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GENERALIZED HYERS—ULAM—RASSIAS
STABILITY OF A FUNCTIONAL
EQUATION IN THREE VARIABLES

CHUN-GIL PARK* AND HEE-JUNG WEE**

ABSTRACT. In this paper, we prove the generalized Hyers—Ulam—
Rassias stability of the functional equation

af(m—l—g;—l—z) +af(m—g;+z> +af(m+g;—z>

+af (TEEVED) —of(e) + cf ) + o )

1. Introduction

Let X and Y be Banach spaces with norms || - || and || - ||, respec-

tively. Hyers [4] showed that if € > 0 and f: X — Y such that

If(z+y) = fz) = fy)l <e

for all z,y € X, then there exists a unique additive mapping 7" : X —

Y such that
[f(z) —T(2)| <e

for all x € X.

Consider f : X — Y to be a mapping such that f(¢x) is continuous

int € R for each fixed x € X. Assume that there exist constants e > 0

and p € [0,1) such that

1z +y) = f@) = F) < el + [ly]]")
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for all x,y € X. Th.M. Rassias [7] showed that there exists a unique
R-linear mapping 7' : X — Y such that

2€
2—-2p

If(z) =T (@) <

el

for all x € X. Gavruta [3] generalized the Rassias’ result.
A square norm on an inner product space satisfies the important
parallelogram equality ||z + y[* + ||z — y[|* = 2||z[|* + 2/|y|[*>. The

functional equation

flx+y) + flx—y) =2f(x) +2f(y)

is called a quadratic functional equation. In particular, every solution
of the quadratic functional equation is said to be a quadratic function.
A Hyers—Ulam stability problem for the quadratic functional equation
was proved by Skof [8] for mappings f : X — Y, where X is a normed
space and Y is a Banach space. Cholewa [1] noticed that the theorem
of Skof is still true if the relevant domain X is replaced by an Abelian
group. In [2], Czerwik proved the Hyers-Ulam-Rassias stability of
the quadratic functional equation.

In [5], the authors solved the quadratic type functional equation

a2f(W) + a2f(x%z+z) + a2f(w)
(YA )+ Af () + Af(2),

and proved the Hyers—Ulam—Rassias stability of the quadratic type
functional equation.

Throughout this paper, assume that a, b, ¢ are positive real num-
bers, and that X and Y are a real normed vector space with norm

|| - || and a real Banach space with norm || - ||, respectively.
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In [6], the authors solved the following functional equation

af (R (22 (P25
(1) Faf(CEEEEE) < (@) + ef(y) + el (2

for all z,y, 2 € X, and prove the Hyers—Ulam—Rassias stability of the
functional equation.
In this paper, we prove the generalized Hyers—Ulam—Rassias sta-

bility of the functional equation (1.i).

2. Stability of a functional equation in three variables

Given a mapping f : X — Y, we set

Df(a,y, ) =af (D) g (T2 4o p(FHLE)
—r+y+z

+af( ) —cf(x) —cf(y) —cf(2)

b
for all z,y,z € X.

THEOREM 1. Let f: X — Y be an odd mapping for which there
is a function ¢ : X3 — [0, 00) such that

oo

~ 1 . ) )
(2.i) Bla,y,2) =) 5020, 27y,272) < oo,
=y
(2.ii) [Df(z,y,2)|| < ¢(x,y,2)

for all x,y,z € X. Then there exists a unique additive mapping
A: X — Y such that

i) S~ A@)) < 5 (325,0,0) + 3,2, 0)

for all x € X.

Proof. Note that f(0) =0 and f(—z) = —f(x) for all z € X since
f is an odd mapping. Putting y = z = 0 in (2.ii) and then replacing
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x by 2z, we have
2x c 1
(2.1) laf(=) — 5 f(22)]] < 5¢(22,0,0)
b 2 2
for all z € X. Putting y = = and z = 0 in (2.ii), we have
2x 1
(2.2) laf(=) = ef@)ll < So(2,2,0)

for all z € X. By (2.1) and (2.2), we have

—_

(2.3) 1£(22) = 2f(2)ll < —((22,0,0) + ¢(z,2,0))
for all z € X. By (2.3), we have

f(2 Vi < L(622,0,0) + p(@,2,0))

Y

for all x € X. Using (2.4), we have

f@rz)  f@"z), noy  J(2-2"z)
1

2ntl ¢

(2.5) <

(0(2"12,0,0) + p(2"2, 2", 0))

for all z € X and all positive integers n. By (2.5), we have

n—1
f@mx)  f2"x)
|| m - n || < k1 (;0(2k+1x7070)
2 2 £ gRHT
1
(2.6) + Z mgp(Qkx,Qkx,O)
k=m

for all x € X and all positive integers m and n with m < n. This

shows that the sequence {f 2 x)} is a Cauchy sequence for all x € X.
f ( x)

Since Y is complete, the sequence { } converges for all z € X.

So we can define a mapping A : X — Y by

A(z) := lim f(2"z)

n— oo on
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for all x € X. Since f(—z) = —f(z) for all x € X, we have A(—x) =
—A(x) for all z € X. Also, we get

: 1 n n n
|DA(z,y,2)]| = lim || Df(2"z, 2"y, 2"2)]|

1
< lim 2—n4p(2"33,2"y,2"z) =0
for all z,y,z € X. By [6, Lemma 2|, A is additive. Putting m =0
and letting n — oo in (2.6), we get (2.iii).
Now, let A’ : X — Y be another additive mapping satisfying (2.iii).

