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SEMI–COMPATIBILITY, COMPATIBILITY

AND FIXED POINT THEOREMS

IN FUZZY METRIC SPACE

Bijendra Singh* and Shishir Jain**

Abstract. The object of this paper is to introduce the concept of a
pair of semi-compatible self-maps in a fuzzy metric space to establish

a fixed point theorem for four self-maps. It offers an extension of Va-

suki [10] to four self-maps under the assumption of semi-compatibility

and compatibility, repsectively. At the same time, these results give

the alternate results of Grebiec [5] and Vasuki [9] as well.

1. Introduction

Zadeh’s [11] introduction of the notion of fuzzy set laid the foun-

dation of fuzzy mathematics. George and Veeramani [4] modified the

concept of fuzzy metric space introduced by Kramosil and Michalek

[6]. Vasuki [10] and Singh and Chauhan [8] introduced the concept

of R-weakly commuting and compatible maps, respectively, in fuzzy

metric space. Recently, Cho et al [2] initiated the concept of com-

patible maps of type (β) in fuzzy metric spaces by giving interesting

relationship of these type of mapping with compatible and compatible

of type (α) mappings.

In [3], Cho, Sharma and Sahu introduced the non-symmetrical con-

cept of semi-compatibility of maps in d-complete topological spaces.

They defined a pair of self-maps (S, T ) to be semi-compatible if the

condition (i) Sy = Ty implies STy = TSy and (ii) {Sxn} → x and
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{Txn} → x imply STxn → Tx, as n → ∞, hold. However, (ii) implies

(i), taking xn = y and x = Ty = Sy. So we define semi-compatibility

by the condition (ii) only in the setting of fuzzy metric space.

In this paper, the notions of weak-compatible and semi-compatible

maps in fuzzy metric space have been introduced by giving interesting

relationship of this type of maps with compatible and compatible of

type (α) and compatible of type (β) maps. Using these concepts, one

can obtain some generalized fixed point theorem which extends the

result of Vasuki [10] in the following ways:

(a) by increasing the number of self-maps from 2 to 4,

(b) by reducing the assumption of R-weakly commuting maps to

that of compatible or semi-compatible and weak-compatible maps

only.

2. Preliminaries

Definition 2.1. A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is

called a t-norm if ([0, 1], ∗) is an abelian topological monoid with unit

1 such that a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for a, b, c, d ∈ [0, 1].

Examples of t-norms are a ∗ b = ab and a ∗ b = min{a, b}.

Definition 2.2. ([9]) The 3-tuple (X,M, ∗) is called a fuzzy metric

space if X is an arbitrary set, ∗ is a continuous t-norm and M is a

fuzzy set in X2 × [0,∞) satisfying the following conditions: for all

x, y, z ∈ X and s, t > 0

(F.M-1) M(x, y, 0) = 0,

(F.M-2) M(x, y, t) = 1 for all t > 0 if and only if x = y,

(F.M-3) M(x, y, t) = M(y, x, t),

(F.M-4) M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s),

(F.M-5) M(x, y, ·) : [0,∞) → [0, 1] is left continuous,

(F.M-6) limt→∞ M(x, y, t) = 1.

Note that M(x, y, t) can be considered as the degree of nearness
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between x and y with respect to t. We identify x = y with M(x, y, t) =

1 for all t > 0. The following example shows that every metric space

induces a fuzzy metric space.

Example 2.1. ([4]) Let (X, d) be a metric space. Define a ∗ b =

min{a, b} and M(x, y, t) = t
t+d(x,y) for all x, y ∈ X and all t > 0.

Then (X,M, ∗) is a fuzzy metric space. It is called the fuzzy metric

space induced by the metric d.

Lemma 2.1. ([5]) For all x, y ∈ X, M(x, y, ·) is a non-decreasing

function.

Definition 2.3. ([5]) Let (X,M, ∗) be a fuzzy metric space.

