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GALOIS ACTIONS OF A CLASS INVARIANT OVER
QUADRATIC NUMBER FIELDS WITH DISCRIMINANT

D ≡ 64 (mod 72)

Daeyeol Jeon*

Abstract. A class invariant is the value of a modular function that
generates a ring class field of an imaginary quadratic number field
such as the singular moduli of level 1. In this paper, we compute the
Galois actions of a class invariant from a generalized Weber function
g1 over imaginary quadratic number fields with discriminant D ≡
64 (mod 72).

1. Introduction

Let K be an imaginary quadratic number field with discriminant D
and the ring of integers O = Z[θ] where

θ :=

{ √
D
2 , if D ≡ 0 (mod 4);
−1+

√
D

2 , if D ≡ 1 (mod 4).

Then the theory of complex multiplication states that the modular in-
variant j(O) = j(θ) generates the ring class field HO over K with degree
[HO : K] = h(O), the class number of O, and the conjugates of j(θ) un-
der the action of Gal(HO/K) are singular moduli j(τ), where τ := τQ

is the Heegner point determined by Q(τQ, 1) = 0 for a positive definite
integral primitive binary quadratic forms

Q(x, y) = [a, b, c] = ax2 + bxy + cy2

with discriminant D = b2 − 4ac.
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In his Lehrbuch der Algebra [10], H. Weber calls the value of a mod-
ular function f(θ) a class invariant if we have

K(f(θ)) = K(j(θ)).

Despite a long history of the problem, one began to treat class in-
variants in a systemic and algorithmic way only after Shimura Reci-
procity Law [8] became available. The reciprocity law provides not
only a method of systematically determining whether f(θ) is a class
invariant but also a description of the Galois conjugates of f(θ) under
Gal(HO/K). This tool is well illustrated in several works by Alice Gee
and Peter Stevenhagen in [2, 3, 4, 9]. The author[5, 6, 7] compute the
Galois actions of certain class invariants over some cases of quadratic
number fields.

Gee determine the class invariants from a generalized Weber function
g1 by using the Shimura Reciprocity Law as follows:

Theorem 1.1. [3, p.73, Theorem 1] Let K be an imaginary quadratic
number field with discriminant D ≡ 64 (mod 72) and the ring of integers

O = Z[θ] where θ =
√

D
2 . Then ζ2

3ζ4g
2
1(θ) gives an integral generator for

the ring class field HO over K where ζn is a primitive n-th root of unity
for a positive integer n.

In this paper, we compute the Galois actions of the class invariant
ζ2
3ζ4g

2
1(θ) under Gal(HO/K).

2. Preliminary

Let Q0
D be the set of primitive quadratic forms and C(D) = Q0

D/Γ(1)
denote the form class group of discriminant D. Since Gal(HO/K) is
isomorphic to C(D), it suffices to compute the action of a primitive
quadratic form Q = [a, b, c] on the class invariant ζ2

3ζ4g
2
1(θ).

Theorem 2.1. [1, 2] Let Z[θ] be the ring of integers of an imaginary
quadratic number field K with discriminant D ≡ 0 (mod 4) and let Q =
[a, b, c] be a primitive quadratic form with discriminant D. Let θ =

√
D
2

and τQ = −b+
√

D
2a . Let M = M[a,b,c] ∈ GL2(Z/NZ) be given as follows:

(2.1) M ≡





(
a b

2
0 1

)
(mod prp) if p - a;(

− b
2
−c

1 0

)
(mod prp) if p | a and p - c;(

− b
2
−a − b

2
−c

1 −1

)
(mod prp) if p | a and p | c,
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where p runs over all prime factors of N and prp ||N . Then the Galois
action of the class of [a,−b, c] in C(D) with respect to the Artin map is
given by

f(θ)[a,−b,c] = fM (τQ)
for any modular function f of level N such that f(θ) ∈ HO. Here fM

denote the image of f under the action of M .

