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SOME GEOMETRIC INEQUALITIES OF
MATHEMATICAL CONDUCTANCE

Bo-HyuN CHUNG®

ABSTRACT. Let Do, D1 C R be non-empty sets and let T' be the
family of all closed curves which join Dy to D;. In this note, we
introduce the concept of the mathematical conductance C(T") of a
curve family I' and examine some basic properties of mathematical
conductance. And we obtain the inequalities in connection with
capacity of condensers.

1. Introduction

The mathematical conductance of a curve family is a basic tool in the
theory of conformal mappings. The numerical value of the mathematical
conductance is known only for a few curve families. Therefore good
estimates are of importance. Several estimates are given in the paper
([1], [5], [6], [9]). And in Gehring [3], he has shown that the capacity
is related to the mathematical conductance of a family of surfaces that
separate the boundary components of a space ring F.

Throughout this paper, n is a fixed integer and n > 2. We denote the
n-dimensional Euclidean space by R™ and its one-point compactification
by R" = R™ U {co}. All topological operations are performed with
respect to R'. Balls and spheres centered at z € R™ and with radius
r > 0 are denoted, respectively, by

B"(z,r)={y€ R": |y —z| <r}
S Yz r)=0B"(z,r)={yeR": |y —z| =r}
We employ the abbreviations
B"(r)=B"(0,r), B"=B"(1),
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S Hr) = 8"H0,r), S =57,

As a measure in R™ we use the n-dimensional m,,, where the subscript
n may be omitted. And we abbreviate w, = m,(B"), where
]

G(li‘i‘%)’ (G : gamma function).

Wnp =

2. Mathematical conductance

DEFINITION 2.1. Given a family, T', of nonconstant curves v in R,
we let bm f(I") denote the family of Borel measurable functions p : R" —
[0, 00) such that

(2.1) Lp ds

for all locally rectifiable v € I'. We call

(2.2) C(T) = infpepmyr) /R o dm
the mathematical conductance of I'.

ExXAMPLE 2.2 ([11]). Let T be the rectangular parallelepiped with two
parallel faces P;,P». If I is the family of curves v joining two parallel
faces P; and P, of area A with distance d, then

(2.3) C()=A-d".

In fact, choose a Borel measurable functions p € bmf(I') and let v,
be the vertical segment which join P, and a point y in the base P». Then

vy € I' and
1<</pds> <d"_1/p”ds.
gl g

Y

This holds for all such y and hence

/ p"dm > / / P ds | dmp_ > A-d"
T P, Yy

Since p is arbitrary,
C(T)>A-dm.
Next, let
1
P=a

be inside the parallelepiped 71" and p = 0 otherwise.
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Then p € bmf(I') and
c(I) < / prtdm=A-d"",
T

ExAMPLE 2.3. If T' is the family of curves joining the sphere with
center o and radius r1 to the concentric sphere of radius ro, then

(2.4) C(T) = nwy, <l0g:i>1_n.

Proof. Choose p € bmf(I') and let
Ye = {z|lz =T1e, r1 < 1T <712}

be the radial segment in I' and parallel to the unit vector e. Using
Holder’s inequality (See [4], theorem 189, P.140) we obtain

n r n—1 ro
1< (/ o ds) < <logZ> / " L dr,
e 1 r1

Integrating over all e we obtain by Fubini’s theorem in polar coordinates

r n—1
nwy < <log;> / p" dm,
1 *

where E* is the spherical ring r; < |z| < ro . The equality holds for
_ 1
|[z|log 2

p

Thus -
C(T) = nwy, (logm> .
1
O

PROPOSITION 2.4 ([10]). If each curve v, in a family 'y contains a
subcurve 7 in a family I'y, then

C(I'y) < C((T9).

In fact, choose a Borel measurable functions p € bmf(I'y) and sup-
pose 71 € I'y is locally rectifiable. Then

/p@z/pm
Y1 Y2

where 75 is the subcurve in I'g, and p € bmf(I'1). Thus

(') g/ p" dm
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and taking the infimum over all such p yields
(2.5) C(Th) < C(Ty).

Consequently, the set of fewer and longer curves has the smaller math-
ematical conductance.

PROPOSITION 2.5. For curve family T';,

C(UTy) <Y _C(Iy).

Proof. We may assume C(I'j) < oo for all j. Then given € > 0 we
can choose a p; € bmf(I';) such that

/ ()" dm < C(T'j) +27 e,
Now let
p = sup pj, I'=uy;l’y.
J

Then p : R™ — [0, 00) is Borel measurable. Moreover, if v € I" is locally
rectifiable, then v € I'; for some 7,

/pdsZ/pjdszl
v gl

and hence p € bm f(I") by definition 2.1. Thus
C(y;ly) = C(I)

(2:6) < [ ram< [ S an< Y o) +e

O]

PROPOSITION 2.6 ([1]). If f : R* — R" is a one to one conformal
mapping, then

(2.7) C(f(T)) = C(D).
for all curve familiesT in R".
In fact, choose a Borel measurable function p’ € bm f(f(T")), let
p(x) = p' o f(z)|f'(2)]

for z € R" — {f~!(c0)}, and let Ty be the family of v € I' which pass
through f~!(cc0). Then

C) =C(T—To), pebmf(l'—To)
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and hence
)< [ pram= [ (fo)I|dm

Rn

— [ @opa m

— [y dm.

Taking the infimum over every such p’ gives
C(T) < C(f(1)).

The opposite inequality follows by repeating the preceding argument
with f replaced by L.

3. Capacity of condensers

A condenser is a ring E C R whose complement is the union of two
distinguished disjoint compact sets Dy and Dy in R". We write

E = E(Do, Dy).

Thus, ring is a condenser E = E(Dy, D1) where Dy and D, are continua.
We call Dy and D; the complementary components of E.

DEFINITION 3.1 ([9]). We let d(x,y) denote the chordal distance be-
tween points x,y € R". That is

_1
d(z,y) = |z —y| - [A+ |2+ [y)]72, 2,y # o0

Let b f(F)(# 0) denote the family of functions u : R* — R! with the
following conditions :

(i) u is continuous in R and u has distribution derivatives in R,

(ii) u =0 on Dy, w =1 on Dy,

. d(z,D,

(ili) u(x) = mm{d(g)hlgg), 1} € bmf(E).

We call

3.1 Cap(E) = inf / u|™ dm
(31) ey = ot [ 17

the capacity of E.
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THEOREM 3.2. If E = E(Dy, Dy) is a condenser and if I is the family
of curves y joining Dy and D, in E, then

(3.2) Cap(E) < C(T).

Proof. Choose a bounded continuous Borel measurable function p €
bm f(I") and let

u(z) = min{1, inf/p ds}
Ty

for x € E, where the infimum is taken over all locally rectifiable ~ joining
Dy to x in E. Then u has distribution derivatives and
li = li =1.
. u(z) =0, S u(z)
Hence we can extend u to R so that u € bm f(FE). Then since |y u| = p
in F,

Cap(E) < / p"t dm S/ P dm.
FE n

Another smoothing argument shows the infimum over such p gives C(T').
Thus
Cap(E) < C(T).
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