TOEPLITZ OPERATORS ON BLOCH-TYPE SPACES AND A GENERALIZATION OF BLOCH-TYPE SPACES

Si Ho Kang*

ABSTRACT. We deal with the boundedness of the n-th derivatives of Bloch-type functions and Toeplitz operators and give a relationship between Bloch-type spaces and ranges of Toeplitz operators. Also we prove that the vanishing property of $||uk_z^\alpha||_{s,\alpha}$ on the boundary of $\mathbb D$ implies the compactness of Toeplitz operators and introduce a generalization of Bloch-type spaces.

1. Introduction

Let dA denote the normalized area measure on the unit disk \mathbb{D} . For any real number α with $\alpha > -1$, we define $dA_{\alpha}(z) = (\alpha + 1)(1 - |z|^2)^{\alpha}dA$ because $\int_{\mathbb{D}} (1 - |z|^2)^{\alpha}dA(z) < \infty$ if and only if $\alpha > -1$. Since $\int_{\mathbb{D}} (1 - |z|^2)^{\alpha}dA(z) < \infty$ if and only if $\alpha > -1$. Since $\int_{\mathbb{D}} (1 - |z|^2)^{\alpha}dA(z) < \infty$ if and only if $\alpha > -1$. Since $\int_{\mathbb{D}} (1 - |z|^2)^{\alpha}dA(z) < \infty$ if and only if $\alpha > -1$. Since $\int_{\mathbb{D}} (1 - |z|^2)^{\alpha}dA(z) < \infty$ is a probability measure on \mathbb{D} . For $p \geq 1$, the weighted Bergman space $L_a^p(dA_\alpha)$ consists of analytic functions on \mathbb{D} which are also in $L^p(\mathbb{D}, dA_\alpha)$. Since $L_a^2(dA_\alpha)$ is a closed subspace of $L^2(\mathbb{D}, dA_\alpha)$, for each $z \in \mathbb{D}$, there is a function K_z^α in $L_a^2(dA_\alpha)$ such that $f(z) = \langle f, K_z^\alpha \rangle$ for every f in $L_a^2(dA_\alpha)$, where $K_z^\alpha(w) = \frac{1}{(1 - |z|^2)^{1 + \frac{\alpha}{2}}}$ which is called the Bergman kernel and we define $k_z^\alpha(w) = \frac{1}{(1 - |z|^2)^{1 + \frac{\alpha}{2}}}$ = $\frac{K_z^\alpha(w)}{||K_z^\alpha||_{2,\alpha}}$, where $||\cdot||_{2,\alpha}$ is the norm in the space $L^2(\mathbb{D}, dA_\alpha)$ and $\langle \cdot, \cdot \rangle$ is the inner product in the space $L^2(\mathbb{D}, dA_\alpha)$.

Received April 30, 2014; Accepted June 30, 2014.

²⁰¹⁰ Mathematics Subject Classification: Primary 47A38, 47B35.

Key words and phrases: weighted Bergman spaces, Toeplitz operators, Bloch-type spaces, compact operators.

This research was partially supported by Sookmyung women's Universety Research Grants 2014.

For a linear operator S on $L^2_a(dA_\alpha)$, S induces a function \widetilde{S} on \mathbb{D} given by $\widetilde{S}(z) = \langle Sk_z^\alpha, k_z^\alpha \rangle$, $z \in \mathbb{D}$. The function \widetilde{S} is called the Berezin transform of S.

For $u \in L^1(\mathbb{D}, dA_{\alpha})$, the Toeplitz operator T_u^{α} with symbol u is the operator on $L_a^2(dA_{\alpha})$ defined by $T_u^{\alpha}(f) = P_{\alpha}(uf)$, where P_{α} is the orthogonal projection from $L^2(\mathbb{D}, dA_{\alpha})$ onto $L_a^2(dA_{\alpha})$, in fact, $P_{\alpha}(f)(z) = \int_{\mathbb{D}} \frac{f(w)}{(1-z\overline{w})^{2+\alpha}} dA_{\alpha}(w)$.

For $\beta > 0$, the β -Bloch space B_{β} is the space of analytic fuctions f on \mathbb{D} such that $||f||_{\beta} = \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\beta} |f'(z)| < \infty$ and $||\cdot||_{\beta}$ is a complete semi-norm on B_{β} . Moreover, B_{β} is a Banach space with norm of f equals to $||f|| = ||f||_{\beta} + |f(0)|$.

Also we define the little β -Bloch space B^0_{β} to be the subspace of B_{β} consisting of the elements f such that $\lim_{|z|\to 1} (1-|z|^2)^{\beta} |f'(z)| = 0$. In fact, B_1 and B_1^0 are the classical Bloch space and little Bloch space, respectively.

Since P_{α} is the orthogonal projection, for any $f \in L^{\infty}$, T_f^{α} is bounded on the Bergman spaces $L_a^p(dA_{\alpha})$, p > 1 because the Bergman projection P_{α} has norm 1 on L_a^2 . Since L^{∞} is dense in $L^1(\mathbb{D}, dA_{\alpha})$, the Toeplitz operator T_u^{α} with symbol u in $L^1(\mathbb{D}, dA_{\alpha})$ is densely defined on $L_a^2(dA_{\alpha})$.

Many mathematicians working in operator theory are characterized the boundedness and compactness of Toeplitz operators. For references, see for example, [1], [2], [3].

In this paper, we study Toeplitz operators with special symbols on the $\beta-$ Bloch spaces.

Section 2 of this paper contains properties of Bloch-type functions. Using the dominated property of β -Bloch-type functions, we investigate the boundedness of the n-th derivative of Toeplitz operators. We also prove that $T_u^{\alpha}: B_{\beta} \to B_{\beta+2+\frac{\alpha}{2}-\frac{2+\alpha}{s'}}$ is a compact linear operator under the vanishing property of u on the boundary and we get codomains of $D^{(n)}$, where $D^{(n)}$ is the n-th derivative operator. In Section 3, we introduce a generalization of Bloch-type spaces and we prove that the compactness of $T_u^{\alpha}: B_{\beta} \to B_{2+\frac{\alpha}{2}+\beta} - \frac{\alpha+2}{s'}$ is a special case of $T_u^{\alpha}: B_{\beta} \to E_{\frac{\alpha+2}{2}-\beta}$.

Throughout the paper, we use p' to denote the conjugate of p, that is, $\frac{1}{p} + \frac{1}{p'} = 1$ and we use the symbol $A \leq B$ ($A \approx B$, respectively) for

nonnegative constants A and B to indicate that A is dominated by B times some positive constant $(A \leq B \text{ and } B \leq A, \text{ respectively}).$

2. β -Bloch-type functions

For $\beta > 0$, the β -Bloch spaces B_{β} are Banach spaces with norm of f equals to $||f||_{\beta} + |f(0)|$ which coincides with the quotient norm on B_{β}/K where K is the closed subspace of constant functions. For $0 < \beta$, $(B_{\beta}^{0})^{*} = L_{a}^{1}$ and $(L_{a}^{1})^{*} = B_{\beta}$ (see [5]).

LEMMA 2.1. Suppose $\beta > 1$ and $f \in B_{\beta}$. If f(0) = 0 then for any natural number n, $|f^{(n)}(z)| \leq \frac{||f||_{\beta}}{(1-|z|^2)^{\beta+n-1}}$ for all $z \in \mathbb{D}$.