A sequence {xn} in X is said to converge to a point x ∈ X if

limn→∞ M(xn , x, t) = 1 for all t > 0. Further, the sequence {xn}

is said to be a Cauchy sequence if limn→∞ M(xn, xn+p, t) = 1 for all

t > 0 and p > 0. The space is said to be complete if every Cauchy

sequence in X converges to a point in X.

3. Compatible maps

In this section, we give the concept of different types of compatible

maps and some properties of them for our main result.

Definition 3.1. ([10]) Two maps A and S from a fuzzy metric

space (X,M, ∗) into itself are said to be R-weakly commuting if there

exists a positive real number R such that for each x ∈ X

M(ASx, SAx,Rt) ≥ M(Ax, Sx, t)

for all t > 0.

Definition 3.2. ([7]) Two maps A and B from a fuzzy metric

space (X,M, ∗) into itself are said to be compatible if

limn→∞ M(ABxn , BAxn, t) = 1
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for all t > 0, whenever {xn} is a sequence such that

limn→∞ Axn = limn→∞ Bxn = x

for some x ∈ X.

Definition 3.3. ([1]) Two maps A and B from a fuzzy metric

space (X,M, ∗) into itself are said to be compatible of type (α) if

limn→∞ M(ABxn , BBxn , t) = 1

limn→∞ M(BAxn , AAxn , t) = 1

for all t > 0, whenever {xn} is a sequence such that

limn→∞ Axn = limn→∞ Bxn = x

for some x ∈ X.

Definition 3.4. ([2]) Two maps A and B from a fuzzy metric

space (X,M, ∗) into itself are said to be compatible of type (β) if

limn→∞ M(A2xn, B2xn, t) = 1

for all t > 0, whenever {xn} is a sequence such that

limn→∞ Axn = limn→∞ Bxn = x

for some x ∈ X.

Definition 3.5. Two maps A and B from a fuzzy metric space

(X,M, ∗) into itself are said to be weak-compatible if they commute

at their coincidence points, i.e., Ax = Bx implies ABx = BAx.

Definition 3.6. A pair (A,S) of self-maps of a fuzzy metric space

(X,M, ∗) is said to be semi-compatible if limn→∞ ASxn = Sx when-

ever {xn} is a sequence such that

limn→∞ Axn = limn→∞ Bxn = x ∈ X.
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It follows that (A,S) is semi-compatible and Ay = Sy then ASy =

SAy.

Remark 3.1. Let (A,S) be a pair of self-maps of a fuzzy metric

space (X,M, ∗). Then (A,S) is R-weakly commuting implies that

(A,S) is compatible, which implies that (A,S) is weak-compatible.

But the converse is not true. The following is an example of a pair of

self-maps which is weakly compatible, but not compatible. Hence it

is not R-weakly commuting.

Example 3.1. Let (X,M, ∗) be a fuzzy metric space, where X =

[0, 2], t-norm is defined by a ∗ b = min{a, b} for all a, b ∈ [0, 1] and

M(x, y, t) = e−
|x−y|

t for all x, y ∈ X and all t > 0. Define self-maps

A and S on X as follows:

Ax =

{

2 − x if 0 ≤ x < 1

2 if 1 ≤ x ≤ 2

Sx =

{

x if 0 ≤ x < 1

2 if 1 ≤ x ≤ 2

Take xn = 1 − 1
n
. Then xn → 1, xn < 1 and 2 − xn > 1 for all n.

Also Axn, Sxn → 1 and n → ∞. Now

M(ASxn, SAxn, t) = e−
|ASxn−SAxn|

t → e−
1
t 6= 1

as n → ∞. So A and S are not compatible. The set of coincident

points of A and S is [1, 2]. For any x ∈ [1, 2], Ax = Sx = 2 and

ASx = A(2) = 2 = S(2) = SAx. Thus A and S are weak-compatible

but not compatible.

Proposition 3.1. Let A and S be self-maps on a fuzzy metric

space (X,M, ∗). Assume that S is continuous. Then (A,S) is semi-

compatible if and only if (A,S) is compatible.