The action of M depends only on Mprp for all primes p|N where
Mprp ∈ GL2(Z/prpZ) is the reduction modulo prp of M . Every Mprp

with determinant x decomposes as Mprp = ( 1 0
0 x )

(
a b
c d

)
for some

(
a b
c d

) ∈
SL2(Z/prpZ). Since SL2(Z/prpZ) is generated by Sprp ≡ (

0 −1
1 0

)
and

Tprp ≡ ( 1 1
0 1 ), it suffices to find the action of ( 1 0

0 x )prp , Sprp and Tprp on
f for all p|N , where f is a modular function of level N whose Fourier
coefficients belong to Q(ζN ). For ( 1 0

0 x )prp , the action on f is given by
lifting the automorphism of Q(ζN ) determined by

ζprp 7→ ζx
prp and ζqrq 7→ ζqrq

for all prime factors q|N with q 6= p. In order that the actions of the
matrices at different primes commute with each other, we lift Sprp and
Tprp to matrices in SL2(Z/NZ) such that they reduce to the identity
matrix in SL2(Z/qrqZ) for all q 6= p.

The Dedekind-eta function

η(z) = q1/24
∞∏

n=1

(1− qn), with q = e2πiz

is holomorphic and non-zero for z in the complex upper half plane H
and ∆(z) = η24(z) is modular form of weight 12 with no poles or zeros
on H. Then we have generalized Weber functions as follows:

(2.2)

g0(z) =
η( z

3)
η(z)

, g1(z) = ζ−1
24

η( z+1
3 )

η(z)
, g2(z) =

η( z+2
3 )

η(z)
, g3(z) =

√
3
η(3z)
η(z)

.

Note that the functions in (2.2) are modular of level 72. For the
generating matrices S, T ∈ SL2(Z) given by S =

(
0 −1
1 0

)
and T = ( 1 1

0 1 ) ,

the transformation rules η ◦ S(z) =
√−izη(z) and η ◦ T (z) = ζ24η(z)

hold. Hence

(g0, g1, g2, g3) ◦ S = (g3, ζ
−2
24 g2, ζ

2
24g1, g0),(2.3)

(g0, g1, g2, g3) ◦ T = (g1, ζ
−2
24 g2, g0, ζ

2
24g3).
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3. Results

In this section, we compute the action of a primitive quadratic form
[a,−b, c] on the class invariant ζ2

3ζ4g
2
1(θ). For that we need to find the

action of Mm ∈ GL2(Z/mZ) with m = 8, 9. Combining Lemma 6 of [2]
and the transformation rule (2.3), we obtain the following:

Lemma 3.1. The actions of ( 1 0
0 x )m, Sm and Tm (m = 8, 9) on g2

i
(i = 0, 1, 2, 3) are given by

g2
0 g2

1 g2
2 g2

3

( 1 0
0 x )8 g2

0 g2
1 g2

2 g2
3

S8 −g2
0 −g2

1 −g2
2 −g2

3

T8 −g2
0 −g2

1 −g2
2 −g2

3

( 1 0
0 x )9, x = −3k + 1 g2

0 ζ2k
3 g2

1 ζk
3 g2

2 g2
3

( 1 0
0 x )9, x = −3k − 1 g2

0 ζ2k
3 g2

2 ζk
3 g2

1 g2
3

S9 −g2
3 ζ3g

2
2 ζ2

3g2
1 −g2

0

T9 −g2
1 ζ3g

2
2 −g2

0 ζ2
3g2

3

Theorem 2.1 gives a matrix M ∈ GL2(Z/72Z) that satisfies

ζ2
3ζ4g

2
1(θ)

[a,−b,c] = (ζ2
3ζ4g

2
1)

M (τQ).

Also
(ζ2

3ζ4g
2
1)

M = (ζ2
3 (ζ4g

2
1)

M8)M9 .

By Lemma 3.1, we have

(ζ4g
2
1)

M8 = uµ4g
2
1,

where u = (−1)a+ b−2
2 and µ4 = ζ

a+(a+1)( b2

4
+c)

4 . Using this, together with
Lemma 3.1, we have the following theorems.