Proof. Suppose $\beta < \beta'$. Since $\sup_{z \in \mathbb{D}} (1 - |z|^2)^{\beta'} |f'(z)| < +\infty$, f' is an analytic function in $L^1(\mathbb{D}, dA_{\beta'})$ and hence

$$f'(z) = \int_{\mathbb{D}} \frac{f'(w)}{(1 - z\overline{w})^{2+\beta'}} dA_{\beta'}(w).$$

Taking the line integral from 0 to z, we get

$$f(z) = \int_{\mathbb{D}} f'(w) \int_{0}^{z} \frac{dt}{(1 - \overline{w}t)^{2+\beta'}} dA_{\beta'}(w)$$

$$= \frac{1}{1 + \beta'} \int_{\mathbb{D}} \frac{f'(w)}{\overline{w}} \left(\frac{1}{(1 - \overline{w}z)^{1+\beta'}} - 1\right) dA_{\beta'}(w)$$

$$= \frac{1}{1 + \beta'} \int_{\mathbb{D}} \frac{f'(w)}{\overline{w}(1 - \overline{w}z)^{1+\beta'}} dA_{\beta'}(w).$$

Here the 3rd equality comes from $\int_{\mathbb{D}} \frac{(1-|w|^2)^{\beta'}}{\overline{w}} w^n dA(w) = 0$ and Taylor's series. Thus we get

$$|f(z)| \leq \int_{\mathbb{D}} \frac{||f||_{\beta} (1 - |w|^2)^{\beta' - \beta}}{|\overline{w}(1 - z\overline{w})^{1 + \beta'}|} dA(w)$$

and

$$|f'(z)| \leq \int_{\mathbb{D}} \frac{||f||_{\beta} (1 - |w|^2)^{\beta' - \beta}}{|1 - z\overline{w}|^{2 + \beta'}} dA(w).$$

Notice that for $\lambda > 0$, $\frac{1}{(1-z\overline{w})^{\lambda}} = \sum_{m=0}^{\infty} \frac{\Gamma(m+\lambda)}{m!\Gamma(\lambda)} z^n \overline{w}^n$ and $\frac{\Gamma(m+\lambda)^2}{m!\Gamma(m+t)} \approx m^{2\lambda-t-1}$ by Stirling's formula. Then we get

$$|f(z)| \leq \frac{||f||_{\beta}}{\Gamma(\frac{1}{2} + \frac{\beta'}{2})^{2}} \sum_{m=0}^{\infty} \frac{\Gamma(m + \frac{1}{2} + \frac{\beta'}{2})^{2}}{\Gamma(m+1)^{2}} B(m + \frac{1}{2}, \beta' - \beta + 1)|z|^{2m}$$

$$\approx \frac{||f||_{\beta}}{(1 - |z|^{2})^{\beta - 1}}$$

and

$$|f'(z)| \leq \frac{||f||_{\beta}}{\Gamma(1+\frac{\beta'}{2})^2} \sum_{m=0}^{\infty} \frac{\Gamma(m+1+\frac{\beta'}{2})^2}{\Gamma(m+1)^2} B(m+1,\beta'-\beta+1)|z|^{2m}$$

 $\approx \frac{||f||_{\beta}}{(1-|z|^2)^{\beta}}.$

Since
$$f''(z) = (2 + \beta') \int_{\mathbb{D}} \frac{\overline{w}f'(w)}{(1 - z\overline{w})^{3+\beta'}} (1 - |w|^2)^{\beta'} dA(w),$$

$$|f''(z)| \leq \frac{||f||_{\beta}}{\Gamma(\frac{3}{2} + \frac{\beta'}{2})^{2}} \sum_{m=0}^{\infty} \frac{\Gamma(m + \frac{3}{2} + \frac{\beta'}{2})^{2}}{\Gamma(m+1)^{2}} B(m + \frac{3}{2}, \beta' - \beta + 1)|z|^{2m}$$

$$\approx \frac{||f||_{\beta}}{(1 - |z|^{2})^{\beta+1}}.$$

By the mathematical induction,
$$|f^{(n)}(z)| \leq \frac{||f||_{\beta}}{(1-|z|^2)^{\beta+n-1}}$$
.

THEOREM 2.2. Suppose $\beta > 1$ and $f \in \overline{B_{\beta}} = \{f \in B_{\beta} : f(0) = 0\}$. Then $D^{(n)}(\overline{B_{\beta}}) \subset B_{\beta+n}$ for all natural number n, where $D^{(n)}$ denote the n-th derivative operator.

Proof. It follows immediately from Lemma 2.1.
$$\Box$$

The following lemma is Lemma 4.2.2 in [4].

LEMMA 2.3. Suppose
$$\beta > -1$$
 and $t > 0$. Then $\int_{\mathbb{D}} \frac{dA_{\beta}(w)}{|1 - z\overline{w}|^{2+\beta+t}} \approx (1 - |z|^2)^{-t}$ as $|z| \to 1^-$.

By the reproducing property, for $g \in L_a^1$, $g(z) = \int_{\mathbb{D}} g(w) \overline{K_z^{\beta}(w)} dA_{\beta}(w)$ Suppose $f \in B_{\beta}$. Since $\sup_{z \in \mathbb{D}} (1 - |z|^2)^{\beta} |f'(z)| < \infty$, f' is in $L_a^1(\mathbb{D}, dA_{\beta})$ and hence $f'(z) = \int_{\mathbb{D}} \frac{f'(w)}{(1 - z\overline{w})^{2+\beta}} dA_{\beta}(w) = \int_{\mathbb{D}} f'(w) \overline{K_z^{\beta}(w)} dA_{\beta}(w)$. Taking the line integral from 0 to z, we get

$$f(z) - f(0) = \int_{\mathbb{D}} f'(w) \int_0^z \frac{1}{(1 - t\overline{w})^{2+\beta}} dt dA_{\beta}(w)$$
$$= \frac{1}{1+\beta} \int_{\mathbb{D}} \frac{f'(w)}{\overline{w}} \left(\frac{1}{(1 - z\overline{w})^{1+\beta}} - 1\right) dA_{\beta}(w).$$

Since $\int_{\mathbb{D}} \frac{(1-|w|^2)^{\alpha}}{\overline{w}} dA(w) = 0 = \int_{\mathbb{D}} \frac{(1-|w|^2)^{\alpha}}{\overline{w}} w^n dA(w)$ for every natural number n, use Taylor series to obtain

$$\int_{\mathbb{D}} \frac{f'(w)}{\overline{w}} dA_{\beta}(w) = 0.$$

Thus $f(z) = \frac{1}{1+\beta} \int_{\mathbb{D}} \frac{f'(w)}{\overline{w}(1-z\overline{w})^{1+\beta}} dA_{\beta}(w) + f(0)$. In particular, for

any natural number $n, \frac{1}{1+\beta} \int_{\mathbb{D}} \frac{w^{n-1}}{\overline{w}(1-z\overline{w})^{1+\beta}} dA_{\beta}(w) = \frac{1}{n} z^n$ and $f^{(n)}(z)$

$$= (-1)^n \frac{\Gamma(n+\beta+1)}{\Gamma(\beta+2)} \int_{\mathbb{D}} \frac{\overline{w}^{n-1} f'(w)}{(1-z\overline{w})^{n+\beta+1}} dA_{\beta}(w).$$

Notice that

$$\frac{1}{(1-z\overline{w})^{1+\beta}} = \sum_{m=0}^{\infty} {\binom{-1-\beta}{m}} (-z\overline{w})^m$$
$$= \sum_{m=0}^{\infty} \frac{\Gamma(\beta+m+1)}{m!\Gamma(\beta+1)} (z\overline{w})^m$$

and Stirling's formula implies $\frac{\Gamma(a+x)}{\Gamma(b+x)} \approx x^{a-b}$.

Using a simple calculation to obtain Theorem 2.4 which is Proposition 7 in [5]. The calculation method gives a sharp index to codomains of Toeplitz operators (see Theorem 2.6).

THEOREM 2.4.

(1) Suppose $\beta > 1$ and $f \in B_{\beta}$. Then $(1 - |z|^2)^{\beta - 1} f(z)$ is bounded on \mathbb{D} .

