FINITE GROUP ACTIONS ON THE 3-DIMENSIONAL NILMANIFOLD

Daehwan Goo* and Joonkook Shin**

ABSTRACT. We study only free actions of finite groups G on the 3-dimensional nilmanifold, up to topological conjugacy which yields an infra-nilmanifold of type 2.

1. Introduction

Free actions of finite, cyclic and abelian groups on the 3-torus were studied in [4], [7] and [8], respectively. It is known [3, Proposition 6.1.] that there are 15 classes of distinct closed 3-dimensional manifolds M with a Nil-geometry up to Seifert local invariant. It is interesting that if a finite group acts freely on the 3-dimensional nilmanifold with the first homology \mathbb{Z}^2 , then it is cyclic [2]. Free actions of finite abelian groups on the 3-dimensional nilmanifold with the first homology $\mathbb{Z}^2 \oplus \mathbb{Z}_p$ were classified in [1]. All these works can be understood easily by the works of Bieberbach, L. Auslander and Waldhausen [5, 6, 10]. In this paper we study free actions of finite groups on the 3-dimensional nilmanifolds yielding an infra-nilmanifold of type 2 which includes Theorem 3.3 of [1] as corollary. We shall use all notations and most of the Introduction and Section 2 of [1] in our Introduction and Section 2.

Let \mathcal{H} be the 3-dimensional Heisenberg group; i.e., \mathcal{H} consists of all 3×3 real upper triangular matrices with diagonal entries 1. Thus

Received by the editors on August 25, 2005.

²⁰⁰⁰ Mathematics Subject Classifications: Primary 57S25, Secondary 57S17.

Key words and phrases: group actions, Heisenberg group, almost Bieberbach groups, affine conjugacy.

 \mathcal{H} is a simply connected, 2-step nilpotent Lie group, and it fits an exact sequence

$$1 \to \mathbb{R} \to \mathcal{H} \to \mathbb{R}^2 \to 1$$
,

where $\mathbb{R} = \mathcal{Z}(\mathcal{H})$, the center of \mathcal{H} . Hence \mathcal{H} has the structure of a line bundle over \mathbb{R}^2 . We take a left invariant metric coming from the orthonormal basis

$$\left\{ \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \right\}$$

for the Lie algebra of \mathcal{H} . This is, what is called, the Nil-geometry and its isometry group is $\text{Isom}(\mathcal{H}) = \mathcal{H} \rtimes O(2)$ [9]. All isometries of \mathcal{H} preserve orientation and the bundle structure.

We say that a closed 3-dimensional manifold M has a Nil-geometry if there is a subgroup π of Isom(\mathcal{H}) so that π acts properly discontinuously and freely with quotient $M = \mathcal{H}/\pi$. The simplest such a manifold is the quotient of \mathcal{H} by the lattice consisting of integral matrices. For each integer p > 0, let

$$\Gamma_p = \left\{ \begin{bmatrix} 1 & l & \frac{n}{p} \\ 0 & 1 & m \\ 0 & 0 & 1 \end{bmatrix} \middle| l, m, n \in \mathbb{Z} \right\}.$$

Then Γ_1 is the discrete subgroup of \mathcal{H} consisting of all integral matrices and Γ_p is a lattice of \mathcal{H} containing Γ_1 with index p. Clearly

$$H_1(\mathcal{H}/\Gamma_p; \mathbb{Z}) = \Gamma_p/[\Gamma_p, \Gamma_p] = \mathbb{Z}^2 \oplus \mathbb{Z}_p.$$

Note that these Γ_p 's produce infinitely many distinct nilmanifolds $\mathcal{N}_p = \mathcal{H}/\Gamma_p$ covered by \mathcal{N}_1 . In this paper, we shall find all possible finite groups acting freely on each \mathcal{N}_p yielding an infra-nilmanifold of type 2 in [1].

DEFINITION 1.1. Let groups G_i act on manifolds M_i , for i = 1, 2. The action (G_1, M_1) is topologically conjugate to (G_2, M_2) if there exists an isomorphism $\theta \colon G_1 \to G_2$ and a homeomorphism $h \colon M_1 \to M_2$ such that $h(g \cdot x) = \theta(g) \cdot h(x)$ for all $x \in M_1$ and all $g \in G_1$.

