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FIXED POINT AND PERIODIC POINT THEOREMS ON
METRIC SPACES

Seong-Hoon Cho* and Dong-Gon Park**

Abstract. The aim of this paper is to establish a new fixed point
theorem for a set-valued mapping defined on a metric space satisfy-
ing a weak contractive type condition and to establish a new com-
mon fixed point theorem for a pair of set-valued mappings defined
on a metric space satisfying a weak contractive type inequality. And
we give periodic point theorems for single-valued mappings defined
on a metric space satisfying weak contractive type conditions.

1. Introduction

Banach’s contraction principle [5] is one of the pivotal results of anal-
ysis. It is widely recognized as the source of metric fixed point theory.
Banach’s contraction principle including its several generalizations for
single-valued and set-valued mappings in metric spaces plays an impor-
tant role in several branches of mathematics. For instance, it has been
used to reserch many problems in nonlinear analysis and to study the
convergence of algorithms in computational mathematics. Also, Ba-
nach’s contraction principle is a powerful tool in the study on finding
fixed points of mappings defined on metric spaces. Banach’s contrac-
tion principle has been generalized and extended in many directions
[2, 3, 4, 6, 9, 13, 14, 15, 17, 18, 19, 20, 21, 23].

The authors [1] introduced weak contraction principle in Hilbert spaces,
which is a generalization of Banach’s contraction principle. And then,
the author [22] extended this principle to metric spaces. The authors
[10, 7, 11, 12, 24] obtained fixed point results involving weak contractions
and mappings satisfying weak contractive type inequalities.
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The author [18] used a control function which alters the distance
between two points in a metric space to obtained fixed point results.
Such a control function called an altering distance function.

Recently, the authors [8] introduced the notion of a generalized weakly
contractive mapping by using an altering distance function, and gave
some fixed point theorems of this mapping.

In this paper we prove a new fixed point theorem for a set-valued
mapping defined on a metric space satisfying a weak contractive type
inequality, and prove a new common fixed point theorem for a pair of set-
valued mappings defined on a metric space satisfying a weak contractive
type inequality. And then we obtain extensions of Theorem 3.1 and
Theorem 3.2 in [8] to the case of set-valued mappings, and we have
generalizations of Theorem 3.1 and Theorem 3.2 in [8]. Also, we give
periodic point theorems for single-valued mappings defined on a metric
space satisfying weak contractive type inequalities.

We recall some definitions and notations in the following.

Let (X, d) be a metric space. We denote by K(X) the family of non-
empty compact subsets of (X, d). Let H(·, ·) be the Hausdorff distance
on K(X), i.e.,

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}, for A,B ∈ K(X),

where d(a,B) = inf{d(a, b) : b ∈ B} is the distance from the point a to
the subset B.

For A,B ∈ K(X), let D(A,B) = supx∈A infy∈B d(x, y).
Then we have D(A,B) ≤ H(A,B) for all A,B ∈ K(X).
Let X be a non-empty set, and let S, T : X → 2X be set-valued

mappings. Then z ∈ X is called a fixed point of T if z ∈ Tz, and z ∈ X
is called a common fixed point of S and T if z ∈ Sz ∩ Tz.

A function ψ : [0,∞) → [0,∞) is an altering distance function [18] if
the following conditions are satisfied:

(i) ψ is monotone increasing and continuous;
(ii) ψ(t) = 0 if and only if t = 0.

From now on, let φ : [0,∞) → [0,∞) be a continuous function such
that φ(t) = 0 if and only if t = 0.
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2. Fixed point and common fixed point theorems

Theorem 2.1. Let (X, d) be a complete metric space. Suppose that
a set-valued mapping T : X → K(X) satisfies

ψ(H(Tx, Ty)) ≤ ψ(max{d(x, y), d(x, Tx), d(y, Ty),
1
2
{d(x, Ty) + d(y, Tx)}})− φ(max{d(x, y), d(y, Ty)}), (2.1)

for all x, y ∈ X, where ψ is an altering distance function.
Then T has a fixed point in X.

Proof. Let x0 ∈ X be fixed. Then we can find x1 ∈ Tx0 such that
d(x0, x1) = d(x0, Tx0), because Tx0 ∈ K(X). For x1 also, we can find
x2 ∈ Tx1 such that d(x1, x2) = d(x1, Tx1).