(2) If there is a positive real number β such that $(1-|z|^2)^{\beta} f(z)$ is bounded on \mathbb{D} then $f \in B_{1+\beta}$ and vice versa.

$$\begin{aligned} & \textit{Proof.} \ (1) \ \text{Suppose} \ \beta < \beta'. \ \text{Then} \ f(z) - f(0) = \int_{\mathbb{D}} \frac{\left(1 - |w|^2\right)^{\beta'} f'(w)}{\overline{w}(1 - z\overline{w})^{1 + \beta'}} \\ & \textit{d}A(w). \\ & \text{Since} \ (1 - z\overline{w})^{-\frac{1}{2} - \frac{\beta'}{2}} = \sum_{m=0}^{\infty} \frac{\Gamma(m + \frac{1}{2} + \frac{\beta'}{2})}{m!\Gamma(\frac{1}{2} + \frac{\beta'}{2})} \ (z\overline{w})^m, \\ & |f(z) - f(0)| \\ & \leq ||f||_{\beta} \int_{\mathbb{D}} \frac{(1 - |w|^2)^{\beta' - \beta}}{|\overline{w}(1 - z\overline{w})^{1 + \beta'}|} dA(w) \\ & = ||f||_{\beta} \sum_{m=0}^{\infty} \int_{0}^{1} \frac{\Gamma(\frac{1}{2} + \frac{\beta'}{2} + m)^{2}}{\Gamma(\frac{1}{2} + \frac{\beta'}{2} + m)^{2}} r^{m - \frac{1}{2}} (1 - r)^{\beta' - \beta} dr |z|^{2m} \\ & = \frac{||f||_{\beta}}{\Gamma(\frac{1}{2} + \frac{\beta'}{2})^{2}} \sum_{m=0}^{\infty} \frac{\Gamma(\frac{1}{2} + \frac{\beta'}{2} + m)^{2}}{\Gamma(m + 1)^{2}} B\left(m + \frac{1}{2}, \beta' - \beta + 1\right) |z|^{2m} \\ & = \frac{||f||_{\beta}}{\Gamma(\frac{1}{2} + \frac{\beta'}{2})^{2}} \sum_{m=0}^{\infty} \frac{\Gamma(\frac{1}{2} + \frac{\beta'}{2} + m)^{2}}{\Gamma(m + 1)^{2}} \frac{\Gamma(m + \frac{1}{2})\Gamma(\beta' - \beta + 1)}{\Gamma(m + \frac{1}{2} + \beta' - \beta + 1)} |z|^{2m} \\ & \approx \sum_{m=0}^{\infty} \frac{\Gamma(m + \frac{1}{2} + \frac{\beta'}{2})^{2} \Gamma(m + \frac{1}{2})}{\Gamma(m + 1)^{2} \Gamma(m + \frac{3}{2} + \beta' - \beta)} |z|^{2m} \\ & \approx \sum_{m=0}^{\infty} m^{1 + \beta' + \frac{1}{2} - 2 - \frac{3}{2} - \beta' + \beta} |z|^{2m} = \sum_{m=0}^{\infty} m^{\beta - 2} |z|^{2m} \end{aligned}$$

Here the last equivalence follows from $\beta - 1 > 0$. Thus $(1 - |z|^2)^{\beta - 1} f(z)$ is bounded on \mathbb{D} .

 $\approx \frac{1}{(1-|z|^2)^{\beta-1}}.$

(2) Suppose $(1-|z|^2)^{\beta} f(z)$ is bounded on \mathbb{D} for some $\beta > 0$. If $\beta < \beta'$ then $(1-|z|^2)^{\beta'} f(z)$ is bounded on \mathbb{D} and hence $f(z) = (1+\beta')$ $\int_{\mathbb{D}} \frac{(1-|w|^2)^{\beta'} f(w)}{(1-z\overline{w})^{2+\beta'}} dA(w).$ Differentiating under the integral sign, we get

$$f'(z) = 1 + \beta')(2 + \beta') \int_{\mathbb{D}} \frac{(1 - |w|^2)^{\beta'} f(w)\overline{w}}{(1 - z\overline{w})^{3+\beta'}} dA(w).$$
Since
$$\frac{1}{(1 - z\overline{w})^{\frac{3}{2} + \frac{\beta'}{2}}} = \sum_{m=0}^{\infty} \frac{\Gamma(m + \frac{3}{2} + \frac{\beta'}{2})}{m!\Gamma(\frac{3}{2} + \frac{\beta'}{2})} (z\overline{w})^m,$$

$$|f'(z)| \leq \int_{\mathbb{D}} \sum_{m=0}^{\infty} \frac{\Gamma(m + \frac{3}{2} + \frac{\beta'}{2})^2}{\Gamma(m + 1)^2 \Gamma(\frac{3}{2} + \frac{\beta'}{2})^2} |\overline{w}| (1 - |w|^2)^{\beta' - \beta} |\overline{w}|^{2m} |z|^{2m} dA(w)$$

$$\approx \sum_{m=0}^{\infty} \frac{\Gamma(m + \frac{3}{2} + \frac{\beta'}{2})^2}{\Gamma(m + 1)^2} B(m + \frac{3}{2}, \beta' - \beta + 1) |z|^{2m}$$

$$\approx \sum_{m=0}^{\infty} \frac{\Gamma(m + \frac{3}{2} + \frac{\beta'}{2})^2}{\Gamma(m + 1)^2} \frac{\Gamma(m + \frac{3}{2})}{\Gamma(m + \frac{5}{2} + \beta' - \beta)} |z|^{2m}$$

$$\approx \sum_{m=0}^{\infty} m^{3+\beta' + \frac{3}{2} - 2 - \frac{5}{2} - \beta' + \beta} |z|^{2m} = \sum_{m=0}^{\infty} m^{\beta} |z|^{2m}$$

$$\approx \frac{1}{(1 - |z|^2)^{\beta+1}}.$$

Thus $(1-|z|^2)^{\beta+1}|f'(z)|$ is bounded on \mathbb{D} , that is, $f \in B_{1+\beta}$.

LEMMA 2.5. Suppose $f \in \overline{B_{\beta}}$. If $\beta > 0$ then $|f(w)| \leq \frac{||f||_{\beta}}{(1 - |w|^2)^{\beta}}$ for all $w \in \mathbb{D}$, that is, the growth condition of f is dominated by $\frac{||f||_{\beta}}{(1 - |w|^2)^{\beta}}$.

Proof. Since
$$|f(w)| = |w \int_0^1 f'(wt) dt| \le |w \int_0^1 \frac{(1 - |wt|^2)^{\beta} |f'(wt)|}{(1 - |wt|^2)^{\beta}} dt|$$

$$\le \frac{||f||_{\beta}}{(1 - |w|^2)^{\beta}}, |f(w)| \le \frac{||f||_{\beta}}{(1 - |w|^2)^{\beta}} \text{ for all } w \in \mathbb{D}.$$

Let $k_z^{\alpha} = \frac{K_z^{\alpha}}{||K_z^{\alpha}||}$ be the normalized repreducing kernel. Then for any analytic function $f, \langle f, K_z^{\alpha} \rangle = f(z)$. Since $K_z^{\alpha}(w) = \frac{1}{(1 - \overline{z}w)^{2+\alpha}}$, $(K_z^{\alpha})'(w) = \frac{(2+\alpha)\overline{z}}{(1-\overline{z}w)^{3+\alpha}}$. Since $(1-|w|^2)^{\beta} \left| \frac{z}{(1-\overline{z}w)^{3+\alpha}} \right| \leq \frac{(1-|w|^2)^{\beta}}{(1-|w|)^{3+\alpha}}$ $= (1+|w|)^{\beta}(1-|w|)^{\beta-\alpha-3}$, for $\beta = 3+\alpha$, we get $K_z^{\alpha} \in B_{\beta}$, while for

