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ON AN R-E-KKM THEOREM AND ITS APPLICATIONS

Won Kyu Kim*

Abstract. In this paper, we first introduce an R-E-KKM map in
the E-convex settings, and next we prove an R-E-KKM theorem
which generalizes the KKM theorem and the best proximity theo-
rem simultaneously. As applications, a best proximity theorem and
a fixed point theorem in E-convex sets are given.

1. Introduction

In a recent paper [5], Raj and Somasundaram introduce an R-KKM
map which extends the notion of KKM maps in best proximity settings,
and obtain the finite intersection theorem. As applications, they prove
the existence of a best proximity point which is an extended version of
the Fan-Browder fixed point theorem in a normed linear space. Recently,
in [3], the author introduces a generalized E-KKM map using the E-
convexity, and proves the finite intersection theorem for a generalized
E-KKM map and fixed point theorems as applications.

In this paper, combining those two concepts in [3, 5], we first intro-
duce the R-E-KKM map which generalizes the classical KKM map and
R-KKM map simultaneously in the E-convex settings. Next, we prove
an R-E-KKM theorem which generalizes the classical KKM Theorem
and the best proximity theorem simultaneously. As applications, a best
proximity theorem and a fixed point theorem in E-convex sets are given.
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2. Preliminaries

We begin with some notations and definitions. Let X be a nonempty
subset of a Hausdorff topological vector space Y . We shall denote by 2X

the family of all subsets of X, and for any nonempty subset A of Y , by
coA the convex hull of A in Y . We shall say A is compactly closed if for
each compact subset K in X, A ∩K is closed in X. When a multimap
T : X → 2Y is given, we shall denote T−1(y) := {x ∈ X | y ∈ T (x)} for
each y ∈ Y . Denote by [0, 1]n the Cartesian product of n unit intervals
[0, 1] × · · · × [0, 1], and denote the unit simplex in [0, 1]n by ∆n−1, and
simply denote λ = (λ1, . . . , λn) ∈ ∆n−1 with Σn

i=1λi = 1. Recall that
a set X is said to be E-convex [6] with respect to a map E : Y → Y if
there is a mapping E : Y → Y such that λE(x) + (1− λ)E(y) ∈ X for
each x, y ∈ X and λ ∈ [0, 1].

Let A and B be nonempty subsets of a normed linear space (X, || · ||).
We define a metric d on X by d(x, y) := ||x− y|| for each x, y ∈ X; and
for each x ∈ A, we denote d(x,B) := infy∈B d(x, y) and dist(A,B) :=
infx∈A d(x,B). Then the pair (A,B) is said to be E-proximal if for each
x ∈ A, there exists y ∈ B such that d(E(x), E(y)) = dist(A,B). Then,
it is clear that (A,A) is an E-proximal pair.

From now on, we shall assume that (X, || · ||) is a normed linear space
equipped with a given map E : X → X.

Now we first introduce the general notion of R-E-KKM maps which
fit into the generalized KKM theorem for best proximity point setting
as follows:

Definition 2.1. Let (A,B) be a nonempty pair of a normed linear
space X with a map E : X → X. A multimap T : A → 2B is called a
generalized R-E-KKM map (simply, R-E-KKM map) on A if for any
finite subset {x1, . . . , xn} ⊆ A, there exists a finite subset {y1, . . . , yn} ⊆
B such that

||E(xi)− E(yi)|| = dist(A,B) for each i = 1, . . . , n; and

co
({E(yi1), . . . , E(yik)}) ⊆

k⋃

j=1

T (xij )

for any subset {yi1 , . . . , yik} ⊆ {y1, . . . , yn} (1 ≤ k ≤ n).

Remark 2.2. If E is the identity map on X, then an R-E-KKM
map is a generalization of R-KKM maps in [5], and if A = B, then
an R-E-KKM map reduces to the generalized E-KKM map in [3] since
E(xi) = E(yi) for each i = 1, . . . , n. Furthermore, if A = B and E is the
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identity map on X, then an R-E-KKM map reduces to the generalized
KKM map in [2]. When A = B and E is the identity map on X, and if
we take xi = yi for each i = 1, . . . , n, then the R-E-KKM map reduces
to a KKM map in [4].