Then we have

|A(z) — A'(z)|| = %IIA(T‘«%") — A'(2"z)]

< 2in<||A<2nx> — f@ )| + | A2 ) — F(2"2)]))

2

<
- 2ntle

(@(2"12,0,0) + @(2"z, 2"z, 0)),

which tends to zero as n — oo for all x € X. So we can conclude that
A(xz) = A’(z) for all x € X. This proves the uniqueness of A. O

THEOREM 2. Let f: X — Y be an even mapping with f(0) = 0

for which there is a function ¢ : X3 — [0, 00) such that

N > 1 S
(2.iv) alwy,2) 1= ) (22,279, 272) < oc,
=0
(2.v) |1Df(z,y,2)|| < o(z,9,2)

for all x,y,z € X. Then there exists a unique quadratic mapping
Q : X — Y such that

(2.vi) [f(z) = Q)] < 4%(2472(93,% 0) + ¥2(22,0,0))
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for all x € X.

Proof. Putting y =z and z = 0 in (2.v), we have

2x 1
(27) Jaf(%T) ~ ef @) < g(a,2,0)
for all x € X. Putting y = z = 0 in (2.v) and then replacing x by 2z,
we have
2x c 1
(28) laf (%)~ € ex)] < 3e(2r,0,0)

for all z € X. By (2.7) and (2.8), we have

—_

(2.9) 1f(22) — 4f (@)l < —(2¢(2, 2,0) + ¢(22,0,0))
for all z € X. By (2.9), we have

(2.10) 7@ - L2y <

(24,0(3: z,0) + p(22,0,0))

for all z € X. Using (2.10), we have

f@rz)  f2 )

1 " f(2-2"x)
2L = ey - 22

1 I
(2¢(2"z,2"x,0) + (2" 12, 0,0))

(2.11)

<
— 4ntle

for all z € X and all positive integers n. By (2.11), we have

n—1
f@mz)  f(2"x) 2 k.. ok

k=m

(2.12) Z i P(22,0,0)

=m

for all x € X and all nonnegative integers m and n with m < n. This

shows that the sequence {f (2"2)

} is a Cauchy sequence for all z € X.
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Since Y is complete, the sequence {%} converges for all x € X.

So we can define a mapping Q : X — Y by

Q) = lim 120

n— oo 4n

for all z € X. We have Q(0) =0, Q(—z) = Q(z) and

: 1 n n n
1DQ(z,y,2)|| = lim - IDf(2"2,2"y,2"2)|

1
< lim 4—n4p(2"33,2"y,2"z) =0
for all z,y,2z € X. By [6, Lemma 1], @ is quadratic. Putting m =
0 and letting n — oo in (2.12), we get (2.vi). The proof of the

uniqueness of () is similar to the proof of Theorem 1. O

THEOREM 3. Let f : X — Y be a mapping with f(0) = 0 for
which there is a function ¢ : X® — [0, 00) satisfying (2.i) and (2.ii).
Then there exist a unique additive mapping A : X — Y and a unique

quadratic mapping ) : X — Y such that

D ZIED gy <L (@2r.0.0) + B, 2,0)
(2.vii) + ¢(—22,0,0) + p(—z, —x,0),
HDEIED Q) <o 253(,2,0) +Fa(20,0,0

(2.viii) + 2pa(—x, —x,0) + pa(—22,0,0),
15(2) = Q@) ~ A@)| <4 (3(22,0,0) + 3(z,2,0))

(2.ix) + L (3(222,0,0) + (=, —1.,0))

4c¢
1 —

+ §(2§02($7ZE’ 0) + (202(23:7 07 0))

1

8c
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for all x € X.

Proof. Let g(z) := 3(f(x) — f(—x)) for all z € X. Then g(—z) =
—g(x) and

1
IDg(z,y,2)l <

for all x,y,z € X. By the same reasoning as in the proof of Theorem

((;0(3:7 Y, Z) + (10(_3:7 Y, _Z))

1, there exists a unique additive mapping A : X — Y satisfying (2.vii).
Note that pa(z,y, z) < oo since ga(x,y, 2) < @(x,y, 2).
Let q(z) := 3(f(z) + f(—=z)) for all z € X. Then ¢(0) = 0,
q(—z) = q(z) and

1Da(@, 9, ) < ~(o(ay,2) + p(—, —y, —2)

2
for all x,y,z € X. By the same reasoning as in the proof of Theorem
2, there exists a unique quadratic mapping ) : X — Y satisfying
(2.viii). Clearly, we have (2.ix) for all z € X. O

COROLLARY 4. Let 6 and p (0 < p < 1) be positive real numbers.
Let f : X — Y be a mapping with f(0) = 0 such that

1D f (@, y, 2) || < O([[=[[” + [ly[1” + [I2][")

for all x,y,z € X. Then there exist a unique additive mapping A :
X — Y and a unique quadratic mapping ) : X — Y such that

D IED ) < 22y,
DD oy < 22
17() ~ Q) — AW < S22
for all x € X.

Proof. Define ¢(x,y,2) = ||z||” + ||y||” + ||2||? and apply Theorem
3. 0]
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