
(1—=1[7) > /P
If « — s’ > —1 then / (1-— |w\2)a_ﬁs dA < 400 and hence T2(f) is
D
well-defined. On the other hand, if (14 3)s’ —2 — a > 0 then

T (1) (2)]
wu(w) f (w)
. / wuw)f(w) 44
‘( a) D(l—z@)3+a (w)‘
1
_ Nekellgallfllg / (1= ) n
T -t (1 - zw)*

1
k2ol £ll5 & 2 ot s 1 )
(11+f<z <s’>/o Q) )

1
HUkO[HsaHfHIB > s'—2—a+Bs'—1 2m o
—1+<Zm +")
(1—2%) m=0
Hukausaufuﬁ( 1 )3_ [kl ol £l
1+5 (1+8)s'—2—« - o —2ta
(1= "% Va2 (1— |22y 57

Thus T} : Bg — Bﬂ+2+%_2s+7/a is a linear operator and ||T.|| < ||ul|yy g-

Since 142 —2£¢ < 0, TS : B3 — Bg, is also a bounded linear operator.
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Moreover, Tﬁ(f)(”)(z) = F(;L(Zi;‘)2) /ID) (iuiuz(w;7{£2—2a dAy(w). Since

(1—|z)" £l
k% (w) = ————— and S ——
S =g NS Ty
()™ (2)]
_Fn+a+2 w)f(w)
o a+2 ’/ | | )1+% (w)’
< F'n+a+2) HUHWRHfHﬁ
- T(a+2) (1— ‘Z‘Q)H_%
m+L8/)2 2m-+ns’ 2\a—Bs" om %
/ o e O T Rl BELVY

B F(n+a+2) HUHWRHfHﬁ
IMNa+2) (1- ‘Z|2)1+%

1

2 7
oo 21—\ / E]
X(Z (m +75) B(m—l—ﬁ—i-l,a—ﬂs’—i-l)]z]?m)

2o T(m + 1)°0 (2’ 2
1
Ml ly 5 sy )
(1— 2% M\
Mlullw gl 11 1

(1= 21" (1 2

Thus T5(f)" Y € By, yyp 250 O

Summarizing the above observation, one has the following :
THEOREM 2.6. Suppose u € WR(«), that is, sup ||uky]|, , < oo for
zeD ’

some s > 2 and 3 > 0. Then for each natural number n, D"~V (T%(Bg))
- Bn+ﬁ+1+%_2:-7la C By and T : Bg — Bﬁ+2+%_2:7/a is a bounded
linear operator.

COROLLARY 2.7. Suppose 3 > 0 andu € W R(«), where sup [[ukZ [ ,

zeD
< oo for some s > 2. Then T : B3 — By is a bounded linea operator.
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24+«
Sl

Proof. 1t is immedeately from the fact that 1 + % — <0. O

THEOREM 2.8. Suppose u € WR(«), that is, sup ||uky||, , < oo for
z€D '

some s > 2 and a — s’ > —1. If |[ukf|[,, — 0 as z — OD then
Ty : Bg — Bﬁ+2+%_2:—7/a is a compact linear operator.

Proof. Let’s show that T is compact on Bg. To do so, it is enough

to show that if (f,) is a bounded sequence in Bg and converges to 0

uniformly on compact subset of D then ||T3(fn)|lg 0,0 2ta — 0 as
2 s/

2\6+2+5 e
n — oco. Note that (1—|z[%) TS E) = kbl s
Let M = sup||fal|5. Take any e > 0. Since [[ukZ|],, — 0 as z — dD,

there is r such that 0 < r < 1 and sup |[ukZ||,, < = and hence
|z|>r “ 2M
sup (1 |25 18 (£ (2)] < . Since |fu(w)] < W”ﬁg
|z|>r 2 (1- ’w|2)
and
T (fa)(2) = (2+a)/u(w)f (w) 1 dAq(w)
u \Jn - D n (1 _ Z@)2+a o
«a fn(w)
=(2+ k3 — v dA, ?

1

uky n . a ’
T < e ([ (l”f b5 - o aa))

(1— 25" — [w[?)

HU’kaHs aHfTZHﬂ 2 a—p3s’ ﬁ
= — = (1 —|wl|%) dA(w)) .