Theorem 3.2. Let D ≡ 64 (mod 72) be a discriminant of an order

O = [θ, 1] in an imaginary quadratic field. Let θ =
√

D
2 , τQ = −b+

√
D

2a ,

u = (−1)a+ b−2
2 and µ4 = ζ

a+(a+1)( b2

4
+c)

4 . If Q = [a, b, c] is a reduced prim-
itive quadratic form with discriminant D, then the action of [a,−b, c] on
ζ2
3ζ4g

2
1(θ) is as follows:

(1) The case 3 - a.

a) If b ≡ 1 (mod 3), then ζ2
3ζ4g

2
1(θ)

[a,−b,c] is given by the following
table:

b ≡ 1 (mod 9) b ≡ 4 (mod 9) b ≡ 7 (mod 9)
a ≡ 1 (mod 9) −uζ3µ4g

2
0(τQ) −uµ4g

2
0(τQ) −uζ2

3µ4g
2
0(τQ)

a ≡ 2 (mod 9) −uζ2
3µ4g

2
0(τQ) −uµ4g

2
0(τQ) −uζ3µ4g

2
0(τQ)
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a ≡ 4 (mod 9) −uζ3µ4g
2
0(τQ) −uµ4g

2
0(τQ) −uζ2

3µ4g
2
0(τQ)

a ≡ 5 (mod 9) −uζ2
3µ4g

2
0(τQ) −uµ4g

2
0(τQ) −uζ3µ4g

2
0(τQ)

a ≡ 7 (mod 9) −uζ3µ4g
2
0(τQ) −uµ4g

2
0(τQ) −uζ2

3µ4g
2
0(τQ)

a ≡ 8 (mod 9) −uζ2
3µ4g

2
0(τQ) −uµ4g

2
0(τQ) −uζ3µ4g

2
0(τQ)

b) If a + b ≡ 1 (mod 3), then ζ2
3ζ4g

2
1(θ)

[a,−b,c] is given by the fol-
lowing table:

b ≡ 0 (mod 9) b ≡ 3 (mod 9) b ≡ 6 (mod 9)
a ≡ 1 (mod 9) uζ2

3µ4g
2
1(τQ) uζ3µ4g

2
1(τQ) uµ4g

2
1(τQ)

a ≡ 4 (mod 9) uζ3µ4g
2
1(τQ) uµ4g

2
1(τQ) uζ2

3µ4g
2
1(τQ)

a ≡ 7 (mod 9) uµ4g
2
1(τQ) uζ2

3µ4g
2
1(τQ) uζ3µ4g

2
1(τQ)

b ≡ 2 (mod 9) b ≡ 5 (mod 9) b ≡ 8 (mod 9)
a ≡ 2 (mod 9) uζ3µ4g

2
1(τQ) uζ2

3µ4g
2
1(τQ) uµ4g

2
1(τQ)

a ≡ 5 (mod 9) uζ2
3µ4g

2
1(τQ) uµ4g

2
1(τQ) uζ3µ4g

2
1(τQ)

a ≡ 8 (mod 9) uµ4g
2
1(τQ) uζ3µ4g

2
1(τQ) uζ2

3µ4g
2
1(τQ)

c) If b 6≡ 1 (mod 3) and a + b 6≡ 1 (mod 3), then ζ2
3ζ4g

2
1(θ)

[a,−b,c] is
given by the following table:

b ≡ 2 (mod 9) b ≡ 5 (mod 9) b ≡ 8 (mod 9)
a ≡ 1 (mod 9) uµ4g

2
2(τQ) uζ2

3µ4g
2
2(τQ) uζ3µ4g

2
2(τQ)

a ≡ 4 (mod 9) uζ3µ4g
2
2(τQ) uµ4g

2
2(τQ) uζ2

3µ4g
2
2(τQ)

a ≡ 7 (mod 9) uζ2
3µ4g

2
2(τQ) uζ3µ4g

2
2(τQ) uµ4g

2
2(τQ)

b ≡ 0 (mod 9) b ≡ 3 (mod 9) b ≡ 6 (mod 9)
a ≡ 2 (mod 9) uµ4g

2
2(τQ) uζ3µ4g

2
2(τQ) uζ2

3µ4g
2
2(τQ)

a ≡ 5 (mod 9) uζ2
3µ4g

2
2(τQ) uµ4g

2
2(τQ) uζ3µ4g

2
2(τQ)

a ≡ 8 (mod 9) uζ3µ4g
2
2(τQ) uζ2

3µ4g
2
2(τQ) uµ4g

2
2(τQ)