 $\beta>3+\alpha,\ K_z^\alpha\in B_\beta^0.\ \text{Since}\ L^\infty\cap L_a^1(dA_\alpha)\ \text{is dense in}\ L_a^1(dA_\alpha)\ \text{and the dual space of}\ B_\beta^0\ \text{is}\ L_a^1,\ k_z^\alpha\to 0\ \text{weakly in}\ B_\beta^0\ \text{as}\ z\to\partial\mathbb{D}\ \text{because for}\ \text{any}\ f\ \text{in}\ L^\infty\cap L_a^1(dA_\alpha), < f, k_z^\alpha> = \left(1-|z|^2\right)^{1+\frac{\alpha}{2}}f(z)\to 0\ \text{as}\ z\to\partial\mathbb{D}.$ Notice that for $u\in L^1(\mathbb{D},dA_\alpha),\ T_u^\alpha(f)=P_\alpha(uf),\ \text{that is,}\ T_u^\alpha(f)(z)=\int_{\mathbb{D}}\frac{u(w)f(w)}{(1-z\overline{w})^{2+\alpha}}dA_\alpha(w)\ \text{and there is a natural connection between the}\ \text{Bloch space and the Toeplitz operators via}\ P_1(L^\infty)=B_1,\ \text{where}\ P_1\ \text{is the orthogonal projection from}\ L^2(\mathbb{D},dA)\ \text{onto}\ L_a^2(dA).\ \text{For}\ u\in L^1(\mathbb{D},dA_\alpha)\ \text{and}\ f\in B_\beta,\ \text{we define}\ T_u^\alpha(f)(z)=\int_{\mathbb{D}}\frac{u(w)f(w)}{(1-z\overline{w})^{2+\alpha}}dA_\alpha(w).\ \text{Let}\ WR(\alpha)=\{u\in L^1(\mathbb{D},dA_\alpha):\sup_{z\in\mathbb{D}}||uk_z^\alpha||_{s,\alpha}<+\infty\ \text{for some}\ s\in(2,\infty)\}.$

Define $f(x)=\left\{\begin{array}{c} 2^{\frac{n}{3}}\ ,\ \frac{1}{2^n}-\left(\frac{1}{2^{n+1}}\right)^2\leq x<\frac{1}{2^n}\ ,\ \text{where n is a natural } 0\ ,\ \text{otherwise} \end{array}\right.$

number

For each $z \in \mathbb{D}$, let f(z) = f(|z|), that is, f is a radial function. If $0 \le \alpha$ then $\int_{\mathbb{D}} |f(w)| dA_{\alpha}(w) \le \int_{\mathbb{D}} |f(w)| dA(w) \le \sum_{n=1}^{\infty} \int_{\frac{1}{2^n} - (\frac{1}{2^{n+1}})^2}^{\frac{1}{2^n}} dr$ $\le \frac{1}{4}$. Thus f is in $L^1(\mathbb{D}, dA_{\alpha})$. Since $\sup \left\{ \frac{(1-|z|^2)^{1+\frac{\alpha}{2}}}{|1-\overline{z}w|^{2+\alpha}} : |w| < \frac{1}{2} \right\}$ and $z \in \mathbb{D} \le 2^{2+\alpha}$, $||fk_z^{\alpha}||_{3,\alpha}^3 = \int_{\mathbb{D}} |f(w)k_z^{\alpha}(w)|^3 dA_{\alpha}(w) \le 2^{(2+\alpha)3}$ $\sum_{n=1}^{\infty} \int_{\frac{1}{2^n} - (\frac{1}{2^{n+1}})^2}^{\frac{1}{2^n}} 2^n dr = 2^{(2+\alpha)3-2} = 2^{4+3\alpha} < \infty$. Thus $f \in WR(\alpha)$ and f is unbounded on \mathbb{D} , that is, $L^{\infty}(\mathbb{D})$ is a proper subset of $WR(\alpha)$. Since $||\overline{f}k_z^{\alpha}||_{s,\alpha} = ||fk_z^{\alpha}||_{s,\alpha}$ and for $t \in \mathbb{C}$, $||tfk_z^{\alpha}||_{s,\alpha} = |t|||fk_z^{\alpha}||_{s,\alpha}$, $WR(\alpha)$ is closed under the formation of conjugations and a vector space.

Suppose $f \in WR(\alpha)$ and $z \in \mathbb{D}$. Since $|\widetilde{f}|(z) = \widetilde{T_{|f|}^{\alpha}}(z) = \int_{\mathbb{D}} |k_z^{\alpha}(w)|^2 |f(w)| dA_{\alpha}(w) \leq ||fk_z^{\alpha}||_{2,\alpha} \leq ||fk_z^{\alpha}||_{s,\alpha} \leq ||f||_{WR(\alpha)}$, where $||f||_{WR(\alpha)}$ = $\sup_{z \in \mathbb{D}} ||fk_z^{\alpha}||_{s,\alpha}$, $\sup\{|\widetilde{f}|(z) : z \in \mathbb{D}\}$ is bounded and hence $|f| dA_{\alpha}$ is a Carleson measure on \mathbb{D} . Thus for each $u \in WR(\alpha)$, T_u^{α} is bounded on $L_u^p(dA_{\alpha})$ for $1 and <math>||T_u^{\alpha}||_p \leq C||f||_{WR(\alpha)}$ for some constant C, where $||T_u^{\alpha}||_p$ is the operator norm on $L_u^p(dA_{\alpha})$ and $||f||_{WR(\alpha)}$ = $\sup_{z \in \mathbb{D}} ||fk_z^{\alpha}||_{s,\alpha}$ because P_{α} is bounded on $L_u^p(dA_{\alpha})$. If $f \in L_u^p(dA_{\alpha})$ then for any $w \in \mathbb{D}$, $(T_u^{\alpha}f)(w) = < T_u^{\alpha}f, K_w^{\alpha} > = < f, (T_u^{\alpha})^*K_w^{\alpha} > =$

 $\int_{\mathbb{D}} f(z) \overline{((T_u^{\alpha})^* K_w^{\alpha})(z)} dA_{\alpha}(z) = \int_{\mathbb{D}} f(z) (T_u^{\alpha} K_z^{\alpha})(w) dA_{\alpha}(z). \text{ Thus } T_u^{\alpha} \text{ is the integral operator with kernel } T_u^{\alpha} K_z^{\alpha}(w) \text{ on } L_a^2(dA_{\alpha}).$

Let's consider Toeplitz operators on the β -Bloch space. Suppose $u \in WR(\alpha)$, that is, $||u||_{WR(\alpha)} = \sup_{z \in \mathbb{D}} ||uk_z^{\alpha}||_{s,\alpha} < +\infty$ for some s > 2.

For $f \in B_{\beta}$, $T_u^{\alpha}(f)(z) = \int_{\mathbb{D}} u(w)f(w)\overline{K_z^{\alpha}(w)}dA_{\alpha}(w)$, T_u^{α} is the integral operator with kernel $u(w)K_w^{\alpha}(z)$. Suppose $\beta > 0$ and $f \in \overline{B_{\beta}}$. Since $T_u^{\alpha}(f)(z) = \int_{\mathbb{D}} u(w)\overline{k_z^{\alpha}(w)} \frac{f(w)}{(1-|z|^2)^{1+\frac{\alpha}{2}}}dA_{\alpha}(w)$,

$$|T_{u}^{\alpha}(f)(z)| \leq \frac{||uk_{z}^{\alpha}||_{s,\alpha}}{(1-|z|^{2})^{1+\frac{\alpha}{2}}} \Big(\int_{\mathbb{D}} \frac{||f||_{\beta}^{s'}}{(1-|w|^{2})^{\beta s'}} (1-|w|^{2})^{\alpha} dA \Big)^{\frac{1}{s'}}$$

$$= \frac{||uk_{z}^{\alpha}||_{s,\alpha}||f||_{\beta}}{(1-|z|^{2})^{1+\frac{\alpha}{2}}} \Big(\int_{\mathbb{D}} (1-|w|^{2})^{\alpha-\beta s'} dA \Big)^{\frac{1}{s'}}.$$