2. Free actions of finite groups G on the nilmanifold

In this section, we shall find all possible finite groups acting freely (up to topological conjugacy) on the 3-dimensional nilmanifold \mathcal{N}_p which yield an orbit manifold homeomorphic to \mathcal{H}/π , where

$$\pi = \langle t_1, t_2, t_3, \alpha \mid [t_2, t_1] = t_3^{2n}, \ [t_3, \alpha] = [t_3, t_1] = [t_3, t_2] = 1,$$
$$\alpha^2 = t_3, \ \alpha t_1 \alpha^{-1} = t_1^{-1}, \ \alpha t_2 \alpha^{-1} = t_2^{-1} \rangle,$$
$$\alpha = \left(\begin{bmatrix} 1 & 0 & -\frac{1}{4n} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right) \right).$$

This, as in other parts of calculations, was done by the program MATHEMATICA[11] and hand-checked.

The following proposition [1, Proposition 3.1.] is a working criterion for determining all normal nilpotent subgroups of π isomorphic to Γ_p .

PROPOSITION 2.1. Let N be a normal nilpotent subgroup of an almost Bieberbach group π and isomorphic to Γ_p . Then N can be represented by a set of generators

$$N = \langle t_1^{d_1} t_2^m t_3^{n_1}, t_2^{d_2} t_3^{n_2}, t_3^{\frac{2nd_1d_2}{p}} \rangle,$$

where d_1 , d_2 are divisors of p; $0 \le m < d_2$, $0 \le n_i < \frac{2nd_1d_2}{p}$ (i = 1, 2).

LEMMA 2.2. Let N be a normal nilpotent subgroup of an almost Bieberbach group π and isomorphic to Γ_p . Then N can be represented by one of the following sets of generators

by one of the following sets of generators
$$N_1 = \langle t_1^{d_1} t_2^m, \ t_2^{d_2}, \ t_3^{\frac{2nd_1d_2}{p}} \rangle,$$

$$N_2 = \langle t_1^{d_1} t_2^m, \ t_2^{d_2} t_3^{\frac{nd_1d_2}{p}}, \ t_3^{\frac{2nd_1d_2}{p}} \rangle,$$

$$\begin{split} N_3 &= \langle t_1^{d_1} t_2^m t_3^{\frac{nd_1d_2}{p}}, \ t_2^{d_2}, \ t_3^{\frac{2nd_1d_2}{p}} \rangle, \\ N_4 &= \langle t_1^{d_1} t_2^m t_3^{\frac{nd_1d_2}{p}}, \ t_2^{d_2} t_3^{\frac{nd_1d_2}{p}}, \ t_3^{\frac{2nd_1d_2}{p}} \rangle, \\ \text{where } d_1, \ d_2 \ \text{are divisors of } p; \ 0 \leq m < \bar{d} = (d_1, d_2) \ , \ \frac{pm}{d_1d_2} \in \mathbb{Z}. \end{split}$$

Proof. Let N be a normal nilpotent subgroup of π isomorphic to Γ_p . Then by Proposition 2.1, we have

$$N = \langle t_1^{d_1} t_2^m t_3^\ell, t_2^{d_2} t_3^r, t_3^{\frac{2nd_1d_2}{p}} \rangle, \quad \left(0 \le m < d_2, \ 0 \le \ell, r < \frac{2nd_1d_2}{p} \right).$$

Remark that we obtained the normalizer $N_{\text{Aff}(\mathcal{H})}(\pi)$ of π in [2]:

$$N_{\mathrm{Aff}(\mathcal{H})}(\pi) = \left\{ \left(\begin{bmatrix} 1 & \frac{r}{2} & * \\ 0 & 1 & \frac{s}{2} \\ 0 & 0 & 1 \end{bmatrix}, \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ T \right) \right) \ \middle| \ T \in \mathrm{GL}(2, \mathbb{Z}) \right\},$$

where $r, s \in \mathbb{Z}$.