Proof. Consider a sequence {xn} in X such that {Axn} → u and

{Sxn} → u. Since S is continuous, we have SAxn → Su.
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Suppose that (A,S) is semi-compatible. Then

limn→∞ M(ASxn , Su,
t

2
) = 1

limn→∞ M(SAxn , Su,
t

2
) = 1.

Now

M(ASxn, SAxn, t) ≥ M(ASxn , Su,
t

2
) ∗ M(SAxn , Su,

t

2
).

Taking limit as n → ∞, we get

limn→∞ M(ASxn, SAxn, t) = 1.

Hence the pair (A,S) is compatible.

Conversely, suppose that (A,S) be compatible. Then for all t > 0

we have

limn→∞ M(ASxn , SAxn,
t

2
) = 1

limn→∞ M(SAxn, Su,
t

2
) = 1.

Now,

M(ASxn, Su, t) ≥ M(ASxn , SAxn,
t

2
) ∗ M(SAxn , Su,

t

2
).

Taking limit as n → ∞, we get

limn→∞ M(ASxn, Su, t) = 1.

Hence ASxn → Su, i.e., (A,S) is semi-compatible. �
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Proposition 3.2. Let A and S be continuous self-maps on a fuzzy

metric space (X,M, ∗). If (A,S) is semi-compatible, then (A,S) is

compatible of type (α).

Proof. Consider a sequence {xn} in X such that {Axn} → u

and {Sxn} → u. Since A and S are continuous, we have A2xn →

Au, S2xn → Su,ASxn → Au and SAxn → Su. Since (A,S) is semi-

compatible, we have ASxn → Su. Since the limit of the sequence is

unique, we have Au = Su. Thus

limn→∞ M(A2xn, Au,
t

2
) = 1

limn→∞ M(S2xn, Su,
t

2
) = 1

limn→∞ M(SAxn , Au,
t

2
) = 1

limn→∞ M(ASxn , Su,
t

2
) = 1

Now

M(A2xn, SAxn, t) ≥ M(A2xn, Au,
t

2
) ∗ M(SAxn , Au,

t

2
).

Taking limit as n → ∞, we get

limn→∞ M(A2xn, SAxn, t) = 1.

Again

M(S2xn, ASxn, t) ≥ M(S2xn, Su,
t

2
) ∗ M(ASxn , Su,

t

2
).

Taking limit as n → ∞, we get

limn→∞ M(S2xn, ASxn, t) = 1.

Thus the pair (A,S) is compatible of type (α). �
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Proposition 3.3. Let A and S be self-maps on a fuzzy metric

space (X,M, ∗). If S is continuous and (A,S) is compatible of type

(α), then (A,S) is semi-compatible.

Proof. Consider a sequence {xn} in X such that {Axn} → u and

{Sxn} → u. Since S is continuous, we have S2xn → Su. Since (A,S)

is compatible of type (α), we have M(S2xn, ASxn, t) → 1. Thus for

all t > 0

limn→∞ M(S2xn, Su,
t

2
) = 1

limn→∞ M(S2xn, ASxn,
t

2
) = 1.

Now

M(ASxn, Su, t) ≥ M(ASxn , S2xn,
t

2
) ∗ M(S2xn, Su,

t

2
).

Taking limit as n → ∞, we get

limn→∞ M(ASxn, Su, t) = 1.

Thus ASxn → Su and the pair (A,S) is semi-compatible. �

Proposition 3.4. Let A and S be continuous self-maps on a fuzzy

metric space (X,M, ∗). Then (A,S) is semi-compatible if and only if

(A,S) is compatible of type (β).

Proof. Consider a sequence {xn} in X such that {Axn} → u and

{Sxn} → u. Since A and S are continuous, we have A2xn → Au,

S2xn → Su and ASxn → Au. Thus for all t > 0

limn→∞ M(S2xn, ASxn,
t

2
) = 1

limn→∞ M(S2xn, Su,
t

2
) = 1.
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Suppose (A,S) is semi-compatible. Then ASxn → Su. So Au =

Su.