If $\alpha - \beta s' > -1$ then $\int_{\mathbb{D}} (1 - |w|^2)^{\alpha - \beta s'} dA < +\infty$ and hence $T_u^{\alpha}(f)$ is well-defined. On the other hand, if $(1 + \beta)s' - 2 - \alpha > 0$ then

$$\begin{split} &|T_{u}^{\alpha}(f)'(z)|\\ &= \left|(2+\alpha)\int_{\mathbb{D}}\frac{\overline{w}u(w)f(w)}{(1-z\overline{w})^{3+\alpha}}dA_{\alpha}(w)\right|\\ &\preceq \frac{||uk_{z}^{\alpha}||_{s,\alpha}||f||_{\beta}}{(1-|z|^{2})^{1+\frac{\alpha}{2}}}\Big|\int_{\mathbb{D}}\frac{|w|^{s'}(1-|w|^{2})^{\alpha-\beta s'}}{(1-z\overline{w})^{s'}}dA\Big|^{\frac{1}{s'}}\\ &= \frac{||uk_{z}^{\alpha}||_{s,\alpha}||f||_{\beta}}{(1-|z|^{2})^{1+\frac{\alpha}{2}}}\Big(\sum_{m=0}^{\infty}\frac{\Gamma(m+\frac{s'}{2})^{2}2}{\Gamma(m+1)^{2}\Gamma(\frac{s'}{2})}\int_{0}^{1}r^{m+\frac{s'}{2}}(1-r)^{\alpha-\beta s'}dr|z|^{2m}\Big)^{\frac{1}{s'}}\\ &\approx \frac{||uk_{z}^{\alpha}||_{s,\alpha}||f||_{\beta}}{(1-|z|^{2})^{1+\frac{\alpha}{2}}}\Big(\sum_{m=0}^{\infty}m^{s'-2-\alpha+\beta s'-1}|z|^{2m}\Big)^{\frac{1}{s'}}\\ &\approx \frac{||uk_{z}^{\alpha}||_{s,\alpha}||f||_{\beta}}{(1-|z|^{2})^{1+\frac{\alpha}{2}}}\Big(\frac{1}{(1-|z|^{2})^{(1+\beta)s'-2-\alpha}}\Big)^{\frac{1}{s'}}=\frac{||uk_{z}^{\alpha}||_{s,\alpha}||f||_{\beta}}{(1-|z|^{2})^{1+\frac{\alpha}{2}}}.\end{split}$$

Thus $T_u^{\alpha}: B_{\beta} \to B_{\beta+2+\frac{\alpha}{2}-\frac{2+\alpha}{s'}}$ is a linear operator and $||T_u^{\alpha}|| \leq ||u||_{WR}$. Since $1+\frac{\alpha}{2}-\frac{2+\alpha}{s'} < 0$, $T_u^{\alpha}: B_{\beta} \to B_{\beta+1}$ is also a bounded linear operator.

Moreover,
$$T_u^{\alpha}(f)^{(n)}(z) = \frac{\Gamma(n+\alpha+2)}{\Gamma(\alpha+2)} \int_{\mathbb{D}} \frac{\overline{w}^n u(w) f(w)}{(1-z\overline{w})^{n+2+\alpha}} dA_{\alpha}(w)$$
. Since $k_z^{\alpha}(w) = \frac{(1-|z|^2)^{1+\frac{\alpha}{2}}}{(1-\overline{z}w)^{2+\alpha}}$ and $|f(w)| \preceq \frac{||f||_{\beta}}{(1-|w|^2)^{\beta}}$,
$$|T_u^{\alpha}(f)^{(n)}(z)| = \frac{\Gamma(n+\alpha+2)}{\Gamma(\alpha+2)} \Big| \int_{\mathbb{D}} \frac{\overline{w}^n u(w) k_z^{\alpha}(w) f(w)}{(1-z\overline{w})^n (1-|z|^2)^{1+\frac{\alpha}{2}}} dA_{\alpha}(w) \Big|$$

$$\leq \frac{\Gamma(n+\alpha+2)}{\Gamma(\alpha+2)} \frac{||u||_{WR}||f||_{\beta}}{(1-|z|^2)^{1+\frac{\alpha}{2}}}$$

$$\times \Big(\int_{\mathbb{D}} \sum_{m=0}^{\infty} \frac{\Gamma(m+\frac{ns'}{2})^2}{\Gamma(m+1)^2 \Gamma(\frac{ns'}{2})^2} |w|^{2m+ns'} (1-|w|^2)^{\alpha-\beta s'} |z|^{2m} dA \Big)^{\frac{1}{s'}}$$

$$= \frac{\Gamma(n+\alpha+2)}{\Gamma(\alpha+2)} \frac{||u||_{WR}||f||_{\beta}}{(1-|z|^2)^{1+\frac{\alpha}{2}}}$$

$$\times \Big(\sum_{m=0}^{\infty} \frac{2\Gamma(m+\frac{ns'}{2})^2}{\Gamma(m+1)^2 \Gamma(\frac{ns'}{2})^2} B(m+\frac{ns'}{2}+1,\alpha-\beta s'+1) |z|^{2m} \Big)^{\frac{1}{s'}}$$

$$\approx \frac{||u||_{WR}||f||_{\beta}}{(1-|z|^2)^{1+\frac{\alpha}{2}}} \Big(\sum_{m=0}^{\infty} m^{ns'-2-\alpha+\beta s'-1} |z|^{2m} \Big)^{\frac{1}{s'}}$$

$$\approx \frac{||u||_{WR}||f||_{\beta}}{(1-|z|^2)^{1+\frac{\alpha}{2}}} \frac{1}{(1-|z|^2)^{n+\beta-\frac{2+\alpha}{s'}}}.$$
Thus $T_u^{\alpha}(f)^{(n-1)} \in B_{1+\frac{\alpha}{2}+n+\beta-\frac{2+\alpha}{s'}}.$

Summarizing the above observation, one has the following :

Theorem 2.6. Suppose $u \in WR(\alpha)$, that is, $\sup_{z \in \mathbb{D}} ||uk_z^{\alpha}||_{s,\alpha} < \infty$ for some s > 2 and $\beta > 0$. Then for each natural number n, $D^{(n-1)}(T_u^{\alpha}(B_{\beta})) \subset B_{n+\beta+1+\frac{\alpha}{2}-\frac{2+\alpha}{s'}} \subset B_{n+\beta}$ and $T_u^{\alpha}: B_{\beta} \to B_{\beta+2+\frac{\alpha}{2}-\frac{2+\alpha}{s'}}$ is a bounded linear operator.

COROLLARY 2.7. Suppose $\beta > 0$ and $u \in WR(\alpha)$, where $\sup_{z \in \mathbb{D}} ||uk_z^{\alpha}||_{s,\alpha}$ $< \infty$ for some s > 2. Then $T_u^{\alpha} : B_{\beta} \to B_{\beta+1}$ is a bounded linea operator.

Proof. It is immediately from the fact that $1 + \frac{\alpha}{2} - \frac{2 + \alpha}{s'} < 0$.

Theorem 2.8. Suppose $u \in WR(\alpha)$, that is, $\sup_{z \in \mathbb{D}} ||uk_z^{\alpha}||_{s,\alpha} < \infty$ for some s > 2 and $\alpha - \beta s' > -1$. If $||uk_z^{\alpha}||_{s,\alpha} \to 0$ as $z \to \partial \mathbb{D}$ then $T_u^{\alpha} : B_{\beta} \to B_{\beta+2+\frac{\alpha}{2}-\frac{2+\alpha}{s'}}$ is a compact linear operator.

