GENERALIZED HYERS—ULAM—RASSIAS STABILITY OF A FUNCTIONAL EQUATION IN THREE VARIABLES

CHUN-GIL PARK* AND HEE-JUNG WEE**

ABSTRACT. In this paper, we prove the generalized Hyers–Ulam–Rassias stability of the functional equation

$$af\left(\frac{x+y+z}{b}\right) + af\left(\frac{x-y+z}{b}\right) + af\left(\frac{x+y-z}{b}\right) + af\left(\frac{-x+y+z}{b}\right) = cf(x) + cf(y) + cf(z).$$

1. Introduction

Let X and Y be Banach spaces with norms $||\cdot||$ and $||\cdot||$, respectively. Hyers [4] showed that if $\epsilon > 0$ and $f: X \to Y$ such that

$$||f(x+y) - f(x) - f(y)|| \le \epsilon$$

for all $x,y\in X,$ then there exists a unique additive mapping $T:X\to Y$ such that

$$||f(x) - T(x)|| \le \epsilon$$

for all $x \in X$.

Consider $f: X \to Y$ to be a mapping such that f(tx) is continuous in $t \in \mathbb{R}$ for each fixed $x \in X$. Assume that there exist constants $\epsilon \geq 0$ and $p \in [0,1)$ such that

$$||f(x+y) - f(x) - f(y)|| \le \epsilon(||x||^p + ||y||^p)$$

Received by the editors on January 24, 2005.

2000 Mathematics Subject Classifications: Primary 39B52.

Key words and phrases: functional equation in three variables, stability.

for all $x, y \in X$. Th.M. Rassias [7] showed that there exists a unique \mathbb{R} -linear mapping $T: X \to Y$ such that

$$||f(x) - T(x)|| \le \frac{2\epsilon}{2 - 2^p} ||x||^p$$

for all $x \in X$. Găvruta [3] generalized the Rassias' result.

A square norm on an inner product space satisfies the important parallelogram equality $||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$. The functional equation

$$f(x+y) + f(x-y) = 2f(x) + 2f(y)$$

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic function. A Hyers–Ulam stability problem for the quadratic functional equation was proved by Skof [8] for mappings $f: X \to Y$, where X is a normed space and Y is a Banach space. Cholewa [1] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group. In [2], Czerwik proved the Hyers–Ulam–Rassias stability of the quadratic functional equation.

In [5], the authors solved the quadratic type functional equation

$$a^{2}f(\frac{x+y+z}{a}) + a^{2}f(\frac{x-y+z}{a}) + a^{2}f(\frac{x+y-z}{a}) + a^{2}f(\frac{-x+y+z}{a}) = 4f(x) + 4f(y) + 4f(z),$$

and proved the Hyers–Ulam–Rassias stability of the quadratic type functional equation.

Throughout this paper, assume that a, b, c are positive real numbers, and that X and Y are a real normed vector space with norm $\|\cdot\|$, respectively.

In [6], the authors solved the following functional equation

$$af\left(\frac{x+y+z}{b}\right) + af\left(\frac{x-y+z}{b}\right) + af\left(\frac{x+y-z}{b}\right) + af\left(\frac{-x+y+z}{b}\right) = cf(x) + cf(y) + cf(z)$$
(1.i)

for all $x, y, z \in X$, and prove the Hyers–Ulam–Rassias stability of the functional equation.

In this paper, we prove the generalized Hyers–Ulam–Rassias stability of the functional equation (1.i).

2. Stability of a functional equation in three variables

Given a mapping $f: X \to Y$, we set

$$Df(x,y,z) := af(\frac{x+y+z}{b}) + af(\frac{x-y+z}{b}) + af(\frac{x+y-z}{b}) + af(\frac{x+y+z}{b}) + af(\frac{x+y+z}{b}) - cf(x) - cf(y) - cf(z)$$

for all $x, y, z \in X$.

THEOREM 1. Let $f: X \to Y$ be an odd mapping for which there is a function $\varphi: X^3 \to [0, \infty)$ such that

(2.i)
$$\widetilde{\varphi}(x,y,z) := \sum_{j=0}^{\infty} \frac{1}{2^j} \varphi(2^j x, 2^j y, 2^j z) < \infty,$$

(2.ii)
$$||Df(x, y, z)|| \le \varphi(x, y, z)$$

for all $x, y, z \in X$. Then there exists a unique additive mapping $A: X \to Y$ such that

(2.iii)
$$||f(x) - A(x)|| \le \frac{1}{2c} (\widetilde{\varphi}(2x, 0, 0) + \widetilde{\varphi}(x, x, 0))$$

for all $x \in X$.