M(A2xn, S2xn, t) ≥ M(A2xn, Au,
t

2
) ∗ M(S2xn, Au,

t

2
)

= M(A2xn, Au,
t

2
) ∗ M(S2xn, Su,

t

2
).

Taking limit as n → ∞, we get

limn→∞ M(A2xn, S2xn, t) = 1.

Thus (A,S) is compatible of type (β).

Conversely, suppose (A,S) is compatible of type (β). Then we have

limn→∞ M(A2xn, S2xn,
t

4
) = 1.

Now

M(Au,Su, t) ≥ M(Au,A2xn,
t

2
) ∗ M(A2xn, Su,

t

2
)

≥ M(Au,A2xn,
t

2
) ∗ M(A2xn, S2xn,

t

4
) ∗ M(S2xn, Su,

t

4
).

Taking limit as n → ∞, we get

limn→∞ M(Au, Su, t) = 1

for all t > 0. Thus Au = Su. Now ASxn → Au. So (A,S) is

semi-compatible. �

The following is an example of a pair (S, T ) of self-maps, which

is semi-compatible, but not compatible. Further, it is shown that

the semi-compatibility of the pair (S, T ) need not imply the semi-

compatibility of (T, S).
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Example 3.2. Let X = [0, 1] and (X,M, t) be the induced fuzzy

metric space with M(x, y, t) = t
t+|x−y| . Define a self-map S on X as

follows:

Sx =











x if 0 ≤ x <
1

2

1 if x ≥
1

2

Let I be the identity map on X and xn = 1
2 − 1

n
. Then {Ixn} =

{xn} → 1
2 and {Sxn} → 1

2 6= S(1
2 ). Thus (I, S) is not semi-compatible

though it is compatible. For a sequence {xn} in X such that {xn} → x

and {Sxn} → x, we have {SIxn} = {Sxn} → x = Ix. Thus (S, I) is

semi-compatible.

Remark 3.2. The above example gives an important aspect of

semi-compatibility as the pair (I, S) is commuting, weakly commut-

ing, compatible, and weak-compatible, but it is not semi-compatible.

Example 3.3. Let (X,M, ∗) be the fuzzy metric space as defined

in Example 3.1. Define self-maps A and S on X as follows:

Ax =

{

2 if 0 ≤ x ≤ 1
x

2
if 1 < x ≤ 2

Sx =



















1 if 0 ≤ x < 1

2 if x = 1

x + 3

5
if 1 < x ≤ 2

and xn = 2− 1
2n

. Then we have S(1) = A(1) = 2 and S(2) = A(2) = 1.

SA(1) = AS(1) = 1 and SA(2) = AS(2) = 2. Hence Axn → 1 and

Sxn → 2 and SAxn → 1 as n → ∞.

Now

limn→∞ M(ASxn, Sy, t) = M(2, 2, t) = 1

limn→∞ M(ASxn, SAxn, t) = M(2, 1, t) =
t

1 + t
< 1.
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Hence (A,S) is semi-compatible but not compatible.

In [10], Vasuki proved the following theorem for R-weakly commut-

ing pair of self-maps.

Theorem 3.5. ([10]) Let f and g be R-weakly commuting self-

maps on a complete fuzzy metric space (X,M, ∗) such that

M(fx, fy, t) ≥ r(M(gx, gy, t)),

where r : [0, 1] → [0, 1] is a continuous function such that r(t) > t for

each 0 < t < 1. If f(X) ⊂ g(X) and either f or g is continuous then

f and g have a unique common fixed point.

