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UNIQUE CONTINUATION FOR

SCHRÖDINGER EQUATIONS

Se Chul Shin* and Kyung Bok Lee**

Abstract. We prove a local unique continuation for Schrödinger

equations with time independent coefficients. The method of proof

combines a technique of Fourier-Gauss transformation and a Carle-

man inequality for parabolic operator.

1. Introduction. In this paper, we shall prove a local unique con-

tinuation result for Schrödinger equations with time independent coef-

ficients. We consider the Schrödinger operator L(x, ∂) = i∂t+P (x, ∂x)

on R
n+1, where P is a positive elliptic second order operator with real

valued coefficients. L is said to have the local unique continuation if

u is a solution of Lu = 0 in a neighborhood of (0,0) and supp u ⊆

{(x, t) ∈ U : x1 ≥ 0}, where U = {(x, t) ∈ R
n+1 : x ∈ Ω, t ∈ (−T, T )},

then u = 0 in a neighborhood of (0,0).

Concerning the unique continuation theorem, Rauch and Taylor [7]

proved a sort of unique continuation theorem for hyperbolic equation

with time independent coefficients. In order to prove this result they

introduced a integral Fourier-Gauss type transformation. The first

result in this direction are to be found in the work of Rauch and

Taylor [7] and exploited by Lerner [4]. Using the same idea, we shall

prove the main result. That is, our main tool will be the fundamental
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so-called Fourier- Gauss transformation and a Carleman inequality

for parabolic operators.

This paper is organized as follows : In the second section we state

our main results. The third section is devoted to prove a local unique

continuation Theorem 2.1. Precisely, in Section 3.1 we state an ele-

mentary lemma of Fourier– Gauss transformation without proof. In

Section 3.2 we make some preliminary and standard changes of vari-

ables in order to apply a Carleman inequality. In Section 3.3 we state

a Carleman inequality for parabolic operator. In Section 3.4 we com-

plete the proof of Theorem 2.1.

2. Statement of Main Result And Remarks

Let Ω be an open connected subset of R
n containing the origin. In

this paper, we will use the following notation : Ω̄ is the closure of Ω,

Ω+ is the set {x ∈ Ω : x1 ≥ 0} and ∂j means ∂/∂xj . We shall set

x = (x1, x
′), with x′ = (x2, · · · , xn) and ξ = (ξ1, ξ

′), ξ′ = (ξ2, · · · , ξn)

the corresponding Fourier variable.

We consider now a Schrödinger operator :

(2.1) L(x, ∂) = i∂t + P (x, ∂x),

where

(2.2) P (x, ∂x) =

n
∑

i,j=1

ai,j(x)∂i∂j +

n
∑

j=1

bj(x)∂j + c(x)

is a positive elliptic second order differential operator with real valued

leading coefficients in C1(Ω̄) and depending on all the variables x and

the other coefficients in L∞(Ω) and that they satisfying the ellipticity

conditions :

(2.3)
n

∑

i,j=1

ai,j(x)ξiξj ≥ α(x)|ξ|2

for all x ∈ Ω and ξ ∈ R
n where α(x) > 0 and |ξ|2 =

∑n
i=1 ξ

2
i .
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Now we can state our main theorem.

In the following theorem, we will denote by U for the set {(x, t) ∈

R
n+1 : x ∈ Ω,−T < t < T} for some constant T .

Theorem 2.1. Let P be the operator defined in (2.2) and let (2.3)

hold. If u ∈ H2
loc(U) is a solution of Lu = 0 in a neighborhood of

the origin and supp u ⊆ {(x, t) ∈ U : x1 ≥ 0}, then u vanishes in a

neighborhood of the origin.

Remark. The uniqueness of Theorem 2.1 is a local one. In Theorem

2.1, the hypothesis that the coefficients are independent of t is impor-

tant. In fact, non-uniqueness examples can be found Lascar and Zuily

[3]. That is, Lascar and Zuily [3] proved that there exists a smooth

function V (x, t) such that the Cauchy problem for the operator

1

i
∂t −△x + V (x, t)

has not a local uniqueness property across the surface {x1 = 0} with

the positive direction.

Remark. Kenig and Sogge [2] proved the unique continuation theo-

rem for Schrödinger operator of the form i∂t + ∆x on R
n+1, if n ≥ 1,

and if u(x, t) satisfies certain global integrability conditions as well

as a differential inequality |(i∂t + ∆x)u| ≤ |V u|, where V (x, t) ∈

Ln+2/2(Rn+1), then u vanishes identically if it vanishes in a halfs-

pace.

