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GENERALIZED HYERS––ULAM––RASSIAS

STABILITY OF A FUNCTIONAL

EQUATION IN THREE VARIABLES

Chun-Gil Park* and Hee-Jung Wee**

Abstract. In this paper, we prove the generalized Hyers–Ulam–
Rassias stability of the functional equation
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x + y + z
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)
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)

+ af

(
−x + y + z

b

)
= cf(x) + cf(y) + cf(z).

1. Introduction

Let X and Y be Banach spaces with norms || · || and ‖ · ‖, respec-

tively. Hyers [4] showed that if ǫ > 0 and f : X → Y such that

‖f(x + y) − f(x) − f(y)‖ ≤ ǫ

for all x, y ∈ X, then there exists a unique additive mapping T : X →

Y such that

‖f(x) − T (x)‖ ≤ ǫ

for all x ∈ X.

Consider f : X → Y to be a mapping such that f(tx) is continuous

in t ∈ R for each fixed x ∈ X. Assume that there exist constants ǫ ≥ 0

and p ∈ [0, 1) such that

‖f(x + y) − f(x) − f(y)‖ ≤ ǫ(||x||p + ||y||p)
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for all x, y ∈ X. Th.M. Rassias [7] showed that there exists a unique

R-linear mapping T : X → Y such that

‖f(x) − T (x)‖ ≤
2ǫ

2 − 2p
||x||p

for all x ∈ X. Găvruta [3] generalized the Rassias’ result.

A square norm on an inner product space satisfies the important

parallelogram equality ‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2. The

functional equation

f(x + y) + f(x − y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution

of the quadratic functional equation is said to be a quadratic function.

A Hyers–Ulam stability problem for the quadratic functional equation

was proved by Skof [8] for mappings f : X → Y , where X is a normed

space and Y is a Banach space. Cholewa [1] noticed that the theorem

of Skof is still true if the relevant domain X is replaced by an Abelian

group. In [2], Czerwik proved the Hyers–Ulam–Rassias stability of

the quadratic functional equation.

In [5], the authors solved the quadratic type functional equation

a2f(
x + y + z

a
) + a2f(

x − y + z

a
) + a2f(

x + y − z

a
)

+ a2f(
−x + y + z

a
) = 4f(x) + 4f(y) + 4f(z),

and proved the Hyers–Ulam–Rassias stability of the quadratic type

functional equation.

Throughout this paper, assume that a, b, c are positive real num-

bers, and that X and Y are a real normed vector space with norm

|| · || and a real Banach space with norm ‖ · ‖, respectively.
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In [6], the authors solved the following functional equation

af(
x + y + z

b
) + af(

x − y + z

b
) + af(

x + y − z

b
)

+ af(
−x + y + z

b
) = cf(x) + cf(y) + cf(z)(1.i)

for all x, y, z ∈ X, and prove the Hyers–Ulam–Rassias stability of the

functional equation.

In this paper, we prove the generalized Hyers–Ulam–Rassias sta-

bility of the functional equation (1.i).

2. Stability of a functional equation in three variables

Given a mapping f : X → Y , we set

Df(x, y, z) :=af(
x + y + z

b
) + af(

x − y + z

b
) + af(

x + y − z

b
)

+ af(
−x + y + z

b
) − cf(x) − cf(y) − cf(z)

for all x, y, z ∈ X.

Theorem 1. Let f : X → Y be an odd mapping for which there

is a function ϕ : X3 → [0,∞) such that

ϕ̃(x, y, z) : =
∞∑

j=0

1

2j
ϕ(2jx, 2jy, 2jz) < ∞,(2.i)

‖Df(x, y, z)‖ ≤ ϕ(x, y, z)(2.ii)

for all x, y, z ∈ X. Then there exists a unique additive mapping

A : X → Y such that

(2.iii) ‖f(x) − A(x)‖ ≤
1

2c
(ϕ̃(2x, 0, 0) + ϕ̃(x, x, 0))

for all x ∈ X.