Let \bar{d} be the greatest common divisor of d_1 and d_2 , denoted by $\bar{d} = (d_1, d_2)$. Then there exist $s, w \in \mathbb{Z}$ such that $m = \bar{d}s + w$, where $0 \le w < \bar{d}$. It is not hard to see

$$N \sim \langle \, t_1^{d_1} t_2^w t_3^{\ell'}, \, t_2^{d_2} t_3^r, \, t_3^{\frac{2nd_1d_2}{p}} \, \rangle$$

by using $N_{\text{Aff}(\mathcal{H})}(\pi)$.

Since N is a normal subgroup of π , the following two relations

$$\alpha(t_1^{d_1}t_2^mt_3^{\ell})\alpha^{-1} = t_1^{-d_1}t_2^{-m}t_3^{\ell} = (t_1^{d_1}t_2^mt_3^{\ell})^{-1}t_3^{\frac{2nd_1d_2}{p}x} \in N,$$

$$\alpha(t_2^{d_2}t_3^r)\alpha^{-1} = t_2^{-d_2}t_3^r = (t_2^{d_2}t_3^r)^{-1}t_3^{2r} = (t_2^{d_2}t_3^r)^{-1}t_3^{\frac{2nd_1d_2}{p}\frac{pr}{nd_1d_2}} \ \in N,$$

show that

$$x = \frac{pl}{nd_1d_2} - \frac{pm}{d_2} \in \mathbb{Z}, \quad \frac{pr}{nd_1d_2} \in \mathbb{Z}.$$

Since $0 \le \ell$, $r < \frac{2nd_1d_2}{p}$ by Proposition 2.1, we have $\ell = 0$ or $\frac{nd_1d_2}{p}$, and r = 0 or $\frac{nd_1d_2}{p}$.

Note that the relation

$$t_1(t_1^{d_1}t_2^mt_3^\ell)t_1^{-1} = (t_1^{d_1}t_2^mt_3^\ell)t_3^{\frac{2nd_1d_2}{p}(-\frac{pm}{d_1d_2})} \in N$$

shows $\frac{pm}{d_1d_2} \in \mathbb{Z}$. Therefore we have proved the lemma.

THEOREM 2.3. Let N be a normal nilpotent subgroup of an almost Bieberbach group π and isomorphic to Γ_p . Then there exist q affinely non-conjugate normal nilpotent subgroups N^j $(j=0,1,\cdots,q-1)$ of Γ_2 , where $q=(\bar{d},k)$, k can be obtained from p=kD and D is the least common multiple of d_1 and d_2 .

Proof. Let N and N' be normal nilpotent subgroups of π isomorphic to Γ_p whose sets of generators are

$$N = \langle t_1^{d_1} t_2^m t_3^{\ell}, t_2^{d_2} t_3^r, t_3^{\frac{2nd_1d_2}{p}} \rangle,$$

$$N' = \langle t_1^{d_1} t_2^{m'} t_3^{\ell'}, t_2^{d_2} t_3^{r'}, t_3^{\frac{2nd_1d_2}{p}} \rangle,$$

where $0 \le m, m' < \bar{d}, \ 0 \le \ell, r, \ell', r' < \frac{2nd_1d_2}{p}$ by Lemma 2.2. We want to show that if $m \ne m'$, then N is not affinely conjugate to N'.

Assume that $N \sim N'$. Then there exists

$$\mu = \left(\begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix}, \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) \right) \in N_{Aff(\mathcal{H})}(\pi_2)$$

satisfying either

$$\begin{array}{lll} (*) & \mu(t_1{}^{d_1}t_2{}^mt_3^\ell)\mu^{-1} = t_1^{d_1}t_2{}^{m'}t_3^{\ell'}, & \mu(t_2^{d_2}t_3^r)\mu^{-1} = t_2^{d_2}t_3^{r'}, \\ \text{or } (**) & \mu(t_1{}^{d_1}t_2{}^mt_3^\ell)\mu^{-1} = t_2^{d_2}t_3{}^{r'}, & \mu(t_2^{d_2}t_3^r)\mu^{-1} = t_1^{d_1}t_2{}^{m'}t_3^{\ell'}. \\ \text{From } (*), \text{ we obtain that } \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ c & 1 \end{bmatrix}, \text{ and } cd_1 = m' - m \neq 0. \\ \text{Since } d_1 \leq |c|d_1 = |m' - m| < \bar{d} \leq d_1, \text{ we have a contradiction.} \\ \text{However in } (**), \text{ we obtain the following relations} \end{array}$$

$$bd_2 = d_1$$
, $dd_2 = m'$, $ad_1 + bm = 0$, $cd_1 + dm = d_2$.