Proof. Let's show that T_u^{α} is compact on B_{β} . To do so, it is enough to show that if (f_n) is a bounded sequence in B_{β} and converges to 0 uniformly on compact subset of \mathbb{D} then $||T_u^{\alpha}(f_n)||_{\beta+2+\frac{\alpha}{2}-\frac{2+\alpha}{s'}} \to 0$ as $n \to \infty$. Note that $(1-|z|^2)^{\beta+2+\frac{\alpha}{2}-\frac{2+\alpha}{s'}} |T_u^{\alpha}(f)'(z)| \leq ||uk_z^{\alpha}||_{s,\alpha}||f||_{\beta}$. Let $M = \sup ||f_n||_{\beta}$. Take any $\varepsilon > 0$. Since $||uk_z^{\alpha}||_{s,\alpha} \to 0$ as $z \to \partial \mathbb{D}$,

Let $M = \sup ||f_n||_{\beta}$. Take any $\varepsilon > 0$. Since $||uk_z^{\alpha}||_{s,\alpha} \to 0$ as $z \to \partial \mathbb{D}$, there is r such that 0 < r < 1 and $\sup_{|z| > r} ||uk_z^{\alpha}||_{s,\alpha} < \frac{\varepsilon}{2M}$ and hence

$$\sup_{|z|>r} (1-|z|^2)^{\beta+2+\frac{\alpha}{2}-\frac{2+\alpha}{s'}} |T_u^{\alpha}(f_n)'(z)| \leq \frac{\varepsilon}{2}. \text{ Since } |f_n(w)| \leq \frac{||f_n||_{\beta}}{(1-|w|^2)^{\beta}}$$
 and

$$T_{u}^{\alpha}(f_{n})(z) = (2+\alpha) \int_{\mathbb{D}} u(w) f_{n}(w) \frac{1}{(1-z\overline{w})^{2+\alpha}} dA_{\alpha}(w)$$
$$= (2+\alpha) \int_{\mathbb{D}} u(w) k_{z}^{\alpha}(w) \frac{f_{n}(w)}{(1-|z|^{2})^{1+\frac{\alpha}{2}}} dA_{\alpha}(w),$$

$$|T_{u}^{\alpha}(f_{n})(z)| \leq \frac{||uk_{z}^{\alpha}||_{s,\alpha}}{(1-|z|^{2})^{1+\frac{\alpha}{2}}} \Big(\int_{\mathbb{D}} \frac{||f_{n}||_{\beta}^{s'}}{(1-|w|^{2})^{\beta s'}} (1-|w|^{2})^{\alpha} dA(w) \Big)^{\frac{1}{s'}}$$

$$= \frac{||uk_{z}^{\alpha}||_{s,\alpha}||f_{n}||_{\beta}}{(1-|z|^{2})^{1+\frac{\alpha}{2}}} \Big(\int_{\mathbb{D}} (1-|w|^{2})^{\alpha-\beta s'} dA(w) \Big)^{\frac{1}{s'}}.$$

Since $\int_{\mathbb{D}} (1-|w|^2)^{\alpha-\beta s'} dA(w) < \infty$ and (f_n) converges to 0 uniformly on $\{z: |z| \leq r\}$, $|T_u^{\alpha}(f_n)(0)| \to 0$ as $n \to \infty$. Since $|T_u^{\alpha}(f_n)'(z)| \leq \frac{||u||_{WR(\alpha)}||f_n||_{\beta}}{(1-|z|^2)^{\beta+2+\frac{\alpha}{2}-\frac{2+\alpha}{s'}}}$ and (f_n) converges to 0 uniformly on $\{z: |z| \leq r\}$,

$$\sup_{|z| \le r} (1 - |z|^2)^{\beta + 2 + \frac{\alpha}{2} - \frac{2 + \alpha}{s'}} |T_u^{\alpha}(f_n)'(z)| \to 0 \text{ as } n \to \infty.$$

Then we get $\lim_{n\to\infty} ||T_u^{\alpha}(f_n)|| = 0$. Thus T_u^{α} is a compact operator. \square

3. A generalization of Bloch-type spaces

For $\alpha > -1$ and $z \in \mathbb{D}$, we define $U_z^{\alpha} f(w) = f \circ \varphi_z(w) \frac{(1-|z|^2)^{1+\frac{\alpha}{2}}}{(1-\overline{z}w)^{2+\alpha}}$. Since

$$U_z^{\alpha} U_z^{\alpha} f(w) = U_z^{\alpha} f \circ \varphi_z(w) \frac{(1 - |z|^2)^{1 + \frac{\alpha}{2}}}{(1 - \overline{z}w)^{2 + \alpha}}$$
$$= f(w) \frac{(1 - |z|^2)^{1 + \frac{\alpha}{2}}}{(1 - \overline{z}\varphi_z(w))^{2 + \alpha}} \frac{(1 - |z|^2)^{1 + \frac{\alpha}{2}}}{(1 - \overline{z}w)^{2 + \alpha}} = f(w),$$

 $(U_z^{\alpha})^{-1} = U_z^{\alpha}$. For $f \in L_a^2$, $||U_z^{\alpha}f||_{2,\alpha}^2 = \int_{\mathbb{D}} |f \circ \varphi_z(\lambda)|^2 |\varphi_z'(\lambda)|^{2+\alpha} dA_{\alpha}(\lambda)$ = $||f||_{2,\alpha}$. Thus U_z^{α} is an isometry on $L_a^2(dA_{\alpha})$. Hence U_z^{α} is a unitary operator on $L_a^2(dA_{\alpha})$. Take any f in B_{β} . Then

$$\sup_{w \in \mathbb{D}} (1 - |w|^2)^{\beta} |(f \circ \varphi_z(w))'|
= \sup_{w \in \mathbb{D}} (1 - |\varphi_z(w)|^2)^{\beta} |f'(w)| |\varphi'_z(\varphi_z(w))|
= \sup_{w \in \mathbb{D}} \left(\frac{(1 - |w|^2)(1 - |z|^2)}{|1 - \overline{z}w|^2} \right)^{\beta} |f'(w)| \frac{|1 - \overline{z}w|^2}{1 - |z|^2}
= \sup_{w \in \mathbb{D}} (1 - |w|^2)^{\beta} |f'(w)| (1 - |z|^2)^{\beta - 1} |1 - \overline{z}w|^{2 - 2\beta}$$

and hence $||\cdot||_1$ is Möbius invariant but the semi-norm is not Möbius invariant in the other case.

For a linear operator S on B_{β} , we define the conjugation operator S_z by $U_z^{\alpha}SU_z^{\alpha}$.

Theorem 3.1. For
$$u \in L^1(\mathbb{D}, dA_{\alpha})$$
 and $z \in \mathbb{D}$, $(T_u^{\alpha})_z = T_{u \circ \varphi_z}^{\alpha}$