Continuing this process, we can find a sequence {xn} of points in X
such that

xn+1 ∈ Txn and d(xn, xn+1) = d(xn, Txn) for all n ≥ 0.

If there exists a positive integer N such that xN = xN+1, then
d(xN , TxN ) ≤ d(xN , xN+1) = 0. Hence xN is a fixed point of T .

Thus we may assume that xn 6= xn+1 for all n ≥ 0.
For x = xn−1 and y = xn in (2.1), we obtain

ψ(d(xn, xn+1)) = ψ(d(xn, Txn))

≤ψ(H(Txn−1, Txn)) ≤ ψ(max{d(xn−1, xn), d(xn−1, Txn−1), d(xn, Txn),
1
2
{d(xn−1, Txn) + d(xn, Txn−1)}})− φ(max{d(xn−1, xn), d(xn, Txn)})

≤ψ(max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1),
1
2
{d(xn−1, xn+1) + d(xn, xn)}})− φ(max{d(xn−1, xn), d(xn, xn+1)})

≤ψ(max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1),
1
2
{d(xn−1, xn) + d(xn, xn+1)}})− φ(max{d(xn−1, xn), d(xn, xn+1)}).

Suppose that d(xn−1, xn) ≤ d(xn, xn+1). Then we have ψ(d(xn, xn+1))
≤ ψ(d(xn, xn+1)) − φ(d(xn, xn+1)). Hence φ(d(xn, xn+1)) ≤ 0. Thus,
d(xn, xn+1) = 0 or xn = xn+1, which is a contradiction.

Therefore, we have

d(xn, xn+1) ≤ d(xn−1, xn) for all n ≥ 0 (2.2)

and so

ψ(d(xn, xn+1)) ≤ ψ(d(xn−1, xn))− φ(d(xn−1, xn)). (2.3)
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From (2.2) the sequence {d(xn, xn+1)} is a non-decreasing squence of
non-negative real numbers, and hence there exists r ≥ 0 such that

lim
n→∞ d(xn, xn+1) = r.

Letting n → ∞ in (2.3) and using continuity of ψ and φ, we obtain
ψ(r) ≤ ψ(r)− φ(r). Hence φ(r) ≤ 0, and hence r = 0. Thus we have

lim
n→∞ d(xn, xn+1) = 0. (2.4)

We now show that {xn} is a Cauchy sequence in X.
Assume that {xn} is not a Cauchy sequence.
Then there exists ε > 0 such that, for all k ∈ N, there exists m(k) >

n(k) > k such that

d(xm(k), xn(k)) ≥ ε and d(xm(k)−1, xn(k)) < ε.

Thus we have

ε ≤ d(xm(k), xn(k)) ≤ d(xm(k), xm(k)−1) + d(xm(k)−1, xn(k))

< d(xm(k), xm(k)−1) + ε.

Letting k →∞ in above inequality, we obtain

lim
k→∞

d(xm(k), xn(k)) = ε. (2.5)

Since limn→∞ d(xn, xn+1) = 0, we have

lim
k→∞

d(xm(k)−1, xn(k)+1) = ε, (2.6)

and

lim
k→∞

d(xn(k), xm(k)−1) = ε. (2.7)

And also, we have

d(xn(k), xm(k)−1)

≤ d(xn(k), Txn(k)) + d(Txn(k), xm(k)) + d(xm(k), xm(k)−1)

≤ d(xn(k), xn(k)+1) + d(Txn(k), xm(k)) + d(xm(k), xm(k)−1)
and

d(xm(k), Txn(k))

≤ d(xm(k), xm(k)−1) + d(xm(k)−1, xn(k)) + d(xn(k), Txn(k))

≤ d(xm(k), xm(k)−1) + d(xm(k)−1, xn(k)) + d(xn(k), xn(k)+1).
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Taking limit as k → ∞ in above inequalities and using (2.4), (2.5)
and (2.7), we obtain

lim
k→∞

d(xm(k), Txn(k)) = ε. (2.8)

For x = xm(k)−1 and y = xn(k) in (2.1), we have

ψ(d(xm(k), Txn(k))

≤ψ(H(Txm(k)−1, Txn(k)))

≤ψ(max{d(xm(k)−1, xn(k)), d(xm(k)−1, Txm(k)−1), d(xn(k), Txn(k)),
1
2
{d(xm(k)−1, Txn(k)) + d(xn(k), Txm(k)−1)}})
− φ(max{d(xm(k)−1, xn(k)), d(xn(k), Txn(k))})

≤ψ(max{d(xm(k)−1, xn(k)), d(xm(k)−1, xm(k)), d(xn(k), xn(k)+1),
1
2
{d(xm(k)−1, xn(k)+1) + d(xn(k), xm(k))}})
− φ(max{d(xm(k)−1, xn(k)), d(xn(k), xn(k)+1)}).