The relation $dd_2 = m' < d_2$ induces d = 0, m' = 0 and bc = 1. Therefore the relation $|a|d_1 = |m| < \bar{d} \le d_1$ implies m = 0, which is a contradiction. To complete the proof, we show that there exist q affinely non-conjugate normal nilpotent subgroups N^j $(j = 0, 1, \dots, q-1)$. By Lemma 2.2, we know that $\frac{pm}{d_1d_2} \in \mathbb{Z}$. Since $\bar{d} = (d_1, d_2)$ and p = kD, where D is the least common multiple of d_1 and d_2 , we have $\frac{pm}{d_1d_2} \in \mathbb{Z}$ if and only if $\frac{km}{d} \in \mathbb{Z}$. Let $q = (\bar{d}, k)$. Then $\frac{km}{d} \in \mathbb{Z}$ if and only if $\frac{k'm}{d'} \in \mathbb{Z}$, where k = qk', $\bar{d} = q\bar{d}'$, $(k', \bar{d}') = 1$. Therefore \bar{d}' is a divisor of m. Since $0 \le m < \bar{d} = q\bar{d}'$, we can get $m = 0, \bar{d}', \dots, (q-1)\bar{d}'$.

In the following theorem, we shall show when affine conjugacy occurs between 4 types of normal nilpotent subgroups N_i (i = 1, 2, 3, 4) in Lemma 2.2.

THEOREM 2.4. Let N_i (i = 1, 2, 3, 4) be a normal nilpotent subgroup of π and isomorphic to Γ_p . Then we have the following:

- (1) $N_1 \sim N_2$ if and only if m = 0, $d_1 = p$.
- (2) $N_1 \sim N_3$ if and only if $d_2 = p$.
- (3) $N_1 \sim N_4$ if and only if m = 0, $d_1 = d_2 = p$.
- (4) $N_2 \sim N_3$ if and only if m = 0, $d_1 = d_2$.
- (5) $N_2 \sim N_4$ if and only if $d_2 = p$.
- (6) $N_3 \sim N_4$ if and only if m = 0, $d_1 = p$.

Proof. (1) Suppose that N_1 is affinely conjugate to N_2 . Then there exists

$$\mu = \left(\begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix}, \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) \right) \in N_{Aff(\mathcal{H})}(\pi_2)$$

satisfying either

$$(*) \qquad \qquad \mu(t_1{}^{d_1}t_2{}^m)\mu^{-1} = t_1^{d_1}t_2{}^m, \quad \mu(t_2^{d_2})\mu^{-1} = t_2^{d_2}t_3^{\frac{nd_1d_2}{p}},$$

or

$$(**) \qquad \qquad \mu(t_1{}^{d_1}t_2{}^m)\mu^{-1} = t_2^{d_2}t_3^{\frac{n\,d_1\,d_2}{p}}, \quad \mu(t_2^{d_2})\mu^{-1} = t_1^{d_1}t_2{}^m.$$

From (*), we obtain that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, x = -\frac{d_1}{2p}, \text{ and } y = -\frac{m}{2p}.$$

Since $\mu \in N_{\text{Aff}(\mathcal{H})}(\pi_2)$, we have $2x = -\frac{d_1}{p} \in \mathbb{Z}$ and $2y = -\frac{m}{p} \in \mathbb{Z}$. Note that d_1, d_2 are divisors of p and $0 \le m < d$ by Lemma 2.2. Thus we have $d_1 = p$ and m = 0. Similar calculations in (**) induce $d_1 = d_2 = p$ and m = 0. Conversely, suppose that $d_1 = p$ and m = 0. Then $N_1 \sim N_2$ by using

$$\mu = \left(\begin{bmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \right) \in N_{Aff(\mathcal{H})}(\pi_2).$$