Proof. Take any f in B_{β} and any w in \mathbb{D} . Since $(T_u^{\alpha})_z = U_z^{\alpha} T_u U_z^{\alpha}$ and $(U_z^{\alpha})^{-1} = U_z^{\alpha}$, it is enough to show that $U_z^{\alpha} T_u^{\alpha} = T_{u \circ \varphi_z}^{\alpha} U_z^{\alpha}$. Since $U_z^{\alpha} T_u^{\alpha}(w)$

$$= T_u^{\alpha}(f)(\varphi_z(w)) \frac{(1 - |z|^2)^{1 + \frac{\alpha}{2}}}{(1 - \overline{z}w)^{2 + \alpha}}$$

$$\begin{split} &= (1+\alpha) \int_{\mathbb{D}} \frac{u(t)f(t)(1-|t|^2)^{\alpha}}{(1-\varphi_z(w)\bar{t})^{2+\alpha}} dA(t) \frac{(1-|z|^2)^{1+\frac{\alpha}{2}}}{(1-\bar{z}w)^{2+\alpha}} \\ &= (1+\alpha) \int_{\mathbb{D}} u(t)f(t)(1-|t|^2)^{\alpha} \frac{(1-\bar{z}w)^{2+\alpha}}{(1-\bar{z}w-z\bar{t}+w\bar{t})^{2+\alpha}} dA(t) \frac{(1-|z|^2)^{1+\frac{\alpha}{2}}}{(1-\bar{z}w)^{2+\alpha}} \\ &= (1+\alpha) \int_{\mathbb{D}} u(t)f(t)(1-|t|^2)^{\alpha} \frac{(1-|z|^2)^{1+\frac{\alpha}{2}}}{(1-\bar{z}w-z\bar{t}+w\bar{t})^{2+\alpha}} dA(t) \\ &= (1+\alpha) \int_{\mathbb{D}} u \circ \varphi_z(s) f \circ \varphi_z(s) (1-|\varphi_z(s)|^2)^{\alpha} \\ &\qquad \times \frac{(1-|z|^2)^{1+\frac{\alpha}{2}}|\varphi_z'(s)|^2}{(1-\bar{z}w-z\bar{\varphi}_z(s)+w\bar{\varphi}_z(s))^{2+\alpha}} dA(s) \\ &= (1+\alpha) \int_{\mathbb{D}} u \circ \varphi_z(s) f \circ \varphi_z(s) \frac{(1-|z|^2)^{\alpha}(1-|s|^2)^{\alpha}}{|1-\bar{z}s|^{2\alpha}} \\ &\qquad \times \frac{(1-|z|^2)^{3+\frac{\alpha}{2}}}{|1-\bar{z}s|^4} \frac{(1-z\bar{s})^{2+\alpha}}{(1-|z|^2)^{2+\alpha}(1-w\bar{s})^{2+\alpha}} dA(s) \\ &= (1+\alpha) \int_{\mathbb{D}} u \circ \varphi_z(s) f \circ \varphi_z(s) \frac{(1-|z|^2)^{1+\frac{\alpha}{2}}(1-|s|^2)^{\alpha}}{(1-\bar{z}s)^{2+\alpha}(1-w\bar{s})^{2+\alpha}} \\ &= \int_{\mathbb{D}} u \circ \varphi_z(s) U_z^{\alpha} f(s) \frac{dA_{\alpha}(s)}{(1-w\bar{s})^{2+\alpha}} \\ &= T_{u\circ\varphi_z}^{\alpha}(U_z^{\alpha} f)(w), U_z^{\alpha} T_u^{\alpha} = T_{u\circ\varphi_z}^{\alpha}U_z^{\alpha}, that is, (T_u^{\alpha})_z = T_{u\circ\varphi_z}^{\alpha}. \end{split}$$

Let E_{γ} be the set of analytic functions f on \mathbb{D} such that $||f||_{E_{\gamma}}$ is finite, where $||f||_{E_{\gamma}} = \sup\{(1-|z|^2)^{\gamma}||U_z^{\alpha}f||_{2+\frac{\alpha}{2}-\gamma}: z \in \mathbb{D}\}$. Then $||\cdot||_{E_{\gamma}}$ is a complete semi-norm on E_{γ} . Suppose that $\sup_{z\in\mathbb{D}}||uk_z^{\alpha}||_{s,\alpha} < +\infty$ for some s>2. Notice that $T_u^{\alpha}(B_{\beta}) \subset B_{2+\beta+\frac{\alpha}{2}-\frac{\alpha+2}{s'}} \subset B_{1+\beta}$. Consider $T_u^{\alpha}: B_{\beta} \to E_{\gamma}$, where $\gamma = \frac{\alpha+2}{s'} - \beta$. Put $t=2+\frac{\alpha}{2}-\gamma=2+\beta+\frac{\alpha}{2}-\frac{\alpha+2}{s'}$. If $g\in B_t$ and $3+\alpha-2t\geq 0$ then $||U_z^{\alpha}g||_t=\sup_{w\in\mathbb{D}}(1-|w|^2)^t|(U_zg)'(w)|=\sup_{w\in\mathbb{D}}(1-|w|^2)^t|\left(g\circ\varphi_z(w)\frac{(1-|z|^2)^{1+\frac{\alpha}{2}}}{(1-\overline{\gamma}x_0)^{2+\alpha}}\right)'|$

$$= \sup_{w \in \mathbb{D}} (1 - |w|^2)^t \Big| g'(\varphi_z(w)) \varphi'_z(w) \frac{(1 - |z|^2)^{1 + \frac{\alpha}{2}}}{(1 - \overline{z}w)^{2 + \alpha}} \Big| \\ + (2 + \alpha) g(\varphi_z(w)) \frac{(1 - |z|^2)^{1 + \frac{\alpha}{2}}}{(1 - \overline{z}w)^{2 + \alpha}} \Big| \\ = \sup_{w \in \mathbb{D}} \left(\frac{(1 - |z|^2)(1 - |w|^2)}{|1 - \overline{z}w|^2} \right)^t (1 - |z|^2)^{1 + \frac{\alpha}{2}} \\ \times \Big| g'(w) \frac{(1 - \overline{z}w)^2}{-1 + |z|^2} + (2 + \alpha) g(w) \frac{\overline{z}(1 - \overline{z}w)^{3 + \alpha}}{(1 - |z|^2)^{3 + \alpha}} \Big| \\ \leq (1 - |z|^2)^{1 + \frac{\alpha}{2} + t} ||g||_t \sup_{w \in \mathbb{D}} \frac{1}{|1 - \overline{z}w|^{2t}} \\ \times \left(\left| \frac{1 - \overline{z}w|^{4 + \alpha}}{(1 - |z|^2)^{3 + \alpha}} + (2 + \alpha) \frac{|1 - \overline{z}w|^{3 + \alpha}}{(1 - |z|^2)^{3 + \alpha}} \right| \right) \\ = (1 - |z|^2)^{t - 2 - \frac{\alpha}{2}} ||g||_t \sup_{w \in \mathbb{D}} |1 - \overline{z}w|^{3 + \alpha - 2t} (|1 - \overline{z}w| + 2 + \alpha) \\ \leq (1 - |z|^2)^{-\gamma} ||g||_t 2^{3 + \alpha - 2t} (2 + 2 + \alpha).$$
Thus $(1 - |z|^2)^{\gamma} ||U_z^{\alpha}g||_t \leq ||g||_t$, that is, $||g||_{E_{\gamma}} \leq ||g||_t$. If $\gamma = 2 + \frac{\alpha}{2} - \beta$ and $3 + \alpha - 2\beta \geq 0$ then $B_{\beta} \subset E_{\gamma}$. For $1 \leq 2 + \frac{\alpha}{2} - \gamma$, $H^{\infty} \subset E_{\gamma}$. Moreover, $||f||_{E_{\gamma}} \leq ||f||_{\beta}$ whenever $\gamma = 2 + \frac{\alpha}{2} - \beta \geq \frac{1}{2}$. Since $U_z^{\alpha} 1 = k_z^{\alpha}$, $\sup_{z \in \mathbb{D}} (1 - |z|^2)^{\gamma} ||U_z^{\alpha} 1||_{2 + \frac{\alpha}{2} - \gamma}$

$$= \sup_{z \in \mathbb{D}} \sup_{w \in \mathbb{D}} (1 - |z|^2)^{\gamma} (1 - |w|^2)^{2 + \frac{\alpha}{2} - \gamma} |(2 + \alpha) \frac{(1 - |z|^2)^{1 + \frac{\alpha}{2}}}{(1 - \overline{z}w)^{3 + \alpha}} |$$