Now we shall give an example that there exists an R-E-KKM map
which is not an E-KKM map:

Example 2.3. Let X = R, A = [0, 2], and B = [0, 2]. Let E : X →
X be a mapping on X defined by

E(x) :=





x, for each 0 ≤ x ≤ 1;
2− x, for each 1 < x ≤ 2;

0, for each x ∈ X \A;

and the multimap T : A → 2B be defined by

T (x) :=

{
[0, 1 + x], for each 0 ≤ x ≤ 1;

[1, x], for each 1 < x ≤ 2.

Then, for each x ∈ (1, 2], E(x) = 2 − x /∈ T (x) = [1, x] so that T
can not be an E-KKM map on A. Now we show that T is an R-E-
KKM map on A. Indeed, for any finite set {x1, . . . , xn} ⊆ A, we shall
show that there exists a finite set {y1, . . . , yn} ⊆ B such that for any
subset {yi1 , . . . , yik} ⊆ {y1, . . . , yn} (1 ≤ k ≤ n), we have that for each
i = 1, . . . , n, ||E(xi)−E(yi)|| = dist(A,B) = 0, and

co({E(yi1), . . . , E(yik)}) ⊆
k⋃

j=1

T (xij ).

First, in case of 1 < xi ≤ 2 for each 1 ≤ i ≤ n, if we take
yi := 2 − xi for each 1 ≤ i ≤ n, then for any subset {yi1 , . . . , yik} ⊆
{y1, . . . , yn} (1 ≤ k ≤ n), we have that for each i = 1, . . . , n,

||E(xi)− E(yi)|| = ||(2− xi)− yi|| = dist(A,B) = 0,

and

co({E(yi1), . . . , E(yik)}) ⊆ [0, 1] ⊆
k⋃

j=1

T (yij ) =
k⋃

j=1

[0, 1 + (2− xik)];

so that T is an R-E-KKM map on A. Next, in case of 0 ≤ xi ≤ 1 for
some 1 ≤ i ≤ n, we should take yi := xi for such i; and in case of
1 < xj ≤ 2 for some 1 ≤ j ≤ n, then we should take yj := 2− xj for
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such j. Then, for any subset {yi1 , . . . , yik} ⊆ {y1, . . . , yn} (i ≤ k ≤ n),
we have that for each i = 1, . . . , n,

||E(xi)−E(yi)|| = dist(A,B) = 0,

and

co({E(yi1), . . . , E(yik)}) ⊆ [0, 1] ⊆
k⋃

j=1

T (yij );

so that T is an R-E-KKM map on A.

3. An R-E-KKM theorem and its applications

Now we begin with the following

Theorem 3.1. Let (A,B) be a nonempty pair of a normed linear
space X with a map E : X → X, and T : A → 2B be an R-E-KKM
map on A. If T (x) is finitely closed (i.e., for each finite dimensional
subspace L in X, T (x) ∩ L is closed in the Euclidean topology in L)
for each x ∈ A. Then the family of sets {T (x) | x ∈ A} has the finite
intersection property. Furthermore, if A is E-convex, then for any finite
subset {x1, . . . , xn} ⊆ A, there exist x̂ ∈ A and ŷ ∈ ⋂n

i=1 T (xi) such
that ||x̂− ŷ|| = dist(A,B).

Proof. For any finite subset {x1, . . . , xn} ⊆ A, we first show that⋂n
i=1 T (xi) 6= ∅. Since T is an R-E-KKM map on A, there exists a

finite subset {y1, . . . , yn} ⊆ B with

||E(xi)− E(yi)|| = dist(A,B) for each i = 1, . . . , n,

such that for any subset {yi1 , . . . , yik} ⊆ {y1, . . . , yn} (1 ≤ k ≤ n),

co({E(yi1), . . . , E(yik)}) ⊆
k⋃

j=1

T (xij )

holds, and in particular, co
({E(y1), . . . , E(yn)}) ⊆ ⋃n

i=1 T (xi).
Now we consider the (n − 1)-simplex ∆n−1 with the vertices e1 =

(1, 0, · · · , 0), e2 = (0, 1, 0, · · · , 0), · · · , en = (0, 0, · · · , 1); and define a
continuous map f : ∆n−1 → X by

f(Σn
i=1λiei) := Σn

i=1λiE(yi), for each (λ1, . . . , λn) ∈ ∆n−1.