(4) Suppose that N_2 is affinely conjugate to N_3 . Note that

$$N_3 \sim \langle t_1^{d_1} t_2^m t_3^{-\frac{nd_1d_2}{p}}, t_2^{d_2}, t_3^{-\frac{2nd_1d_2}{p}} \rangle.$$

Then there exists

$$\mu = \left(\begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix}, \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) \right) \in N_{Aff(\mathcal{H})}(\pi_2)$$

satisfying either

$$\mu(t_1{}^{d_1}t_2{}^m)\mu^{-1}=t_1^{d_1}t_2{}^mt_3^{\frac{nd_1d_2}{p}},\quad \mu(t_2^{d_2}t_3^{\frac{nd_1d_2}{p}})\mu^{-1}=t_2^{d_2},$$
 or

$$(**) \qquad \mu(t_1{}^{d_1}t_2{}^m)\mu^{-1} = t_2^{d_2}, \quad \mu(t_2^{d_2}t_3^{\frac{nd_1d_2}{p}})\mu^{-1} = t_1^{d_1}t_2{}^mt_3^{-\frac{nd_1d_2}{p}}.$$

From (*), we obtain $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $x = \frac{d_1}{2p}$ and $y = \frac{m+d_2}{2p}$. Since $\mu \in N_{Aff(\mathcal{H})}(\pi_2)$, we have $2x = \frac{d_1}{p} \in \mathbb{Z}$ and $2y = \frac{m+d_2}{p} \in \mathbb{Z}$. Note that d_1 , d_2 are divisors of p and $0 \le m < d_2$. Thus we have $d_1 = d_2 = p$ and m = 0. However in (**), a similar calculation shows that $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $d_1 = d_2$ and m = 0. The converse is easy by using

$$\mu = \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right) \right) \in N_{Aff(\mathcal{H})}(\pi_2).$$

The other cases can be done similarly.

Note that π/N is abelian if and only if $N \supset [\pi_2, \pi_2] = \langle t_1^2, t_2^2, t_3^{2n} \rangle$. Thus we obtain the following result, which is the same as Theorem 3.3 of [1].

COROLLARY 2.5. The following table gives a complete list of all free actions (up to topological conjugacy) of finite abelian groups G on \mathcal{N}_p which yield an orbit manifold homeomorphic to \mathcal{H}/π .

AC classes of normal	nilpoent subgroups
$\frac{2n}{p} \in \mathbb{N}$	$N_1 = \langle t_1, \ t_2, \ t_3^{\frac{2n}{p}} \rangle$
$\frac{n}{p} \in \mathbb{N}, \ p \neq 1$	$N_2 = \langle t_1, \ t_2 t_3^{\frac{n}{p}}, \ t_3^{\frac{2n}{p}} \rangle$
	$N_3 = \langle t_1 t_3^{\frac{n}{p}}, \ t_2 t_3^{\frac{n}{p}}, \ t_3^{\frac{2n}{p}} \rangle$
$\frac{4n}{p} \in \mathbb{N}, \ p \in 2\mathbb{N}$	$L_1 = \langle t_1^2, \ t_2, \ t_3^{\frac{4n}{p}} \rangle$
$\frac{2n}{p} \in \mathbb{N}, \ p \in 2\mathbb{N} + 2$	$L_2 = \langle t_1^2, \ t_2 t_3^{\frac{2n}{p}}, \ t_3^{\frac{4n}{p}} \rangle$
$\frac{8n}{p} \in \mathbb{N}, \ p \in 4\mathbb{N}$	$N = \langle t_1^2, t_2^2, t_3^{\frac{8n}{p}} \rangle$
	$\frac{2n}{p} \in \mathbb{N}$ $\frac{n}{p} \in \mathbb{N}, \ p \neq 1$ $\frac{4n}{p} \in \mathbb{N}, \ p \in 2\mathbb{N}$ $\frac{2n}{p} \in \mathbb{N}, \ p \in 2\mathbb{N} + 2$