4. Main results

Theorem 4.1. Let A,B, S and T be self-maps on a complete fuzzy

metric space (X,M, ∗) satisfying

(1) A(X) ⊂ T (X), B(X) ⊂ S(X),

(2) one of A and B is continuous,

(3) (A,S) is semi-compatible and (B,T ) is weak-compatible,

(4) for all x, y ∈ X and t > 0

M(Ax,By, t) ≥ r(M(Sx, Ty, t)),

where r : [0, 1] → [0, 1] is a continuous function such that r(t) > t

for each 0 < t < 1. Then A,B, S and T have a unique common fixed

point.

Proof. Let x0 ∈ X be any arbitrary point for which there exist

x1, x2 ∈ X such that Ax0 = Tx1 and Bx1 = Sx2. Inductively con-

struct sequences {yn} and {xn} in X such that y2n+1 = Ax2n =

Tx2n+1, y2n+2 = Bx2n+1 = Sx2n+2 for n = 0, 1, 2, · · · . Using (4)

with x = x2n, y = x2n+1, we get

M(y2n+1, y2n+2, t) = M(Ax2n , Bx2n+1, t) ≥ r(M(Sx2n , Tx2n+1, t))

= r(M(y2n , y2n+1, t)) > M(y2n , y2n+1, t).
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Similarly,

M(y2n+2, y2n+3, t) > M(y2n+1, y2n+2, t).

In general,

M(yn+1, yn, t) > r(M(yn , yn−1, t)) > M(yn, yn−1, t).

Thus {M(yn+1, yn, t)} is an increasing sequence of positive real num-

bers in [0, 1], and tends to a limit l ≤ 1. If l < 1, then

limn→∞ M(yn+1, yn, t) = l > r(l) > l,

which is a contradiction. So l = 1.

Now for any positive integer p

M(yn, yn+p, t) ≥ M(yn , yn+1,
t

p
) ∗ M(yn+1, yn+2,

t

p
) ∗ · · ·

∗ M(yn+p−1, yn+p,
t

p
).

Taking limit as n → ∞,

limn→∞ M(yn, yn+p, t) ≥ 1 ∗ 1 ∗ · · · ∗ 1 = 1.

So

limn→∞ M(yn, yn+p, t) = 1.

Thus {yn} is a Cauchy sequence in X. By the completeness of X,

{yn} converges to z ∈ X. Hence

(5) Ax2n → z, Sx2n → z, Tx2n+1 → z, Bx2n+1 → z.

Case when A is continuous

Since A is continuous and (A,S) is semi-compatible, we get

(6) ASx2n → Az & ASx2n → Sz.
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Since the limit in fuzzy metric space is unique, we get

(7) Az = Sz.

Step I. We prove Az = z. Put x = z, y = x2n+1 in (4) and let

Az 6= z. Then

M(Az,Bx2n+1 , t) ≥ r(M(Sz, Tx2n+1 , t)) > M(Sz, Tx2n+1, t).

Taking limit as n → ∞ and using (5) and (7), we get

M(Az, z, t) ≥ r(M(Az, z, t)) > M(Az, z, t),

which is a contradiction and hence z = Az = Sz.

Step II. Since A(X) ⊂ T (X), there exists u ∈ X such that z =

Az = Tu. Put x = x2n, y = u in (4), we get

M(Ax2n , Bu, t) ≥ r(M(Sx2n , Tu, t)).

Taking limit as n → ∞ and using (5), we get

M(z,Bu, t) ≥ r(M(z, z, t)) = r(1) = 1,

which gives z = Bu = Tu and the weak-compatibility of (B,T ) gives

TBu = BTu, i.e., Tz = Bz.

Step III. Putting x = z, y = z in (4) and assuming Az 6= Bz, we

get

M(Az,Bz, t) ≥ r(M(Sz, Tz, t)) = r(M(Az,Bz, t))

> M(Az,Bzt),

which is a contradiction, and we get Az = Bz = z. Combining all the

results, we get

z = Az = Bz = Sz = Tz,
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i.e., z is a common fixed point of A,B, S and T .

Case when S is continuous

Since S is continuous and (A,S) is semi-compatible, we get

(8) SAx2n → Sz, S2x2n → Sz, ASx2n → Sz.