Letting k →∞ in above inequality and using (2.4), (2.5), (2.6), (2.7)
and (2.8), we obtain ψ(ε) ≤ ψ(ε) − φ(ε). Hence φ(ε) ≤ 0, and hence
ε = 0, which is a contradiction.

Therefore, {xn} is a Cauchy sequence in X.
Since X is complete, there exists z ∈ X such that limn→∞ xn = z.
For x = xn and y = z in (2.1), we obtain

ψ(d(xn+1, T z)

≤ψ(H(Txn, T z)) ≤ ψ(max{d(xn, z), d(xn, Txn), d(z, Tz),
1
2
{d(xn, T z) + d(z, Txn)}})− φ(max{d(xn, z), d(z, Tz)})

≤ψ(max{d(xn, z), d(xn, xn+1), d(z, Tz),
1
2
{d(xn, T z) + d(z, xn+1)}})− φ(max{d(xn, z), d(z, Tz)}).

Letting n →∞ in above inequality, we have ψ(d(z, Tz) ≤ ψ(d(z, Tz))
−φ(d(z, Tz)), which implies that φ(d(z, Tz)) ≤ 0. Hence d(z, Tz) = 0,
and hence z ∈ Tz.

Remark 2.2. The above result is an extension of Theorem 3.1 in [8]
to the case of set-valued mapping.

From Theorem 2.1 we have the following two corollaries.
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Corollary 2.3. Let (X, d) be a complete metric space. Suppose
that a set-valued mapping T : X → K(X) satisfies

ψ(H(Tx, Ty)) ≤ ψ(max{d(x, y),
1
2
{d(x, Tx) + d(y, Ty)},

1
2
{d(x, Ty) + d(y, Tx)}})− φ(max{d(x, y), d(y, Ty)}),

for all x, y ∈ X, where ψ is an altering distance function.
Then T has a fixed point in X.

Corollary 2.4. Let (X, d) be a complete metric space. Suppose
that a set-valued mapping T : X → K(X) satisfies

ψ(H(Tx, Ty)) ≤ ψ(max{d(x, y), d(x, Tx), d(y, Ty)})
− φ(max{d(x, y), d(y, Ty)}),

for all x, y ∈ X, where ψ is an altering distance function.
Then T has a fixed point in X.

In Theorem 2.1, if T is a single valued mapping, then we have the
following corollary.

Corollary 2.5. [8] Let (X, d) be a complete metric space. Suppose
that a mapping f : X → X satisfies

ψ(d(fx, fy)) ≤ ψ(max{d(x, y), d(x, fx), d(y, fy),
1
2
{d(x, fy) + d(y, fx)}})− φ(max{d(x, y), d(y, fy)}), (2.9)

for all x, y ∈ X, where ψ is an altering distance function.
Then f has a unique fixed point in X.

Proof. From Theorem 2.1 f has a fixed point in X. It follows from
(2.9) that the fixed point of f is unique.

Corollary 2.6. Let (X, d) be a complete metric space. Suppose
that a mapping f : X → X satisfies

ψ(d(fx, fy)) ≤ ψ(max{d(x, y),
1
2
{d(x, fx) + d(y, fy)},

1
2
{d(x, fy) + d(y, fx)}})− φ(max{d(x, y), d(y, fy)}), (2.10)

for all x, y ∈ X, where ψ is an altering distance function.
Then f has a unique fixed point in X.

From Corollary 2.5 we have the following result.
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Corollary 2.7. Let (X, d) be a complete metric space. Suppose
that a mapping f : X → X satisfies

ψ(d(fx, fy))

≤ ψ(max{d(x, y), d(x, fx), d(y, fy)})− φ(max{d(x, y), d(y, fy)}), (2.11)

for all x, y ∈ X, where ψ is an altering distance function.

Then f has a unique fixed point in X.