Proof. Note that f(0) = 0 and f(-x) = -f(x) for all $x \in X$ since f is an odd mapping. Putting y = z = 0 in (2.ii) and then replacing

x by 2x, we have

(2.1)
$$||af(\frac{2x}{h}) - \frac{c}{2}f(2x)|| \le \frac{1}{2}\varphi(2x, 0, 0)$$

for all $x \in X$. Putting y = x and z = 0 in (2.ii), we have

(2.2)
$$||af(\frac{2x}{b}) - cf(x)|| \le \frac{1}{2}\varphi(x, x, 0)$$

for all $x \in X$. By (2.1) and (2.2), we have

(2.3)
$$||f(2x) - 2f(x)|| \le \frac{1}{c} (\varphi(2x, 0, 0) + \varphi(x, x, 0))$$

for all $x \in X$. By (2.3), we have

(2.4)
$$||f(x) - \frac{f(2x)}{2}|| \le \frac{1}{2c} (\varphi(2x, 0, 0) + \varphi(x, x, 0))$$

for all $x \in X$. Using (2.4), we have

$$\|\frac{f(2^{n}x)}{2^{n}} - \frac{f(2^{n+1}x)}{2^{n+1}}\| = \frac{1}{2^{n}} \|f(2^{n}x) - \frac{f(2 \cdot 2^{n}x)}{2}\|$$

$$(2.5) \qquad \leq \frac{1}{2^{n+1}} \left(\varphi(2^{n+1}x, 0, 0) + \varphi(2^{n}x, 2^{n}x, 0)\right)$$

for all $x \in X$ and all positive integers n. By (2.5), we have

$$\left\| \frac{f(2^{m}x)}{2^{m}} - \frac{f(2^{n}x)}{2^{n}} \right\| \leq \sum_{k=m}^{n-1} \frac{1}{2^{k+1} c} \varphi(2^{k+1}x, 0, 0) + \sum_{k=m}^{n-1} \frac{1}{2^{k+1} c} \varphi(2^{k}x, 2^{k}x, 0)$$
(2.6)

for all $x \in X$ and all positive integers m and n with m < n. This shows that the sequence $\{\frac{f(2^n x)}{2^n}\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{\frac{f(2^n x)}{2^n}\}$ converges for all $x \in X$. So we can define a mapping $A: X \to Y$ by

$$A(x) := \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$$

for all $x \in X$. Since f(-x) = -f(x) for all $x \in X$, we have A(-x) = -A(x) for all $x \in X$. Also, we get

$$||DA(x,y,z)|| = \lim_{n \to \infty} \frac{1}{2^n} ||Df(2^n x, 2^n y, 2^n z)||$$

$$\leq \lim_{n \to \infty} \frac{1}{2^n} \varphi(2^n x, 2^n y, 2^n z) = 0$$

for all $x, y, z \in X$. By [6, Lemma 2], A is additive. Putting m = 0 and letting $n \to \infty$ in (2.6), we get (2.iii).

Now, let $A': X \to Y$ be another additive mapping satisfying (2.iii). Then we have

$$||A(x) - A'(x)|| = \frac{1}{2^n} ||A(2^n x) - A'(2^n x)||$$

$$\leq \frac{1}{2^n} (||A(2^n x) - f(2^n x)|| + ||A'(2^n x) - f(2^n x)||)$$

$$\leq \frac{2}{2^{n+1}c} (\widetilde{\varphi}(2^{n+1}x, 0, 0) + \widetilde{\varphi}(2^n x, 2^n x, 0)),$$

which tends to zero as $n \to \infty$ for all $x \in X$. So we can conclude that A(x) = A'(x) for all $x \in X$. This proves the uniqueness of A.

