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ON π-V-RINGS AND INTERMEDIATE

NORMALIZING EXTENSIONS

Kang-Joo Min

Abstract. In this paper we study a ring over which every left mod-

ule of finite length has an injective hull of finite length. We consider

a ring that is a finite intermediate normalizing extension ring of such
a ring. We also consider the subrings of such a ring.

Throughout this paper, all rings have identity and all modules are

unital. Let R be a ring. For a left or right R-module, E(M) denote

the injective hull of M . For an R-module M , LeR(M) denote the

length of M [1]. Recall that a ring R is a left V-ring if every simple

left R-module is injective[4]. A left and right V-ring is called a V-ring.

Rosenberg and Zelinsley[5] considered the rings over which every left

module of finite length has an injective hull of finite length. Left

V-rings form a special class in such rings. We will study such rings.

A ring R is called a left(right) π-V-ring if for every simple left(right)

R-module M , the injective hull E(M) is of finite length. Let n be a

positive integer. A ring R is called a left(right) n-V-ring if, for every

simple left(right) R-module M , the length of E(M) is less than or

equal to n. Michler and Villamayor[4] proved that R is a left V-ring

if and only if every left R-module has the property that zero is an in-

tersection of maximal submodules. We give a similar characterization

for a left π-V-ring.
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Theorem 1. [3] The following conditions are equivalent for a ring

R:

(1) R is a left π-V-ring.

(2) Every left R-module M of finite length has an injective hull of

finite length.

(3) For every left R-module M , the intersection of all submodules

N with LeR(M/N) < ∞ is zero.

Proof. (1) ⇒ (2) Assume that R is a left π-V-ring. Let M be

a left R-module of finite length. Then M is Artinian and Noetherin.

U1⊕U2 ⊕· · ·⊕Uk≤eM where Ui is uniform. It suffices E(Ui) is finite

length. Let A be a simple submodule of Ui. Then E(A) = E(Ui) is

of finite length.

(2) ⇒ (1) Let M be a simple module. Then E(M) is of finite

length.

(1) ⇒ (3) Let Ω denote an irredundant set of representatives of

the simple left R-modules. C = ⊕T∈ΩE(T ) is a cogenerator. Let

M be a nonzero left R-module. Then there exists an embedding

f : M →
∏

α∈A Cα for some index set A where Cα = C . For T ∈ Ω,

let Pα,T be the projection from
∏

α∈A Cα to the summand E(T ) of

Cα. Since E(T ) is of finite length by hypothesis, M/Ker(Pα,T f) is of

finite length. Since
⋂

α∈A,T∈Ω
Ker(Pα,T f) = Ker(f) = 0, condition

(3) is satisfied.

(3) ⇒ (1) Let T be a simple left R-module. By hypothesis, the in-

tersection of submodules N of the module E(T ) with LeR(E(T )/N) <

∞ is zero. Hence there exists a submodule U of E(T ) such that

E(T )/N is of finite length and T ∩ U = 0. Since E(T ) is a essential

extension of T , this implies U = 0. Hence E(T ) is of finite length.

�
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A ring S is called a finite normalizing extension of a ring R if R

is a subring of S and S =
∑k

i=1
aiR with aiR = Rai for each i. A

ring S is called an excellent extension of R if S is a free normalizing

extension of R with a basis that includes 1 and S is R-projective; that

is, if N is an S-submodule of MS , the condition that NR is a direct

summand of MR implies that NS is a direct summand of MS .

Let S be a finite normalizing extension of R. If T is a subring of

S such that R ⊂ T ⊂ S, then T is called an intermediate normalizing

extension of R.

A short exact sequence 0 → A
ϕ
−→ B → C → 0 is the category

of right R-modules is said to be pure(exact) if 0 → A
⊗

R M →

B
⊗

R M → C
⊗

R M → 0 is an exact sequence (of abelian groups)

for any left R-module M . If this is the case, we say that ϕ(A) is a

pure submodule of B (or that B is a pure extension of ϕ(A)).

Theorem 2. Let S be a finite normalizing extension of R and T

be an intermediate normalizing extension of R such that TT is a pure

submodule of ST . If R is a left π-V-ring, then T is a left π-V-ring.

Proof. By hypothesis, there is a finite set {a1, a2, · · · , ak} of el-

ements of S such that S =
∑k

i=1
aiR and aiR = Rai for each i. It

is sufficient to show that for every left T -module M , the intersection

of all T -submodules N with LeR(M/N) < ∞ is zero. Let M be

a nonzero left T -module and let N be an R-submodule of S
⊗

T M

with LeR(S
⊗

T M)/N = m < ∞ and LeR(S
⊗

T M/a−1

i N) < ∞

where a−1

i N = {m ∈ S
⊗

T M | aim ∈ N}. Let b(N) =
⋂n

i=1
a−1

i N .

LeR(S
⊗

T M/b(N)) < ∞[3]. b(N) is an S-submodule of S
⊗

T M

contained in N . b(N) is a T -submodule of M [3]. LeR(M/b(N)) < ∞.

Since R is a left π-V-ring, the intersection of R-submodules N of

M with LeR(M/N) < ∞ is zero. Therefore the intersection of T -
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submodule N ′ of M with LeR(M/N ′) < ∞ is zero. �

Theorem 3. Let S be a finite normalizing extension of a ring R

and R ⊂ T ⊂ S be an intermediate normalizing extension of R such

that TT is a pure submodule of ST . If S is a left π-V-ring, then T is

a left π-V-ring.

Proof. By theorem 1.1, it is suffices to prove that for any left T -

module M , the intersection of all T -submodule N with LeT (M/N) <

∞ is zero. Let M be a nonzero T -module. By hypothesis, M can be

viewed as an T -submodule of S
⊗

T M . Let L be an S-submodule of

S
⊗

T M with LeS(S
⊗

T M/L) < ∞. By [2], LeT (S
⊗

T M/L) < ∞.

Hence LeT (M/M ∩ L) < ∞.

Since S is a left π-V-ring, the intersection of S-submodules L of

S
⊗

T M with LeT (S
⊗

T M/L) < ∞ is zero. Therefore the intersec-

tion of T -submodules N of M with LeT (M/N) < ∞ is zero. �

Corollary 4. Let S be a finite normalizing extension of a ring

R such that RR is a pure submodule of SR. If S is a left π-V-ring,

then R is a left π-V-ring.

A ring S is a free normalizing extension of R with a basis that

includes 1; that is, there is a finite set {a1, · · · , an} ⊆ S such that

a1 = 1, S = Ra1 + · · · + Ran, aiR = Rai for all i = 1, 2, · · · , n and S

is free with basis {a1, a2, · · · , an} as both a right and left R-module.

Corollary 5. If S is a free normalizing extension of R, then S is

π-V-ring if and only if R is a π-V-ring.

Proof. Since S is a free normalizing extension of R, RR is pure

in SR and RR is pure in RS. By corollary 4, R is a left and right

π-V-ring.

The converse follows from theorem 2. �
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