$$\leq \sup_{z \in \mathbb{D}} \sup_{w \in \mathbb{D}} (1 - |w|^2)^{2 + \frac{\alpha}{2} - \gamma} 2^{\gamma + 1 + \frac{\alpha}{2}} (1 - |z|)^{\gamma} (2 + \alpha) (1 - |z|)^{1 + \frac{\alpha}{2}} (1 - |z|)^{-3 - \alpha}$$

$$\leq \sup_{z \in \mathbb{D}} \sup_{w \in \mathbb{D}} (1 - |w|^2)^{2 + \frac{\alpha}{2} - \gamma} 2^{\gamma + 1 + \frac{\alpha}{2}} (1 - |z|)^{\gamma} (2 + \alpha) (1 - |z|)^{1 + \frac{\alpha}{2}} (1 - |z|)^{-3 - \alpha}$$

$$\leq \sup_{z \in \mathbb{D}} \sup_{w \in \mathbb{D}} (1 - |w|^2)^{2 + \frac{\alpha}{2} - \gamma} 2^{\gamma + 1 + \frac{\alpha}{2}} (1 - |z|)^{\gamma} (2 + \alpha) (1 - |z|)^{1 + \frac{\alpha}{2}} (1 - |z|)^{-3 - \alpha}$$

$$\leq \sup_{z \in \mathbb{D}} \sup_{w \in \mathbb{D}} (1 - |w|^2)^{2 + \frac{\alpha}{2} - \gamma} (1 - |z|)^{\gamma - 2 - \frac{\alpha}{2}}, \text{ and hence } 1 \in E_{2 + \frac{\alpha}{2}}. \text{ Since }$$

$$||U_z^{\alpha} f||_{E_{\gamma}} = \sup_{z \in \mathbb{D}} \sup_{w \in \mathbb{D}} (1 - |z|^2)^{\gamma} ||U_z^{\alpha} (U_z^{\alpha} f)||_{2 + \frac{\alpha}{2} - \gamma} = \sup_{z \in \mathbb{D}} \sup_{w \in \mathbb{D}} (1 - |z|^2)^{\gamma} ||U_z^{\alpha} (U_z^{\alpha} f)||_{2 + \frac{\alpha}{2} - \gamma} = \sup_{z \in \mathbb{D}} \sup_{w \in \mathbb{D}} (1 - |z|^2)^{\gamma$$

THEOREM 3.2. Suppose $\sup_z ||uk_z^\alpha||_{s,\alpha} < +\infty$ for some s>2 and $\frac{\alpha+2}{s'} \geq \beta + \frac{1}{2}$. Then $T_u^\alpha: B_\beta \to E_\gamma$ is a bounded linear operator, where $\gamma = \frac{\alpha+2}{s'} - \beta$ and $||T_u^\alpha|| \leq ||u||_{WR}$.

THEOREM 3.3. Suppose $\sup_{z} ||uk_{z}^{\alpha}||_{s,\alpha} < +\infty$ for some s > 2 and $\alpha - \beta s' > -1$. If $||uk_{z}^{\alpha}||_{s,\alpha} \to 0$ as $z \to \partial \mathbb{D}$ then $T_{u}^{\alpha} : B_{\beta} \to E_{\gamma}$ is a compact linear operator, where $\gamma = \frac{\alpha + 2}{s'} - \beta$.

Proof. It is enough to show that if (f_n) is a bounded sequence in B_{β} and converges to 0 uniformly on compact subsets of $\mathbb D$ then $||T_u^{\alpha}(f_n)||_{E_{\gamma}} \to 0$ as $n \to \infty$. Note that for $t = 2 + \frac{\alpha}{2} - \gamma$, $1 - |z|^{2t} |(T_u^{\alpha} f_n)'(z)| \le ||uk_z^{\alpha}||_{s,\alpha}||f_n||_{\beta}$. Let $M = \sup ||f_n||_{\beta}$. Take any $\varepsilon > 0$. Since $\lim_{z \to \partial \mathbb D} ||uk_z^{\alpha}||_{s,\alpha} = 0$, there is r > 0 such that 0 < r < 1 and $\sup_{|z| > r} ||uk_z^{\alpha}||_{s,\alpha} < \frac{\varepsilon}{2M}$ and hence $\sup_{|z| > r} (1 - |z|^2) |(T_u^{\alpha} f_n)'(z)| \le \frac{\varepsilon}{2}$. Since $|f_n(w)| \le \frac{||f_n||_{\beta}}{(1 - |w|^2)^{\beta}}$,

$$\begin{aligned} |T_{u}^{\alpha}(f_{n})(z)| &= \left| (2+\alpha) \int_{\mathbb{D}} u(w) f_{n}(w) \frac{1}{(1-z\overline{w})^{2+\alpha}} dA_{\alpha}(w) \right| \\ &\leq \frac{(2+\alpha)||uk_{z}^{\alpha}||_{s,\alpha}}{(1-|z|^{2})^{1+\frac{\alpha}{2}}} \left(\int_{\mathbb{D}} \frac{||f_{n}||_{\beta}^{s'}}{(1-|w|^{2})^{\beta s'}} (1-|w|^{2})^{\alpha} dA(w) \right)^{\frac{1}{s'}} \\ &= \frac{(2+\alpha)||uk_{z}^{\alpha}||_{s,\alpha}||f_{n}||_{\beta}}{(1-|z|^{2})^{1+\frac{\alpha}{2}}} \left(\int_{\mathbb{D}} (1-|w|^{2})^{\alpha-\beta s'} dA(w) \right)^{\frac{1}{s'}}. \end{aligned}$$

Since $\int_{\mathbb{D}} (1-|w|^2)^{\alpha-\beta s'} dA(w) < \infty$ and (f_n) converges to 0 uniformly on $\{z:|z|\leq r\}$, $\lim_{n\to\infty} |T_u^{\alpha}(f_n)(0)|=0$. Since $|(T_u^{\alpha}f_n)'(z)| \leq \frac{||uk_z^{\alpha}||_{s,\alpha}||f_n||_{\beta}}{(1-|z|^2)^t}$ and (f_n) converges to 0 uniformly on $\{z:|z|\leq r\}$, $\sup_{|z|\leq r} (1-|z|^2)^t$ $|(T_u^{\alpha}f_n)'(z)|\to 0$ as $n\to\infty$. Then we get $\lim_{n\to\infty} T_u^{\alpha}(f_n)_{E_{\gamma}}=0$. Thus T_u^{α} is a compact linear operator.

Notice that for $f \in B_{\beta}$, $||T_{u}^{\alpha}(f)||_{2+\frac{\alpha}{2}+\beta-\frac{2+\alpha}{s'}} \leq ||u||_{WR(\alpha)}||f||_{\beta}$ and for $g \in B_{2+\frac{\alpha}{2}+\beta-\frac{2+\alpha}{s'}}$, $||g||_{E_{\frac{\alpha+2}{s'}-\beta}} \leq ||g||_{2+\frac{\alpha}{2}+\beta-\frac{\alpha+2}{s'}}$ and hence Theorem 2.8 is an immediate consequence of Theorem 3.3.

References

- S. Axler and D. Zheng, Compact Operators via the Berezin Transform, Indiana Univ. Math. J. 47 (1988), 387-399.
- [2] S. H. Kang, Some Toeplitz Operators on weighted Bergman Spaces, Bull. Korean. Math. Soc. 42 (2011), no. 1, 141-149.
- [3] K. Stroethoff, Compact Toeplitz Operators on the Bergman Spaces, Math. Proc. Cambridge philos. Soc. **124** (1999), no. 1, 151-160.
- [4] K. Zhu, Operator Theory in Function Spaces, Marcell Dekker, New York, 1990.
- [5] K. Zhu, Bloch Type Spaces of Analytic Functions, Rocky Mountain Journal of Math. 23 (1993), no. 3, 1143-1177.

*

Department of Mathematics Sookmyung Women's University Seoul 140-742, Republic of Korea E-mail: shkang@sookmyung.ac.kr