THEOREM 2. Let $f: X \to Y$ be an even mapping with f(0) = 0 for which there is a function $\varphi: X^3 \to [0, \infty)$ such that

(2.iv)
$$\widetilde{\varphi_2}(x,y,z) := \sum_{j=0}^{\infty} \frac{1}{4^j} \varphi(2^j x, 2^j y, 2^j z) < \infty,$$

(2.v)
$$||Df(x, y, z)|| \le \varphi(x, y, z)$$

for all $x, y, z \in X$. Then there exists a unique quadratic mapping $Q: X \to Y$ such that

(2.vi)
$$||f(x) - Q(x)|| \le \frac{1}{4c} (2\widetilde{\varphi}_2(x, x, 0) + \widetilde{\varphi}_2(2x, 0, 0))$$

for all $x \in X$.

Proof. Putting y = x and z = 0 in (2.v), we have

(2.7)
$$||af(\frac{2x}{b}) - cf(x)|| \le \frac{1}{2}\varphi(x, x, 0)$$

for all $x \in X$. Putting y = z = 0 in (2.v) and then replacing x by 2x, we have

(2.8)
$$||af(\frac{2x}{h}) - \frac{c}{4}f(2x)|| \le \frac{1}{4}\varphi(2x, 0, 0)$$

for all $x \in X$. By (2.7) and (2.8), we have

(2.9)
$$||f(2x) - 4f(x)|| \le \frac{1}{c} (2\varphi(x, x, 0) + \varphi(2x, 0, 0))$$

for all $x \in X$. By (2.9), we have

(2.10)
$$||f(x) - \frac{f(2x)}{4}|| \le \frac{1}{4c} (2\varphi(x, x, 0) + \varphi(2x, 0, 0))$$

for all $x \in X$. Using (2.10), we have

$$\|\frac{f(2^{n}x)}{4^{n}} - \frac{f(2^{n+1}x)}{4^{n+1}}\| = \frac{1}{4^{n}} \|f(2^{n}x) - \frac{f(2 \cdot 2^{n}x)}{4}\|$$

$$(2.11) \qquad \leq \frac{1}{4^{n+1}c} (2\varphi(2^{n}x, 2^{n}x, 0) + \varphi(2^{n+1}x, 0, 0))$$

for all $x \in X$ and all positive integers n. By (2.11), we have

$$\left\| \frac{f(2^{m}x)}{4^{m}} - \frac{f(2^{n}x)}{4^{n}} \right\| \leq \sum_{k=m}^{n-1} \frac{2}{4^{k+1}c} \varphi(2^{k}x, 2^{k}x, 0) + \sum_{k=m}^{n-1} \frac{1}{4^{k+1}c} \varphi(2^{k+1}x, 0, 0)$$

for all $x \in X$ and all nonnegative integers m and n with m < n. This shows that the sequence $\{\frac{f(2^n x)}{4^n}\}$ is a Cauchy sequence for all $x \in X$.

Since Y is complete, the sequence $\{\frac{f(2^n x)}{4^n}\}$ converges for all $x \in X$. So we can define a mapping $Q: X \to Y$ by

$$Q(x) := \lim_{n \to \infty} \frac{f(2^n x)}{4^n}$$

for all $x \in X$. We have Q(0) = 0, Q(-x) = Q(x) and

$$||DQ(x,y,z)|| = \lim_{n \to \infty} \frac{1}{4^n} ||Df(2^n x, 2^n y, 2^n z)||$$

$$\leq \lim_{n \to \infty} \frac{1}{4^n} \varphi(2^n x, 2^n y, 2^n z) = 0$$

for all $x, y, z \in X$. By [6, Lemma 1], Q is quadratic. Putting m = 0 and letting $n \to \infty$ in (2.12), we get (2.vi). The proof of the uniqueness of Q is similar to the proof of Theorem 1.

THEOREM 3. Let $f: X \to Y$ be a mapping with f(0) = 0 for which there is a function $\varphi: X^3 \to [0, \infty)$ satisfying (2.i) and (2.ii). Then there exist a unique additive mapping $A: X \to Y$ and a unique quadratic mapping $Q: X \to Y$ such that