Thus

limn→∞ SAx2n = limn→∞ ASx2n = Sz.

Now we prove Sz = z. Putting x = Sx2n, y = x2n+1 in (4) and

assuming Sz 6= z, we get

M(ASx2n , Bx2n+1, t) ≥ r(M(SSx2n , Tx2n+1, t)).

Taking limit as n → ∞ and using (5) and (8), we get

M(Sz, z, t) ≥ r(M(Sz, z, t)) > M(Sz, z, t),

which is a contradiction and thus Sz = z.

Put x = z, y = x2n+1 in (4). Then we get

M(Az,Bx2n+1 , t) ≥ r(M(Sz, Tx2n+1 , t)).

Taking limit as n → ∞ and using (5), we get

M(Az, z, t) ≥ r(M(z, z, t)) = r(1) = 1,

which gives z = Az, and hence Sz = z = Az.

Also, it follows from Steps II and III that Bz = Tz = z. Hence we

get

z = Az = Bz = Sz = Tz.

So z is a common fixed point of A,B, S and T .

Uniqueness
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Let z1 be another common fixed point of A,B, S and T . Then

z1 = Az1 = Bz1 = Sz1 = Tz1 and z = Az = Bz = Sz = Tz.

Assuming z 6= z1 and using (4), we get

M(z, z1 , t) = M(Az,Bz1 , t) ≥ r(M(Sz, Tz1 , t))

= r(M(z, z1 , t)) > M(z, z1 , t),

which is a contradiction. Hence z = z1 and so z is the unique common

fixed point of A,B, S and T . �

Corollary 4.2. Let A,B, S and T be self-maps on a complete

fuzzy metric space (X,M, ∗) satisfying (1), (4) and

(9) (A,S) and (B,T ) are semi-compatible,

(10) one of A,B, S and T is continuous.

Then A,B, S and T have a unique common fixed point.

Proof. Since (B,T ) is semi-compatible, we get (B,T ) is weak-

compatible, etc. And the result follows from Theorem 4.1. �

If we take A = B = f and S = T = g in Theorem 4.1, then we get

the following.

Theorem 4.3. Let (X,M, ∗) be a complete fuzzy metric space,

and let f and g be semi-compatible self-maps on X satisfying the

condition:

M(fx, fy, t) ≥ r(M(gx, gy, t)),

where r : [0, 1] → [0, 1] is a continuous function such that t(t) > t for

each 0 < t < 1. If f(X) ⊂ g(X) and either f or g is continuous, then

f and g have a unique common fixed point.

Remark 4.1. This result proves that the theorem of Vasuki [10]

holds well even if the pair (f, g) is semi-compatible.
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Take S = I in Theorem 4.1. We have the following result for

three self-maps, none of which is continuous and just a pair of them

is needed to be weak-compatible only.

Corollary 4.4. Let A,B and T be self-maps on a complete fuzzy

metric space (X,M, ∗) satisfying

(11) A(X) ⊂ T (X) ,

(12) (B,T ) is weak-compatible,

(13) for all x, y ∈ X and t > 0

M(Ax,By, t) ≥ r(M(x, Ty, t)),

where r : [0, 1] → [0, 1] is a continuous function such that r(t) > t for

each 0 < t < 1. Then A,B and T have a unique common fixed point.

Again if we take S = T = I in Theorem 4.1 then the conditions (1),

(2) and (3) are satisfied trivially and we get the following important

result to be used for a unique common fixed point of a sequence of

self-maps.

Corollary 4.5. Let A and B be self-maps on a complete fuzzy

metric space (X,M, ∗) satisfying

M(Ax,By, t) ≥ r(M(x, y, t))

for all x, y ∈ X, where r : [0, 1] → [0, 1] is a continuous function such

that r(t) > t for each 0 < t < 1. Then A and B have a unique

common fixed point.

In Grebiek [5], the following version of Banach contraction theorem

has been established for fuzzy metric space.