(1—1]2%)'"2 (/ )

Since / (1- |w[2)a_68/dA w) < oo and (f) converges to 0 uniformly

(
on {z :D|z] < r}, |TY(fn)(0)] — 0 as n — oo. Since |T(fn)'(2)] =
[l g1 fnllg

)
(

ypr2rs T and (f,) converges to 0 uniformly on {z : |z| < r},
(1—12)
sup (1 — |73~ T2 (£,)/(2)] — 0 as n — oo,
|z|<r

Then we get lim ||T(fn)|| = 0. Thus T is a compact operator. [
n—oo
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3. A generalization of Bloch-type spaces

(1— o) "2

For a > —1 and z € D, we define U f(w) = f o p.(w)~—574
(1—zw)™

Since
1— |22
VST f(w) = U2 f o goz<w>((1_"))2+a
~ (1-1=P"F a-)'TE
I S (e

_ ’ 2+«
(Ue)! = U2 For f € L2 U = [ 1 0PI dAu()
= [|fllg,o- Thus UZ is an isometry on L%(dA,). Hence U2 is a unitary
operator on L2(dA,). Take any f in Bg. Then

sup (1 — [w®)’|(f o p.(w))

weD

= sup (1= ()1 (w)l ¢ - (w)

Cw (1= w1 — [z 11— zwl?
wE%( 11— zw]? ) | (w )’ — |22

= sup (1 — [w?)’] £/ (w)|(1 = 2% |1 = zw[>?

and hence || - ||; is M6bius invariant but the semi-norm is not Mdbius
invariant in the other case.

For a linear operator S on Bg, we define the conjugation operator S,
by USSUZ.

THEOREM 3.1. For u € LY(D,dA,) and z € D, (T2), = T

UOY, *

Proof. Take any f in Bg and any w in . Since (TO‘) = Uy, Uy

and (U;‘)_1 = UZ, it is enough to show that UZ'Ty = Ty, UL
Since
UZT (w)
1+9
o 1|z
= T2()s ()
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142\ s o\ 1+5
ey [ HOSOUZ Y 0 D

(1 — . (w)D)*™ (1—zw)*™
~ o (1—zw)*te (1|22
=) w000~ 1P A0
Lpte
= (+a) [y ; - z’tlww”a““)
~(1+a) /D w6 0(5)f 0 0x(5)(1 = |pa(s)D)°
RO aA(s)
(1= 2w — 2.(s) + wpa(s))
- (1= = 5"
=(ra) [ wopafopa
L)’ -z
1=z (1 2)*T 1 - ws)2te (#)
_ (=== 8"
=(1+a) /Du 0 .(8)f o p.(s) - 28)24_&(1 - w§)2+0‘
_ o U f(s dAa(s)
= [ worouzst) gL
= T’L?O(pz (Uzaf)(w)7 UzaTg = Tt?oapz Ugv thatis, (Tg)z = Tz?ocpz'
Il

Let E, be the set of analytic functions f on I such that ||f|| B, 1
finite, where ||f[|p = sup{(1—|Z«|2)”||Ugf||2+%_7 : z € D}. Then

I| - HEW is a complete semi-norm on FE,. Suppose that SUHI))) [ukZls 0 <
z€
+o00 for some s > 2. Notice that T3 (Bg) C B2+ﬁ+%_%z C Bits.

Consider T, : Bg — E,, where v = QJQ —p. Putt=2+5—9=
24 08+9—22 If g€ Byand 3+« — 2t > 0 then
102gll t
= supyep (1 — |w]*) |(Uz9) (w)]
1|28 )’

t
= SUPyeD (1 — |U1‘2) ‘ (g o sz(w) ((1—§w)2+0‘
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(1—1]2»)'"2

(1 —zw)*T

(1—12»)'"2
(1 . Eu))ZJr()z

t

= su <(1 — ‘Z‘Z)(l — ‘w’2)> (1 _ ’Z|2)1+%

— sup (1 — [w]?)’
weD

9 (p=(w))¢',(w)

+ 2+ )g(p:(w))

P
weD ‘1 —éw\z
_ 2 — — 3+a
;o (1 —Zw) zZ(1 — zw)
g () 0+ 2+ a)g(w) |
—1 42 (1—]zH)™
1+5+t 1
=< 1— Z2 2 sup —mmm—57
= (=) gl sup
y ( ’1_2w|4+a +(2+ ‘1—E’LU|3+Q )
B a N
(1—]2)™* (1—]zH)™

t—2—% _ — _
=(1—12% QIIQHtSlé%!l—Zw\Ha (1 -zw+2+a)
w

< (L= 1=P) gl 2 2+ 2+ ).