Proof. Note that f(0) = 0 and f(−x) = −f(x) for all x ∈ X since

f is an odd mapping. Putting y = z = 0 in (2.ii) and then replacing
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x by 2x, we have

(2.1) ‖af(
2x

b
) −

c

2
f(2x)‖ ≤

1

2
ϕ(2x, 0, 0)

for all x ∈ X. Putting y = x and z = 0 in (2.ii), we have

(2.2) ‖af(
2x

b
) − cf(x)‖ ≤

1

2
ϕ(x, x, 0)

for all x ∈ X. By (2.1) and (2.2), we have

(2.3) ‖f(2x) − 2f(x)‖ ≤
1

c
(ϕ(2x, 0, 0) + ϕ(x, x, 0))

for all x ∈ X. By (2.3), we have

(2.4) ‖f(x) −
f(2x)

2
‖ ≤

1

2c
(ϕ(2x, 0, 0) + ϕ(x, x, 0))

for all x ∈ X. Using (2.4), we have

‖
f(2nx)

2n
−

f(2n+1x)

2n+1
‖ =

1

2n
‖f(2nx) −

f(2 · 2nx)

2
‖

≤
1

2n+1 c
(ϕ(2n+1x, 0, 0) + ϕ(2nx, 2nx, 0))(2.5)

for all x ∈ X and all positive integers n. By (2.5), we have

‖
f(2mx)

2m
−

f(2nx)

2n
‖ ≤

n−1∑

k=m

1

2k+1 c
ϕ(2k+1x, 0, 0)

+

n−1∑

k=m

1

2k+1 c
ϕ(2kx, 2kx, 0)(2.6)

for all x ∈ X and all positive integers m and n with m < n. This

shows that the sequence { f(2nx)
2n

} is a Cauchy sequence for all x ∈ X.

Since Y is complete, the sequence { f(2nx)
2n

} converges for all x ∈ X.

So we can define a mapping A : X → Y by

A(x) := lim
n→∞

f(2nx)

2n
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for all x ∈ X. Since f(−x) = −f(x) for all x ∈ X, we have A(−x) =

−A(x) for all x ∈ X. Also, we get

‖DA(x, y, z)‖ = lim
n→∞

1

2n
‖Df(2nx, 2ny, 2nz)‖

≤ lim
n→∞

1

2n
ϕ(2nx, 2ny, 2nz) = 0

for all x, y, z ∈ X. By [6, Lemma 2], A is additive. Putting m = 0

and letting n → ∞ in (2.6), we get (2.iii).

Now, let A′ : X → Y be another additive mapping satisfying (2.iii).

Then we have

‖A(x) − A′(x)‖ =
1

2n
‖A(2nx) − A′(2nx)‖

≤
1

2n
(‖A(2nx) − f(2nx)‖ + ‖A′(2nx) − f(2nx)‖)

≤
2

2n+1c
(ϕ̃(2n+1x, 0, 0) + ϕ̃(2nx, 2nx, 0)),

which tends to zero as n → ∞ for all x ∈ X. So we can conclude that

A(x) = A′(x) for all x ∈ X. This proves the uniqueness of A. �

Theorem 2. Let f : X → Y be an even mapping with f(0) = 0

for which there is a function ϕ : X3 → [0,∞) such that

ϕ̃2(x, y, z) : =

∞∑

j=0

1

4j
ϕ(2jx, 2jy, 2jz) < ∞,(2.iv)

‖Df(x, y, z)‖ ≤ ϕ(x, y, z)(2.v)

for all x, y, z ∈ X. Then there exists a unique quadratic mapping

Q : X → Y such that

(2.vi) ‖f(x) −Q(x)‖ ≤
1

4c
(2ϕ̃2(x, x, 0) + ϕ̃2(2x, 0, 0))
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for all x ∈ X.

Proof. Putting y = x and z = 0 in (2.v), we have

(2.7) ‖af(
2x

b
) − cf(x)‖ ≤

1

2
ϕ(x, x, 0)

for all x ∈ X. Putting y = z = 0 in (2.v) and then replacing x by 2x,

we have

(2.8) ‖af(
2x

b
) −

c

4
f(2x)‖ ≤

1

4
ϕ(2x, 0, 0)

for all x ∈ X. By (2.7) and (2.8), we have

(2.9) ‖f(2x) − 4f(x)‖ ≤
1

c
(2ϕ(x, x, 0) + ϕ(2x, 0, 0))

for all x ∈ X. By (2.9), we have

(2.10) ‖f(x) −
f(2x)

4
‖ ≤

1

4c
(2ϕ(x, x, 0) + ϕ(2x, 0, 0))

for all x ∈ X. Using (2.10), we have

‖
f(2nx)

4n
−

f(2n+1x)

4n+1
‖ =

1

4n
‖f(2nx) −

f(2 · 2nx)

4
‖

≤
1

4n+1c
(2ϕ(2nx, 2nx, 0) + ϕ(2n+1x, 0, 0))(2.11)

for all x ∈ X and all positive integers n. By (2.11), we have

‖
f(2mx)

4m
−

f(2nx)

4n
‖ ≤

n−1∑

k=m

2

4k+1c
ϕ(2kx, 2kx, 0)

+
n−1∑

k=m

1

4k+1c
ϕ(2k+1x, 0, 0)(2.12)

for all x ∈ X and all nonnegative integers m and n with m < n. This

shows that the sequence { f(2nx)
4n

} is a Cauchy sequence for all x ∈ X.
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Since Y is complete, the sequence { f(2nx)
4n

} converges for all x ∈ X.