Remark. In the case that the principal part of the operator P de-

pends on all the x variables but P is elliptic, the result of hyperbolic

operators has been proved by Robbiano [8] ; related results can be

found Hörmander [1].

In the case that the real principal part of P depending only on one

variable but P is elliptic, the result of weakly hyperbolic operators
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has been proved by Santo [9].

Remark. In the case that P is elliptic with smooth principal part,

this uniqueness result has been proved by Lerner [4].

3. Proof of Theorem 2.1

The proof of Theorem 2.1 is based on Fourier-Gauss transformation

and a Carleman inequality for parabolic operator.

3.1 Fourier-Gauss Transformation.

We define

(3.1) Λa,λ(x, s) =

√

λ

2π

∫ T1

−T1

e−
λ

2
(is+a−t)2u(x, t) dt, 0 < T1 < T,

where λ is a large positive parameter and a a real number.

Assume that the set {x ∈ R
n : |x| < r} is contained in Ω and U ′ is

the set {(x, s) ∈ R
n+1 : |xi| < r/nfori = 1, · · · , n, |s| < T1/2}.

Let us state without proof an elementary lemma which we shall

use in the sequel.

Lemma 3.1. If |a| < T1, there exists a positive constant Cu depend-

ing on u, such that

(1) Λa,λ(x, 0) −→ u(x, a) in L2 as λ→ +∞,

(2) ||Λa,λ||H1(U ′) ≤ Cuλ
1
2 e

λT1
2

8 ,

(3) (3) Λa,λ(x, s) = 0 if (x, s) ∈ U ′ and x1 ≤ 0.

Let

(3.2) L = i∂t + P (x, ∂x)

be an operator satisfying (2.2) and (2.3).

The following lemma can easily verified to be an analogue to Lemma

2 in Robbiano [8].
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Lemma 3.2. If |a| < T1, there exist a positive constantCu depending

on u, such that

(3.3) ‖L̃Λa,λ‖L2(U ′) ≤ Cuλ
1
2 e

λT1
2

8
−λ

2
(T1−|a|)2,

where L̃ = −∂s + P (x, ∂x).

Section 3.2-3.3 are standard and follows very closely the proof [11].

3.2 Preliminary Transformation.

We consider the Holmgren transformation :

(3.4)











y1 = x1 + (|x′|2 + t2),

y′ = x′,

s = t.

By this change of variables, we will deduce

(3.5)
˜̃L(x, ∂) = −∂s+a(x, s)(∂x1+A(x, s, ∂′x))

2+B(x, s, ∂′x)+b̃i(x)∂i+c̃(x).

where A and B are order 1 and 2, respectively. Note that a(x, s) 6= 0

in a neighborhood of the origin since the hyperplane x1 = 0 is not

characteristic.

The equation

(3.6)
∂θ

∂x1
+A(x, s, ∂′x)θ = 0

has n− 1-independent solutions θ2, · · · , θn which satisfy :

(3.7) θj(0, x
′, s) = xj , j = 2, · · · , n.

Now, the change of variables (x1, x2, · · · , xn, s) → (x1, θ2, · · · , θn, s)

satisfies the required properties.
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Dividing by the coefficient of ∂2
x1

(in the new variables), the operator

L can finally be written as

Q = −
1

ã(x, s)
∂s + ∂2

x1
+

1

ã(x, s)
R(x, s, ∂′x) +

1

ã(x, s)

∑

i

˜̃
bi(x)∂i

(3.8)

+
1

ã(x, s)
˜̃c(x)

where ã is C1, R is an operator of order ≤ 2, with C1 coefficients ; the

coefficients
˜̃
bi, ˜̃c obtained from bi, c in (2.2) satisfying the smoothness

hypothesis of Theorem 2.1.

3.3 Carleman Inequality.

There are many versions of Carleman inequality for parabolic op-

erator (Nirenberg [6], Mizohata [5], Saut and Scheurer [11]). Here,

especially, we shall apply lemma 1.5 of Saut and Scheurer [11] to Q

defined by (3.8).

Lemma 3.3. (see [11], Lemma 1.5) Under the hypothesis of Theorem

2.1 on the coefficients of Q, there exist positive constants δ′0, K, M ′

such that for 0 < δ < δ0 and τδ > M ′,

(3.9)

||eτψQv||2L2 ≥ K{τ 3δ2||eτψv||2L2 + τ ||eτψ∂x1v||
2
L2 + τδ||eτψ∂′xv||

2
L2},

for all v ∈ C∞
0 (u) with sufficiently small support and where ψ is

defined by

(3.10) ψ(x, s) = (x1 − δ)2 + δ2(|x′|2 + s2).
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3.4 End of the Proof of Theorem 2.1.