Since f(∆n−1) = co({E(y1), . . . , E(yn)}) is a finite dimensional subset
of Y and T (xi) is nonempty finitely closed in Y , each f−1(T (xi)) is a
nonempty closed subset of ∆n−1. Therefore, we consider the family of
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nonempty n closed subsets {Gi := f−1(T (xi)) | i = 1, 2, . . . , n} of ∆n−1,
and now we will show

⋂n
i=1 Gi 6= ∅. Since T is an R-E-KKM map, for

any indices 1 ≤ i1 < i2 < · · · < ik ≤ n,

f(Σk
j=1λijeij ) = Σk

j=1λijE(yij ) ⊆
k⋃

j=1

T (xij )

so that

Σk
j=1λijeij ∈ f−1(

k⋃

j=1

T (xij )) =
k⋃

j=1

f−1(T (xij ))

=
k⋃

j=1

Gij ⊆ ∆n−1.

Therefore, we can apply the KKM theorem [4] to the family of closed
subsets {Gi | 1 ≤ i ≤ n} of ∆n−1 so that we have

⋂n
i=1 Gi 6= ∅. Hence

∅ 6=
n⋂

i=1

Gi =
n⋂

i=1

f−1(T (xi)) = f−1
( n⋂

i=1

T (xi)
)

so that we have
⋂n

i=1 T (xi) 6= ∅.
Next, we assume that A is E-convex, then we shall show that for

a given finite subset {x1, . . . , xn} ⊆ A, there exist x̂ ∈ A and ŷ ∈⋂n
i=1 T (xi) such that ||x̂ − ŷ|| = dist(A, B). Indeed, if we let ê :=

Σn
i=1λ̂iei ∈

⋂n
i=1 Gi, then ŷ := f(ê) = Σn

i=1λ̂iE(yi) ∈
⋂n

i=1 T (xi) ⊆ B. If
we take x̂ := Σn

i=1λ̂iE(xi), then x̂ ∈ A since A is E-convex. Therefore,
we have

dist(A,B) ≤ dist
(
x̂,

n⋂

i=1

T (xi)
) ≤ ||x̂− ŷ||

= ||Σn
i=1λ̂iE(xi)− Σn

i=1λ̂iE(yi)||
≤ Σn

i=1λ̂i · ||E(xi)− E(yi)|| = dist(A,B)

which completes the proof. ¤

Remark 3.2.
(1) Theorem 3.1 generalizes both Theorem 3.1 in [3] and Theorem 3.1

in [5] in the following aspects:
(a) T is an R-E-KKM map which generalizes an R-KKM map in

[5] and generalized E-KKM map in [3] simultaneously;
(b) the pair (A,B) need not be proximal as in Theorem 3.1 [5];
(c) E need not be the identity map on X as in Theorem 3.1 [3].
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(2) In case of T (x̂) = B for x̂ ∈ X in the conclusion of Theorem 3.1,
since ŷ ∈ B = T (x̂), we have

dist(A,B) ≤ d(x̂, T (x̂)) ≤ d(x̂, ŷ) + d(ŷ, T (x̂))

= dist(A,B) + d(ŷ, T (x̂)) = dist(A,B)

so that we have d(x̂, T (x̂)) = dist(A,B), i.e., x̂ is the proximity
point for T .

(3) In Theorem 3.1, if we replace the finitely closed assumption on
T (x) with compactly closed assumption on T (x), then we can ob-
tain the same conclusion by slight modification of the above proof.

As a consequence of Theorem 3.1, we can obtain the following which
is a generalization of the KKM theorem in E-convex settings:

Theorem 3.3. Let (A,B) be a nonempty pair of a normed linear
space X with a map E : X → X, A an E-convex set, and T : A → 2B

be an R-E-KKM map. If T (x) is compactly closed for each x ∈ A, and
T (xo) is compact for some xo ∈ A, then

⋂
x∈A T (x) 6= ∅, and there

exist x̂ ∈ A and ŷ ∈ B such that ||x̂− ŷ|| = dist(A,B).