Theorem 2.8. Let (X, d) be a complete metric space. Suppose that
set-valued mappings S, T : X → K(X) satisfy

ψ(H(Sx, Ty)) ≤ ψ(max{d(x, y), d(x, Sx), d(y, Ty),
1
2
{d(x, Ty) + d(y, Sx)}})− φ(max{d(x, y), d(x, Sx), d(y, Ty)}), (2.12)

for all x, y ∈ X, where ψ is an altering distance function.

Then S and T have a fixed point in X. Moreover, any fixed point of
S is a fixed point of T and conversely.

Proof. Suppose that p is a fixed point of S.
Then from (2.12) we have

ψ(d(p, Tp)) ≤ ψ(H(Sp, Tp))

≤ ψ(max{d(p, p), d(p, Sp), d(p, Tp),
1
2
{d(p, Tp) + d(p, Sp)}})

− φ(max{d(p, p), d(p, Sp), d(p, Tp)})
= ψ(max{0, 0, d(p, Tp),

1
2
d(p, Tp)})− φ(0, 0, d(p, Tp))

= ψ(d(p, Tp))− φ(d(p, Tp))

which implies φ(d(p, Tp)) = 0, and so d(p, Tp) = 0. Thus, p ∈ Tp and p
is a fixed point of T .

Using a similar argument, we have that any fixed point of T is a fixed
point of S.

Let x0 ∈ X be fixed. Then we can find x1 ∈ Sx0 such that d(x0, x1) =
d(x0, Sx0). Again, we can find x2 ∈ Tx1 such that d(x1, x2) = d(x1, Tx1).

Continuing this process, we can find a sequence {xn} of points in X
such that

x2n+1 ∈ Sx2n, x2n+2 ∈ Tx2n+1, d(x2n, x2n+1) = d(x2n, Sx2n)

and d(x2n+1, x2n+2) = d(x2n+1, Tx2n+1) for all n ≥ 0.
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If there exists a positive integer N such that x2N = x2N+1, then
x2N ∈ Sx2N . Thus x2N ∈ Tx2N . Hence x2N is a common fixed point of
S and T .

Therefore, we may assume that xn 6= xn+1 for all n ≥ 0.
For x = x2n and y = x2n+1 in (2.12), we obtain

ψ(d(x2n+1, x2n+2)) = ψ(d(x2n+1, Tx2n+1)) ≤ ψ(H(Sx2n, Tx2n+1))

≤ ψ(max{d(x2n, x2n+1), d(x2n, Sx2n), d(x2n+1, Tx2n+1),
1
2
{d(x2n, Tx2n+1) + d(x2n+1, Sx2n)}})
− φ(max{d(x2n, x2n+1), d(x2n, Sx2n), d(x2n+1, Tx2n+1)})

≤ ψ(max{d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2),
1
2
{d(x2n, x2n+2) + d(x2n+1, x2n+1)}})
− φ(max{d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2)})

≤ ψ(max{d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2),
1
2
{d(x2n, x2n+1) + d(x2n+1, x2n+2)}})
− φ(max{d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2)}). (2.13)

If d(x2n, x2n+1) < d(x2n+1, x2n+2) for some n ≥ 0, then we have

ψ(d(x2n+1, x2n+2)) ≤ ψ(d(x2n+1, x2n+2))− φ(d(x2n, x2n+2))

which impiles φ(d(x2n, x2n+2)) ≤ 0. Thus we obtain d(x2n, x2n+2) = 0,
and so x2n = x2n+2.

We now show that x2n+1 = x2n+2.
If x2n+1 6= x2n+2, then 0 < d(x2n+1, x2n+2) ≤ d(x2n+2, x2n) + d(x2n,

x2n+1) = d(x2n, x2n+1). Thus d(x2n+1, x2n+2) ≤ d(x2n, x2n+1), which is
a contradiction. Thus x2n+1 = x2n+2. Hence x2n = x2n+1, which is a
contradiction.

Therefore, d(x2n+1, x2n+2) ≤ d(x2n, x2n+1) for all n ≥ 0.
In similar argument, d(x2n+2, x2n+3) ≤ d(x2n+1, x2n+2) for all n ≥ 0.
Thus we have d(xn, xn+1) ≤ d(xn−1, xn) for all n ≥ 0, and so {d(xn,

xn+1)} is a non-decreasing sequence of positive real numbers. Thus there
exists r ≥ 0 such that

lim
n→∞ d(xn, xn+1) = r.