Since

supp ˜̃Λa,λ ⊂ {(y, s) : y1 ≥ |y′|2 + s2 ≥ ǫ(|ỹ′|2 + s̃2)},

we have

{(y, s); y1 ≥ |y′|2 + s2} ⊂ {(y, s); (y − δ)2 + δ2(|y′|2 + s2) ≤ δ2}

≡ {(y, s);ψ(y, s) ≤ ψ(0, 0)}.(3.11)

Now we let χ ∈ C∞
0 (U ′) be a smooth function such that χ ≡ 1 in

a neighborhood Ũ of the origin.

We set ωa,λ = χ ˜̃Λa,λ ; from (3.9),

(3.12) ||eτψQωa,λ||
L2(U ′∩ ˜̃Ω

+

×I)
≥ Kτ 3/2δ ||eτψ

˜̃
Λa,λ||

L2(U ′∩ ˜̃Ω
+

×I)
,

where I = (−T1, T1) and ψ is defined by (3.10).

On the other hand,

Qωa,λ = χQ
˜̃
Λa,λ + [Q,χ]

˜̃
Λa,λ,

where [Q,χ] is a first order operator which support is contained in

(U ′ \ Ũ ) ∩ ˜̃Ω
+

× I and the commutator of two operators A and B is

defined as the operator [A,B]v = A(Bv) −B(Av).

Since supp Qωa,λ ⊂ supp ωa,λ, there exist positive constants k1

and k2 with k1 > k2 such that

(3.13) {(U ′ \Ũ )∩ ˜̃Ω
+

×I} ⊂ {(y, s);ψ(y, s) ≤ ψ(0, 0)−k1 = δ2−k1},

and let

(Ũ/N ∩ ˜̃Ω
+

× I) ⊂ (U ′ ∩ Ω+ × I)
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be a neighborhood of (0,0) and for N large enough such that

(3.14) (Ũ/N ∩ ˜̃Ω
+

× I) ⊂ {(y, s);ψ(y, s) > ψ(0, 0) − k2 = δ2 − k2}.

So that by (2) of Lemma 3.1 and (3.13), we obtain

(3.15) ‖eτψ [Q,χ]
˜̃
Λa,λ‖

L2{(U ′\Ũ)∩
˜̃
Ω

+

×I}
≤ eτ(δ

2−k1) ˜̃
Cuλ

1
2 e

λT1
2

8 ,

and by (3) of Lemma 3.1, we have

(3.16) ‖eτψχQ ˜̃Λa,λ‖
L2(U ′∩ ˜̃Ω

+

×I)
≤ eτδ

2 ˜̃Cuλ
1
2 e

λT1
2

8
−λ

2
(T1−|a|)2.

From (3.14), the inequality (3.12) becomes,

(3.17)

‖eτψQωa,λ‖
L2(U ′∩ ˜̃Ω

+

×I)
≥ kτ 3/2δeτ(δ

2−k2)‖
˜̃
Λa,λ‖

L2( Ũ

N
∩ ˜̃Ω

+

×I)
.

Now we use inequality (3.15) and (3.16) combined with (3.17) and

we set τ = νλ, where ν will be chosen later on, then we have

‖
˜̃
Λa,λ‖

L2( Ũ

N
∩

˜̃
Ω

+

×I)
≤ (

˜̃
Cu/K · δ)ν−3/2 1

λ

[

eλ{−ν(k1−k2)+
T

2
1
8

}

+ +eλ{νk2+
T

2
1
8

− 1
2
(T1−|a|)2}

]

.

(3.18)

We want to show that ||
˜̃
Λa,λ||

L2( Ũ

N
∩

˜̃
Ω

+

×I)
tends to 0 when λ tends

to +∞. For this purpose, we have to prepare the followings.
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From (3.18), we have

(3.19)

{

−ν(k1 − k2) + T1
2/8 < 0,

νk2 + T1
2/8− (T1 − |a|)2/2 < 0.

Then we will find ν satisfying (3.19) if

(3.20) k2T1
2/8(k1 − k2) + T1

2/8 < (T1 − |a|)2/2.

since k2 < 1/N and 0 ≤ a ≤ T1/10.

Then we get

lim
λ→+∞

‖
˜̃
Λa,λ‖

L2( Ũ

N
∩

˜̃
Ω

+

×I)
= 0.

Hence u is zero by (1) of Lemma 3.1. The proof of Theorem 2.1 is

complete.
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5. S. Mizohata, Uncité du prolongement des solutions pour quelques opérateurs
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