(2) The case 3|a and 3 - c.
a) If b ≡ 2 (mod 3), then ζ2

3ζ4g
2
1(θ)

[a,−b,c] is given by the following
table:
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b ≡ 2 (mod 9) b ≡ 5 (mod 9) b ≡ 8 (mod 9)
c ≡ 1 (mod 9) uζ2

3µ4g
2
3(τQ) uµ4g

2
3(τQ) uζ3µ4g

2
3(τQ)

c ≡ 2 (mod 9) uζ3µ4g
2
3(τQ) uµ4g

2
3(τQ) uζ2

3µ4g
2
3(τQ)

c ≡ 4 (mod 9) uζ2
3µ4g

2
3(τQ) uµ4g

2
3(τQ) uζ3µ4g

2
3(τQ)

c ≡ 5 (mod 9) uζ3µ4g
2
3(τQ) uµ4g

2
3(τQ) uζ2

3µ4g
2
3(τQ)

c ≡ 7 (mod 9) uζ2
3µ4g

2
3(τQ) uµ4g

2
3(τQ) uζ3µ4g

2
3(τQ)

c ≡ 8 (mod 9) uζ3µ4g
2
3(τQ) uµ4g

2
3(τQ) uζ2

3µ4g
2
3(τQ)

b) If b 6≡ 2 (mod 3) and b + c ≡ 0 (mod 3), then

b ≡ 1 (mod 9) b ≡ 4 (mod 9) b ≡ 7 (mod 9)
c ≡ 2 (mod 9) uζ3µ4g

2
2(τQ) uµ4g

2
2(τQ) uζ2

3µ4g
2
2(τQ)

c ≡ 5 (mod 9) uζ2
3µ4g

2
2(τQ) uζ3µ4g

2
2(τQ) uµ4g

2
2(τQ)

c ≡ 8 (mod 9) uµ4g
2
2(τQ) uζ2

3µ4g
2
2(τQ) uζ3µ4g

2
2(τQ)

c) If b + c ≡ 2 (mod 3), then

b ≡ 1 (mod 9) b ≡ 4 (mod 9) b ≡ 7 (mod 9)
c ≡ 1 (mod 9) uµ4g

2
1(τQ) uζ3µ4g

2
1(τQ) uζ2

3µ4g
2
1(τQ)

c ≡ 4 (mod 9) uζ3µ4g
2
1(τQ) uζ2

3µ4g
2
1(τQ) uµ4g

2
1(τQ)

c ≡ 7 (mod 9) uζ2
3µ4g

2
1(τQ) uµ4g

2
1(τQ) uζ3µ4g

2
1(τQ)

(3) The case 3|a and 3|c.
a) If b ≡ 1 (mod 9), then

ζ2
3ζ4g

2
1(θ)

[a,−b,c] =




−uµ4g

2
0(τQ) if c ≡ 0 (mod 9);

−uζ3µ4g
2
0(τQ) if c ≡ 3 (mod 9);

−uζ2
3µ4g

2
0(τQ) if c ≡ 6 (mod 9);

b) If b ≡ 8 (mod 9), then

ζ2
3ζ4g

2
1(θ)

[a,−b,c] =





uµ4g
2
3(τQ) if a ≡ 0 (mod 9);

uζ3µ4g
2
3(τQ) if a ≡ 3 (mod 9);

uζ2
3µ4g

2
3(τQ) if a ≡ 6 (mod 9);
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