Letting n → ∞ in (2.13), we obtain ψ(r) ≤ ψ(r) − φ(r). Hence
φ(r) = 0, and hence r = 0. Thus,
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lim
n→∞ d(xn, xn+1) = 0. (2.14)

We now show that {xn} is a Cauchy sequence in X.
By (2.14), it sufficient to prove that {x2n} is a Cuachy sequence.
Assume that {x2n} is not a Cuachy sequence.
Then there exists ε > 0 such that, for all k ∈ N, there exist 2m(k) >

2n(k) > k such that

d(x2m(k), x2n(k)) ≥ ε and d(x2m(k)−1, x2n(k)) < ε.

We have

ε ≤ d(x2m(k), x2n(k)) ≤ d(x2m(k), x2m(k)−1) + d(x2m(k)−1, x2n(k))

< d(x2m(k), x2m(k)−1) + ε.

Letting k →∞ in above inequality and using (2.14) we obtain

lim
k→∞

d(xm(k), xn(k)) = ε. (2.15)

Since limn→∞ d(xn, xn+1) = 0, we have

lim
k→∞

d(x2m(k)−1, x2n(k)+1) = ε, (2.16)

lim
k→∞

d(x2n(k), x2m(k)−1) = ε (2.17)

and

lim
k→∞

d(x2n(k)+1, x2m(k)) = ε. (2.18)

And we have

d(x2n(k)+1, x2m(k)−1)

≤ d(x2n(k)+1, Tx2m(k)−1) + d(Tx2m(k)−1, x2m(k)−1)

≤ d(x2n(k)+1, Tx2m(k)−1) + d(x2m(k), x2m(k)−1)

≤ d(x2n(k)+1, x2m(k)) + d(x2m(k), x2m(k)−1).

Taking limit as k →∞ in above inequalities and using (2.14), (2.15)
and (2.18), we obtain

lim
n→∞ d(x2n(k)+1, Tx2m(k)−1) = ε. (2.19)
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For x = x2n(k) and y = x2m(k)−1 in (2.12), we have

ψ(d(x2n(k)+1, Tx2m(k)−1)) ≤ ψ(H(Sx2n(k), Tx2m(k)−1))

≤ψ(max{d(x2n(k), x2m(k)−1), d(x2n(k), Sx2n(k)), d(x2m(k)−1, Tx2m(k)−1),
1
2
{d(x2n(k), Tx2m(k)−1) + d(x2m(k)−1, Sx2n(k))}})

−φ(max{d(x2n(k), x2m(k)−1), d(x2n(k), Sx2n(k)), d(x2m(k)−1, Tx2m(k)−1)})
≤ψ(max{d(x2n(k), x2m(k)−1), d(x2n(k), x2n(k)+1), d(x2m(k)−1, x2m(k)),

1
2
{d(x2n(k), x2m(k)) + d(x2m(k)−1, x2n(k)+1)}})
− φ(max{d(x2n(k), x2m(k)−1), d(x2n(k), x2n(k)+1), d(x2m(k)−1, x2m(k))})

Letting n → ∞ in above inequality and using (2.14), (2.15), (2.16),
(2.17) and (2.19), we have ψ(ε) ≤ ψ(ε) − φ(ε), which implies φ(ε) = 0.
Thus we have ε = 0, which is a contradiction.

Hence {x2n} is a Cuachy sequence. By (2.14), {xn} is a Cuachy se-
quence. Since X is complete, there exists z ∈ X such that limn→∞ xn =
z.

For x = x2n and y = z in (2.12), we obtain

ψ(d(x2n+1, T z)) ≤ ψ(H(Sx2n, T z))

≤ψ(max{d(x2n, z), d(x2n, Sx2n), d(z, Tz),
1
2
{d(x2n, T z) + d(z, Sx2n)}})
− φ(max{d(x2n, z), d(x2n, Sx2n), d(z, Tz)})

≤ψ(max{d(x2n, z), d(x2n, x2n+1), d(z, Tz),
1
2
{d(x2n, T z) + d(z, x2n+1)}})
− φ(max{d(x2n, z), d(x2n, x2n+1), d(z, Tz)}).

Letting n →∞ in above inequality, we obtain ψ(d(z, Tz)) ≤ ψ(d(z, Tz))
−φ(d(z, Tz)), which implies φ(d(z, Tz)) = 0. Hence d(z, Tz) = 0, and
hence z ∈ Tz. Therefore, z is a common fixed point of S and T .