Theorem 4.6. ([5]) Let (X,M, ∗) be a complete fuzzy metric

space where ∗ is a continuous t-norm and T a self-map on X such

that

M(Tx, Ty, t) ≥ M(x, y, t)
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for all x, y ∈ X and t > 0. Then T has a unique fixed point.

Remark 4.2. If we take A = B = T in Corollary 4.5, then we

have an alternate result of the above result of [5].

Theorem 4.7. ([9]) Let {Tn} be a sequence of self-maps on a

complete fuzzy metric space (X,M, ∗), where ∗ is a continuous t-

norm, such that for any two maps Ti and Tj , we have

M(Tm
i x, Tm

j y, αi,j t) ≥ M(x, y, t)

for all x, y ∈ X and some m and 0 < αi,j < 1, i, j = 1, 2, · · · . Then

{Tn} has a unique common fixed point.

The following is an alternate result of it.

Theorem 4.8. Let {An} be a sequence of self-maps on a complete

fuzzy metric space (X,M, ∗) such that every pair of consecutive maps

satisfies

M(Ami

i x,A
mi+1

i+1 y, t) ≥ ri(M(x, y, t))

for all x, y ∈ X, t > 0 and ri : [0, 1] → [0, 1] are continuous functions

such that ri(t) > t for each 0 < t < 1. Then {An} has a unique

common fixed point.

Proof. By Corollary 4.5, the pair (Ami

i , A
mi+1

i+1 ) has a unique com-

mon fixed point, say, u. Hence u = Ami

i u = A
mi+1

i+1 u. Now Ami

i (Aiu) =

Ai(A
mi

i u) = Aiu, i.e., Aiu is a fixed point of Ami

i . Similarly, Ai+1u

is a fixed point of A
mi+1

i+1 . Putting x = Aiu and y = u in the above

condition, we get

M(Ami

i Aiu,A
mi+1

i+1 u, ri(t)) ≥ ri(M(Aiu, u, t))

implies

M(Aiu, u, t) ≥ ri(M(Aiu, u, t)),
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which gives Aiu = u. Similarly, we show that Ai+1u = u. Thus

Aiu = Ai+1u = u. Therefore, u is a common fixed point of Ai and

Ai+1. If v is another common fixed point of Ai and Ai+1, then v is a

common fixed point of Ami

i and A
mi+1

i+1 , which is unique. Hence u = v.

Thus every pair of two consecutive maps has a unique common fixed

point. Let u1 be the common fixed point of the pair (A1, A2) and

u2 that of the pair (A2, A3). Putting x = u1, y = u2 in the given

contraction condition taking i = 1, we get

M(u1, u2, t) ≥ r1(M(u1 , u2, t)),

which implies u1 = u2. Thus each consecutive pair of {An} has the

same unique common fixed point, which must be the unique common

fixed point of {An}. �

Theorem 4.9. Let A,B, S and T be self-maps on a complete fuzzy

metric space (X,M, ∗) satisfying (1), (2), (4) and

(14) (A,S) is compatible and (B,T ) is weak-compatible.

Then A,B, S and T have a unique common fixed point.

Proof. In view of Proposition 3.1 and Theorem 4.1, it suffices to

prove the theorem when A is continuous. As in the proof of Theorem

4.1, construct a sequence {yn} which is a Cauchy sequence in X and

hence it converges to some z ∈ X and (1) is true. Since A is continuous

and (A,S) is compatible, we get

(15) ASx2n → Az, A2x2n → Sz, SAx2n → Az.

Step I. We now prove Az = z. Put x = Ax2n, y = x2n+1 in (4)

and assume that Az 6= z. Then

M(AAx2n , Bx2n+1, t) ≥ r(M(SAx2n , Tx2n+1, t))

> M(SAx2n, Tx2n+1, t).
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Taking limit as n → ∞ and using (15) and (5), we get

M(Az, z, t) > M(Az, z, t),

which is a contradiction. Hence z = Az.