The following best proximity theorem, which includes the Fan-Browder
fixed point theorem [4] in non-compact E-convex sets in normed linear
spaces, can be a basic tool in proving many variational inequalities and
intersection theorems in E-convex settings:

Theorem 3.4. Let (A,B) be a nonempty E-proximal pair of a normed
linear space X with a map E : X → X, and let T : A → 2B be a mul-
timap satisfying the following:

(1) for each x ∈ A, T (x) is a compactly open proper subset of B;
(2) for each y ∈ B, T−1(y) is a nonempty E-convex subset of A;
(3) there exists an yo ∈ A such that B \ T (yo) is compact.

Then there is a best proximity point x̂ ∈ A such that

dist(x̂, T (x̂)) = dist(A, B).

Proof. By the assumption (1), each T (x) is a proper subset of B.
Consider a multimap S : A → 2B defined by

S(x) := B \ T (x) for each x ∈ A.

By the assumption (1), each S(x) is nonempty compactly closed in B,
and by the assumption (3), S(yo) is compact. Note that B =

⋃
x∈A T (x).



R-E-KKM Theorem and applications 111

In fact, for each y ∈ B, by the assumption (2), choose x ∈ T−1(y); then
y ∈ T (x). Therefore, B =

⋃
x∈A T (x) so that we have

⋂

x∈A

S(x) =
⋂

x∈A

(
B \ T (x)

)
= B \

⋃

x∈A

T (x) = ∅.

Therefore, by Theorem 3.3, S should not be an R-E-KKM map on A.
Therefore, there must exist a finite subset {x1, . . . , xm} ⊆ A such that
there exist {y1, . . . , ym} ⊆ B with ||E(xi) − E(yi)|| = dist(A,B) (1 ≤
i ≤ m), and

co({E(y1), . . . , E(ym)}) *
m⋃

i=1

T (xi). (∗)

Indeed, for given xi ∈ A (1 ≤ i ≤ m), since (A,B) is an E-proximal
pair, there exists yi ∈ B such that ||E(xi) − E(yi)|| = dist(A, B) for
each 1 ≤ i ≤ m. Then, the set {y1, . . . , ym} ⊆ B satisfies the condition
||E(xi)−E(yi)|| = dist(A,B) (1 ≤ i ≤ m). Since S is not an R-E-KKM
map on A, the formula (∗) should hold. Therefore, there exists a point
ŷ = Σm

i=1λiE(yi) ∈ co({E(y1), . . . , E(ym)}) with (λ1, . . . , λn) ∈ ∆n−1

such that

ŷ = Σm
i=1λiE(yi) /∈

m⋃

i=1

S(xi) =
m⋃

i=1

(
B \ T (xi)

)
= B \

m⋂

i=1

T (xi)

so that ŷ ∈ ⋂m
i=1 T (xi). Therefore, xi ∈ T−1(ŷ) for each i = 1, . . . ,m.

Since T−1(ŷ) is E-convex by the assumption (2), we have

E
(
T−1(ŷ)

) ⊆ co{E(
T−1(ŷ)

)} ⊆ T−1(ŷ).

If we take x̂ := Σm
i=1λiE(xi) ∈ T−1(ŷ) ⊆ A, then ŷ ∈ T (x̂) so that we

have
dist(A,B) ≤ dist(x̂, T (x̂)) ≤ ||x̂− ŷ||

= ||Σm
i=1λiE(xi)− Σn

i=1λiE(yi)||
≤ Σm

i=1λi · ||E(xi)−E(yi)|| = dist(A,B).
Therefore, dist(x̂, T (x̂)) = dist(A,B) which completes the proof. ¤

Remark 3.5. In Theorem 3.4, when B is a compact set, then each
T (x) is clearly open so that the assumption (3) is automatically satis-
fied. In this case, Theorem 3.4 generalizes the Fan-Browder fixed point
theorem in non-compact E-convex settings in normed linear spaces.

When A = B in Theorem 3.4, since (A, A) is clearly an E-proximal pair
of a normed linear space X, we can obtain the following fixed point
theorem
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Corollary 3.6. Let A be a nonempty subset of a normed linear
space X equipped with a map E : X → X, and let T : A → 2A be a
multimap satisfying the following:

(1) for each x ∈ A, T (x) is an open (proper) subset of A;
(2) for each y ∈ A, T−1(y) is a nonempty E-convex subset of A;
(3) there exists an yo ∈ A such that B \ T (yo) is compact.

Then there is a fixed point x̂ ∈ A for T , i.e., x̂ ∈ T (x̂).
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