Remark 2.9. The above result is an extension of theorem 3.2 in [8]
to the case set-valued mapping.

From Theorem 2.9 we have the following corollaries.
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Corollary 2.10. Let (X, d) be a complete metric space. Suppose
that set-valued mappings S, T : X → K(X) satisfy

ψ(H(Sx, Ty)) ≤ ψ(max{d(x, y),
1
2
{d(x, Sx) + d(y, Ty)},

1
2
{d(x, Ty) + d(y, Sx)})− φ(max{d(x, y), d(x, Sx), d(y, Ty)}),

for all x, y ∈ X, where ψ is an altering distance function.
Then S and T have a fixed point in X. Moreover, any fixed point of

S is a fixed point of T and conversely.

In Theorem 2.8, if S = T , then we have the following corollary.

Corollary 2.11. Let (X, d) be a complete metric space. Suppose
that a set-valued mapping T : X → K(X) satisfies

ψ(H(Tx, Ty)) ≤ ψ(max{d(x, y), d(x, Tx), d(y, Ty),
1
2
{d(x, Ty) + d(y, Tx)}})− φ(max{d(x, y), d(x, Tx), d(y, Ty)}),

for all x, y ∈ X, where ψ is an altering distance function.
Then T has a fixed point in X.

Corollary 2.12. Let (X, d) be a complete metric space. Suppose
that a set-valued mapping T : X → K(X) satisfies

ψ(H(Tx, Ty)) ≤ ψ(max{d(x, y),
1
2
{d(x, Tx) + d(y, Ty)},

1
2
{d(x, Ty) + d(y, Tx)}})− φ(max{d(x, y), d(x, Tx), d(y, Ty)}),

for all x, y ∈ X, where ψ is an altering distance function.
Then T has a fixed point in X.

In Theorem 2.8, if S and T are single valued mappings, then we have
the following corollary.

Corollary 2.13. [8] Let (X, d) be a complete metric space. Suppose
that mappings f, g : X → X satisfy

ψ(d(fx, gy)) ≤ ψ(max{d(x, y), d(x, fx), d(y, gy),
1
2
{d(x, gy) + d(y, fx)}})− φ(max{d(x, y), d(x, fx), d(y, gy)}), (2.20)

for all x, y ∈ X, where ψ is an altering distance function.
Then f and g have a unique fixed point in X. Moreover, any fixed

point of f is a fixed point of g and conversely.
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Proof. By Theorem 2.8, f and g have a common fixed point in X,
and any fixed point of f is a fixed point of g and conversely. It follows
from (2.20) that the common fixed point of f and g is unique.

Corollary 2.14. Let (X, d) be a complete metric space. Suppose
that mappings f, g : X → X satisfy

ψ(d(fx, gy)) ≤ ψ(max{d(x, y),
1
2
{d(x, fx) + d(y, gy)},

1
2
{d(x, gy) + d(y, fx)}})− φ(max{d(x, y), d(x, fx), d(y, gy)}),

for all x, y ∈ X, where ψ is an altering distance function.
Then f and g have a unique fixed point in X. Moreover, any fixed

point of f is a fixed point of g and conversely.

In Corollary 2.14, if g is identical with f , then we have the following
corollary.

Corollary 2.15. Let (X, d) be a complete metric space. Suppose
that a mapping f : X → X satisfies

ψ(d(fx, fy)) ≤ ψ(max{d(x, y), d(x, fx), d(y, fy),
1
2
{d(x, fy) + d(y, fx)}})− φ(max{d(x, y), d(x, fx), d(y, fy)}), (2.21)

for all x, y ∈ X, where ψ is an altering distance function.
Then f has a unique fixed point in X.

Corollary 2.16. Let (X, d) be a complete metric space. Suppose
that a mapping f : X → X satisfies

ψ(d(fx, fy)) ≤ ψ(max{d(x, y),
1
2
{d(x, fx) + d(y, fy)},

1
2
{d(x, fy) + d(y, fx)}})− φ(max{d(x, y), d(x, fx), d(y, fy)}), (2.22)

for all x, y ∈ X, where ψ is an altering distance function.
Then f has a unique fixed point in X.