Step II. Since A(X) ⊂ T (X), there exists u ∈ X such that z =

Az = Tu. Putting x = x2n, y = u in (4), we have

M(Ax2n , Bu, t) ≥ r(M(Sx2n , u, t)).

Taking limit as n → ∞ and using (5), we get

M(z,Bu, t) ≥ r(M(z, z, t)) = r(1) = 1.

Thus z = Bu = Tu. Since (B,T ) is weak-compatible, we get TBu =

BTu, i.e., Tz = Bz.

Step III. Since z = Bu and B(X) ⊂ S(X), there exists v ∈ X

such that z = Bu = Sv. Putting x = v, y = u in (4), we get

M(Av,Bu, t) ≥ r(M(Sv, Tu, t)) = r(M(z, z, t)) = r(1) = 1.

Thus Av = Bu and hence z = Sv = Av. Since (A,S) is semi-

compatible, we get ASv = SAv and Az = Sz = z.

Step IV. Putting x = z, y = z in (4) and assuming Az 6= Bz, we

get

M(Az,Bz, t) ≥ r(M(Sz, Tz, t)) = r(M(Az,Bz, t))

> M(Az,Bz, t),

which is a contradiction. So we get Az = Bz = z.

Combining all the results, we get z = Az = Bz = Sz = Tz, i.e., z

is a common fixed point of A,B, S and T , and the uniqueness follows

as in the proof of Theorem 4.1. �
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Corollary 4.10. Let A,B, S and T be self-maps on a complete

fuzzy metric space (X,M, ∗) satisfying (1), (4) and

(16) (A,S) and (B,T ) are compatible,

(17) one of A,B, S and T is continuous.

Then A,B, S and T have a unique common fixed point.

Proof. Since compatibility implies weak-compatibility, the proof

follows from Theorem 4.9. �

If we take A = B = f and S = T = g in Theorem 4.9, we get the

following.

Theorem 4.11. Let f and g be compatible self-maps on a com-

plete fuzzy metric space (X,M, ∗) satisfying

M(fx, fy, t) ≥ r(M(gx, gy, t)),

where r : [0, 1] → [0, 1] is a continuous function such that r(t) > t for

each 0 < t < 1. If f(X) ⊂ g(X) and either f or g is continuous, then

f and g have a unique common fixed point.

Remark 4.3. Theorem 4.11 generalizes Theorem of Vasuki [10] by

assuming only compatibility of the pair (f, g) in place of its being R-

weakly commuting. Thus Theorem 4.9 is a still better generalization

of a result of [10] for four self-maps.

Corollary 4.12. Let A,B, S and T be self-maps on a complete

fuzzy metric space (X,M, ∗) satisfying (1), (4) and

(18) (A,S) is compatible of type (α) and (B,T ) is weak-compatible,

(19) S is continuous.

Then A,B, S and T have a unique common fixed point.

Proof. The proof follows from Theorem 4.1 and Proposition 3.3. �
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Corollary 4.13. Let A,B, S and T be self-maps on a complete

fuzzy metric space (X,M, ∗) satisfying (1), (4) and

(20) (A,S) is compatible of type (β) and (B,T ) is weak-compatible,

(21) A and S are continuous.

Then A,B, S and T have a unique common fixed point.

Proof. The proof follows from Theorem 4.1 and Proposition 3.4. �

Taking A = I in Theorem 4.8, we have another result for three

self-maps, none of which are continuous and just a pair of them is

needed to be weak-compatible only.

Corollary 4.14. Let B,S and T be self-maps on a complete

fuzzy metric space (X,M, ∗) satisfying

(22) B(X) ⊂ S(X) and T is surjective,

(23) (B,T ) is weak-compatible,

(24) for all x, y ∈ X and t > 0,

M(x,By, t) ≥ r(M(Sx, Ty, t)),

where r : [0, 1] → [0, 1] is a continuous function such that r(t) > t for

each 0 < t < 1.

Then B,S and T have a unique common fixed point.
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