So we can define a mapping Q : X → Y by

Q(x) := lim
n→∞

f(2nx)

4n

for all x ∈ X. We have Q(0) = 0, Q(−x) = Q(x) and

‖DQ(x, y, z)‖ = lim
n→∞

1

4n
‖Df(2nx, 2ny, 2nz)‖

≤ lim
n→∞

1

4n
ϕ(2nx, 2ny, 2nz) = 0

for all x, y, z ∈ X. By [6, Lemma 1], Q is quadratic. Putting m =

0 and letting n → ∞ in (2.12), we get (2.vi). The proof of the

uniqueness of Q is similar to the proof of Theorem 1. �

Theorem 3. Let f : X → Y be a mapping with f(0) = 0 for

which there is a function ϕ : X3 → [0,∞) satisfying (2.i) and (2.ii).

Then there exist a unique additive mapping A : X → Y and a unique

quadratic mapping Q : X → Y such that

‖
f(x) − f(−x)

2
− A(x)‖ ≤

1

4c
(ϕ̃(2x, 0, 0) + ϕ̃(x, x, 0)

+ ϕ̃(−2x, 0, 0) + ϕ̃(−x,−x, 0),(2.vii)

‖
f(x) + f(−x)

2
− Q(x)‖ ≤

1

8c
(2ϕ̃2(x, x, 0) + ϕ̃2(2x, 0, 0)

+ 2ϕ̃2(−x,−x, 0) + ϕ̃2(−2x, 0, 0),(2.viii)

‖f(x) − Q(x) − A(x)‖ ≤
1

4c
(ϕ̃(2x, 0, 0) + ϕ̃(x, x, 0))

+
1

4c
(ϕ̃(−2x, 0, 0) + ϕ̃(−x,−x, 0))(2.ix)

+
1

8c
(2ϕ̃2(x, x, 0) + ϕ̃2(2x, 0, 0))

+
1

8c
(2ϕ̃2(−x,−x, 0) + ϕ̃2(−2x, 0, 0))
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for all x ∈ X.

Proof. Let g(x) := 1
2
(f(x) − f(−x)) for all x ∈ X. Then g(−x) =

−g(x) and

‖Dg(x, y, z)‖ ≤
1

2
(ϕ(x, y, z) + ϕ(−x,−y,−z))

for all x, y, z ∈ X. By the same reasoning as in the proof of Theorem

1, there exists a unique additive mapping A : X → Y satisfying (2.vii).

Note that ϕ̃2(x, y, z) < ∞ since ϕ̃2(x, y, z) < ϕ̃(x, y, z).

Let q(x) := 1
2 (f(x) + f(−x)) for all x ∈ X. Then q(0) = 0,

q(−x) = q(x) and

‖Dq(x, y, z)‖ ≤
1

2
(ϕ(x, y, z) + ϕ(−x,−y,−z))

for all x, y, z ∈ X. By the same reasoning as in the proof of Theorem

2, there exists a unique quadratic mapping Q : X → Y satisfying

(2.viii). Clearly, we have (2.ix) for all x ∈ X. �

Corollary 4. Let θ and p (0 < p < 1) be positive real numbers.

Let f : X → Y be a mapping with f(0) = 0 such that

‖Df(x, y, z)‖ ≤ θ(||x||p + ||y||p + ||z||p)

for all x, y, z ∈ X. Then there exist a unique additive mapping A :

X → Y and a unique quadratic mapping Q : X → Y such that

‖
f(x) − f(−x)

2
− A(x)‖ ≤

θ

c
(
2 + 2p

2 − 2p
)||x||p,

‖
f(x) + f(−x)

2
− Q(x)‖ ≤

θ

c
(
4 + 2p

4 − 2p
)||x||p,

‖f(x) − Q(x) − A(x)‖ ≤
θ

c
(
2 + 2p

2 − 2p
+

4 + 2p

4 − 2p
)||x||p

for all x ∈ X.

Proof. Define ϕ(x, y, z) = ||x||p + ||y||p + ||z||p and apply Theorem

3. �
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