3. Periodic point theorems

Let X be non-empty set, and let f : X → X and let F (f) denote
the set of all fixed point of f . We say that f has property P [16] if
F (f) = F (fn) for each n ∈ N.
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Theorem 3.1. Let (X, d) be a metric space. Suppose that a mapping
f : X → X satisfies

ψ(d(fx, f2x)) < ψ(d(x, fx))

for all x ∈ X with x 6= fx, where ψ is an altering distance function.
Then f has property P .

Proof. Suppose that f has no property P . Then there exist n ∈ N
and z ∈ X such that z = fnz and z 6= fz. Then we have

ψ(d(z, fz)) = ψ(d(fnz, fn+1z))

<ψ(d(fn−1z, fnz)) < · · · < ψ(d(fz, f2z))

<ψ(d(z, fz)),

which is a contradiction. Thus f has property P .

The following proposition is theorem 4.1 in [8]. Here, we give another
proof of theorem 4.1 in [8].

Proposition 3.2. Let (X, d) be a metric space. If a mapping f :
X → X satisfies (2.9), then f has property P .

Proof. Let z ∈ X be such that z 6= fz. Then from (2.9) we obtain

ψ(d(fz, f2z)) ≤ ψ(max{d(z, fz), d(z, fz), d(fz, f2z),
1
2
{d(z, f2z) + d(fz, fz)}})− φ(max{d(z, fz), d(fz, f2z)}). (3.1)

Then max{d(z, fz), d(fz, f2z)} > 0. In fact, if max{d(z, fz), d(fz, f2z)}
= d(z, fz) then max{d(z, fz), d(fz, f2z)} = d(z, fz) > 0 because z 6=
fz.

Suppose that max{d(z, fz), d(fz, f2z)} = d(fz, f2z).
If d(fz, f2z) = 0, then d(z, fz) = 0 or z = fz, which is a contradic-

tion. Hence d(fz, f2z) > 0, and hence max{d(z, fz), d(fz, f2z)} > 0.
Thus, φ(max{d(z, fz), d(fz, f2z)}) > 0. Hence from (3.1) we obtain

ψ(d(fz, f2z))

< ψ(max{d(z, fz), d(z, fz), d(fz, f2z),
1
2
{d(z, f2z) + d(fz, fz)}})

≤ ψ(max{d(z, fz), d(fz, f2z),
1
2
{d(z, fz) + d(fz, f2z)}})

= ψ(max{d(z, fz), d(fz, f2z)})
= ψ(d(z, fz)).

Thus from Theorem 3.1 f has property P .
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Corollary 3.3. Let (X, d) be a metric space. If a mapping f : X →
X satisfies condition (2.10) [ or (2.11)], then f has property P .

Theorem 3.4. Let (X, d) be a metric space. If a mapping f : X → X
satisfies (2.21), then f has property P .

Proof. Let z ∈ X be such that z 6= fz. Then from (2.21) we obtain

ψ(d(fz, f2z))

≤ ψ(max{d(z, fz), d(z, fz), d(fz, f2z),
1
2
{d(z, f2z) + d(fz, fz)}})
− φ(max{d(z, fz), d(z, fz), d(fz, f2z)})

≤ ψ(max{d(z, fz), d(fz, f2z),
1
2
{d(z, fz) + d(fz, f2z)}})

− φ(max{d(z, fz), d(fz, f2z)})
≤ ψ(max{d(z, fz), d(fz, f2z)})− φ(max{d(z, fz), d(fz, f2z)}). (3.2)

As in proof of Proposition 3.2, φ(max{d(z, fz), d(fz, f2z)}) > 0.
Thus from (3.2) we have

ψ(d(fz, f2z)) < ψ(max{d(z, fz), d(fz, f2z)})
=ψ(d(z, fz)).

Thus from Theorem 3.1 f has property P .

Corollary 3.5. Let (X, d) be a metric space. If a mapping f : X →
X satisfies condition (2.22), then f has property P .
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[11] D. Dorić, Common fixed point for generalized (ψ, ϕ)-weak contractions, Appl.
Math. Lett. 22 (2009), 1896-1900.

[12] P. N. Dutta, B. S. Choudhury, A generalisation of contraction principle in
metric spaces, Fixed Point Theory Appl. 2008 (2008) Article ID 406368.

[13] J. X. Fang, Y. Gao, Common fixed point theorems under strict contractive
conditions in Menger spaces, Nonlinear Anal. 70 (2009), 184-193.

[14] L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of con-
tractive mappings, J. Math. Anal. Appl. 332(2) (2007), 1468-1476.
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