Thus (1 — |2*)"[|U2gl, < |lgll;, that is, [lgllz, =< [lg]l, v =2+5—7
and 3 +a —28 > 0 then B3 C E,. For 1 <2+ 5 —+, H® C E,.
Moreover, ||f\|E7 = [|f[lg whenever y =2+ 5 — 3 > %. Since U1 = k2,

2\ e
sup (1 =) 10215,

2\7 2\2+5 -7
=supsup (1 —[27) (1 —w[?)""* [(k2) (w)]
zeD web

2\ 2\2+5—7 (1-— |Z|2)1+%
=supsup (1 —[z[7) (1 —[w|)" ?* |2+ a)—— 574
2€D weD (1 —zw)
< supsup (1 — w?) 2772 (1 272+ @) (1 |2)HE (1 - J2)) 2
zeD weD

=< supsup (1 — |w|2)2+5_7(1 —12[)?"272, and hence 1 € Fy, . Since
zeD webD 2

1U2 I, = sup.en (L= 21*) USUEf)lpra_, = supoep (1= |2%)]

||f||2+%_7 U2 (Bg) C Eyfory=2+5—8 > fand hence kY € Epa_g.
Moreover, US : Bg — E, is an isometry whenever 3 = 7. Suppose
v <, wherey =245 —Fand v =245 — . Then § < 3’ and hence
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Bg C Bg. Thus U (Bg) C E,. Moreover, T3 (Bg) C B2+ﬂ+%+%z C
Bypa_(3prg-as2) = Bayz_y. Thus USTS(Bg) C U2(Byy a5 as2) C
Eath_ﬁ and UST(Bg) C Eath)_ﬁ, whenever ||ul|yy g, is finite with
respect to s € (2,00). Suppose ilelg [ukZ s, = llully ga) < oo for some

€ (2,00). If fe Bgthen T} f € B2+ﬂ+%7%2 and HUZO‘TffHH%f,Y =

(1= 2P) ITE fllay e where 7 = 252 — 8. Since |[T2 ]|y, 5, =

S

[ullyy ey 1115 and Bence |72 fll5 = Ifully eIl Thus one has
the following :

THEOREM 3.2. Suppose sup ||[ukZ|[; , < +oo for some s > 2 and
z
o+ 2
S/
where v = %72 — § and ||| < [|ully g-

8/

1
> 68+ 3 Then T} : Bg — E, is a bounded linear operator,

THEOREM 3.3. Suppose sup ||[ukZ|[, , < +oo for some s > 2 and
z
a—pBs" > —1. If [[ukg||,, — 0 as 2 — OD then T} : Bg — E, is a
o+ 2
s/ -5

compact linear operator, where v =

Proof. Tt is enough to show that if (f,,) is a bounded sequence in Bg
and converges to 0 uniformly on compact subsets of D then || TS (f,)]] B,

0 as n — oo. Note that for t = 2+ 2 —~, 1—|2[*'[(T%f)(2)|
= |uk s ol fnllg- Let M = sup||fallg. Take any € > 0. Since
lirgDHukg‘Hsa =0, thereis r > O such that 0 < < 1 and sup |[uk?||, , <
z— ’ ?

|z|>r
_°_ and hence sup (1—|2|? T ) (2 < £ Since ' (w {M’
Wi |Z|>pr( 2T fa) () = 5 | f(w)] = RN
a _ 1
ITe(f)(2)] = |2+ a) /D () o) sy Aa(w)

1

(2 + )l[uk? ], 0 1£ally e !
< ( /D ? (1~ ) dA(w))

(1—|z)"2 — )™

2+ k? s,allJn a=ps’ ;ll
_ 2+ o)kl 1S Hg(/D@_W) *aaw) "

(1—12%)'"2




454 Si Ho Kang

Since / (1-— |w|2)a7/88 dA(w) < oo and (f,,) converges to 0 uniformly on
D

(= <), Jim [T205)0)] = 0. Since (73, ()] < el 2l

2\t
(-1
and (f,) converges to 0 uniformly on {z : |z| < r}, sup (1 —|z|%)
|z|<r
(TS fn) (2)] — 0 as n — oco. Then we get lim Ty (fa)p, = 0. Thus T
n—oo
is a compact linear operator. O

Notice that for f € Bg, ‘|T3(f)”2+%+572:7,o¢ = ully gyl fll5 and
for g € B2+%+B_2$+7/a, ||g||ELﬂ727 = Hg||2+%+ﬁ_aT+/2 and hence Theorem

2.8 is an immediate Consequience of Theorem 3.3.
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