$$\begin{split} \|\frac{f(x)-f(-x)}{2}-A(x)\| & \leq \frac{1}{4c}(\widetilde{\varphi}(2x,0,0)+\widetilde{\varphi}(x,x,0)\\ (2.\text{vii}) & +\widetilde{\varphi}(-2x,0,0)+\widetilde{\varphi}(-x,-x,0),\\ \|\frac{f(x)+f(-x)}{2}-Q(x)\| & \leq \frac{1}{8c}(2\widetilde{\varphi_2}(x,x,0)+\widetilde{\varphi_2}(2x,0,0)\\ (2.\text{viii}) & +2\widetilde{\varphi_2}(-x,-x,0)+\widetilde{\varphi_2}(-2x,0,0),\\ \|f(x)-Q(x)-A(x)\| & \leq \frac{1}{4c}(\widetilde{\varphi}(2x,0,0)+\widetilde{\varphi}(x,x,0))\\ (2.\text{ix}) & +\frac{1}{4c}(\widetilde{\varphi}(-2x,0,0)+\widetilde{\varphi}(-x,-x,0))\\ & +\frac{1}{8c}(2\widetilde{\varphi_2}(x,x,0)+\widetilde{\varphi_2}(2x,0,0))\\ & +\frac{1}{8c}(2\widetilde{\varphi_2}(-x,-x,0)+\widetilde{\varphi_2}(-2x,0,0)) \end{split}$$

for all $x \in X$.

Proof. Let $g(x) := \frac{1}{2}(f(x) - f(-x))$ for all $x \in X$. Then g(-x) = -g(x) and

$$||Dg(x, y, z)|| \le \frac{1}{2}(\varphi(x, y, z) + \varphi(-x, -y, -z))$$

for all $x, y, z \in X$. By the same reasoning as in the proof of Theorem 1, there exists a unique additive mapping $A: X \to Y$ satisfying (2.vii).

Note that $\widetilde{\varphi_2}(x,y,z) < \infty$ since $\widetilde{\varphi_2}(x,y,z) < \widetilde{\varphi}(x,y,z)$.

Let $q(x) := \frac{1}{2}(f(x) + f(-x))$ for all $x \in X$. Then q(0) = 0, q(-x) = q(x) and

$$||Dq(x, y, z)|| \le \frac{1}{2}(\varphi(x, y, z) + \varphi(-x, -y, -z))$$

for all $x, y, z \in X$. By the same reasoning as in the proof of Theorem 2, there exists a unique quadratic mapping $Q: X \to Y$ satisfying (2.viii). Clearly, we have (2.ix) for all $x \in X$.

COROLLARY 4. Let θ and p (0 be positive real numbers. $Let <math>f: X \to Y$ be a mapping with f(0) = 0 such that

$$||Df(x,y,z)|| \le \theta(||x||^p + ||y||^p + ||z||^p)$$

for all $x, y, z \in X$. Then there exist a unique additive mapping $A: X \to Y$ and a unique quadratic mapping $Q: X \to Y$ such that

$$\begin{aligned} & \left\| \frac{f(x) - f(-x)}{2} - A(x) \right\| \le \frac{\theta}{c} (\frac{2 + 2^p}{2 - 2^p}) ||x||^p, \\ & \left\| \frac{f(x) + f(-x)}{2} - Q(x) \right\| \le \frac{\theta}{c} (\frac{4 + 2^p}{4 - 2^p}) ||x||^p, \\ & \left\| f(x) - Q(x) - A(x) \right\| \le \frac{\theta}{c} (\frac{2 + 2^p}{2 - 2^p} + \frac{4 + 2^p}{4 - 2^p}) ||x||^p \end{aligned}$$

for all $x \in X$.

Proof. Define $\varphi(x,y,z) = ||x||^p + ||y||^p + ||z||^p$ and apply Theorem 3.

References

- 1. P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76–86.
- 2. S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59–64.
- 3. P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. **184** (1994), 431-436.
- 4. D.H. Hyers, On the stability of the linear functional equation, Pro. Nat'l. Acad. Sci. U.S.A. 27 (1941), 222–224.
- 5. S. Lee and K. Jun, Hyers-Ulam-Rassias stability of a quadratic type functional equation, Bull. Korean Math. Soc. 40 (2003), 183–193.
- 6. S. Lee and C. Park, Hyers-Ulam-Rassias stability of a functional equation in three variables, J. Chungcheong Math. Soc. 16 (2) (2003), 11–21.
- 7. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. **72** (1978), 297–300.
- 8. F. Skof, *Proprietà locali e approssimazione di operatori*, Rend. Sem. Mat. Fis. Milano **53** (1983), 113–129.

*

DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY DAEJEON 305-764, KOREA

E-mail: cgpark@cnu.ac.kr

**

DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY DAEJEON 305-764, KOREA