Proof. Let N be a normal nilpotent subgroup of π isomorphic to Γ_p with π/N abelian. Then by Lemma 2.2, we have

$$N = \langle t_1^{d_1} t_2^m t_3^{\ell}, t_2^{d_2} t_3^r, t_3^{\frac{2nd_1d_2}{p}} \rangle,$$

where d_1 , d_2 are divisors of p; $0 \le m < \bar{d} = (d_1, d_2)$, $\frac{pm}{d_1 d_2} \in \mathbb{Z}$.

Since $[\pi_2, \pi_2] = \langle t_1^2, t_2^2, t_3^{2n} \rangle \subset N$, we have (d_1, d_2) are (1, 1), (2, 1), (1, 2) and (2, 2). We shall deal only with the case $d_1 = d_2 = 1$, because the other cases can be done similarly.

Since $\bar{d} = (d_1, d_2) = 1$, we get m = 0 by Lemma 2.2. Therefore the possible normal nilpotent subgroups are

$$N_{1} = \langle t_{1}, t_{2}, t_{3}^{\frac{2n}{p}} \rangle, \qquad N_{2} = \langle t_{1}, t_{2}t_{3}^{\frac{n}{p}}, t_{3}^{\frac{2n}{p}} \rangle,$$

$$N_{3} = \langle t_{1}t_{3}^{\frac{n}{p}}, t_{2}t_{3}^{\frac{n}{p}}, t_{3}^{\frac{2n}{p}} \rangle, \qquad N_{4} = \langle t_{1}t_{3}^{\frac{n}{p}}, t_{2}, t_{3}^{\frac{2n}{p}} \rangle.$$

When p = 1, we have by Theorem 2.4,

$$N_1 \sim N_2 \sim N_3 \sim N_4$$
,

which is the same result in [2]. When p > 1, by applying Theorem 2.4, we can conclude that

- (1) $N_1 \nsim N_2$,
- (3) $N_1 \nsim N_4$,
- (4) $N_2 \sim N_3$
- (6) $N_3 \sim N_4$

Therefore there exist 3 affinely non-conjugate normal nilpotent subgroups N_i (i = 1, 2, 3) of π .

References

- 1. D. Choi and J.K. Shin, Free actions of finite abelian groups on 3-dimensional nilmanifolds, J. Korean Math. Soc. 42 (2005), 795–826.
- 2. H.Y. Chu and J.K. Shin, Free actions of finite groups on the 3-dimensional nilmanifold, Topology Appl. 144 (2004), 255–270.

- 3. K. Dekimpe, P. Igodt, S. Kim and K.B. Lee, Affine structures for closed 3-dimensional manifolds with nil-geometry, Quarterly J. Math. 46 (1995), 141–167.
- K.Y. Ha, J.H. Jo, S.W. Kim and J.B. Lee, Classification of free actions of finite groups on the 3-torus, Topology Appl. 121 (2002), 469–507.
- 5. W. Heil, On P^2 -irreducible 3-manifolds, Bull. Amer. Math. Soc. **75** (1969), 772–775.
- W. Heil, Almost sufficiently large Seifert fiber spaces, Michigan Math. J. 20 (1973), 217–223.
- 7. J. Hempel, Free cyclic actions of $S^1 \times S^1 \times S^1$, Proc. Amer. Math. Soc. 48 (1975), 221–227.
- 8. K.B. Lee, J.K. Shin and Y. Shoji, Free actions of finite abelian groups on the 3-torus, Topology Appl. **53** (1993), 153–175.
- 9. J.K. Shin, Isometry groups of unimodular simply connected 3-dimensional Lie groups, Geom. Dedicata 65 (1997), 267–290.
- 10. F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. Math. 87 (1968), 56–88.
- 11. S. Wolfram, Mathematica, Wolfram Research, 1993.

*

DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY DAEJEON 305-764, KOREA

**

DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY DAEJEON 305-764, KOREA

E-mail: jkshin@cnu.ac.kr