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FURTHER LOG-SINE AND LOG-COSINE INTEGRALS

JUNESaNG CHor*

ABSTRACT. Motivated essentially by their potential for applica-
tions in a wide range of mathematical and physical problems, the
log-sine and log-cosine integrals have been evaluated, in the exist-
ing literature on the subject, in many different ways. Very recently,
Choi [6] presented explicit evaluations of some families of log-sine
and log-cosine integrals by making use of the familiar Beta func-
tion. In the present sequel to the investigation [6], we evaluate
the log-sine and log-cosine integrals involved in more complicated
integrands than those in [6], by also using the Beta function.

1. Introduction and preliminaries

Motivated essentially by their potential for applications in a wide
range of mathematical and physical problems, the log-sine and log-cosine
integrals have been evaluated, in the existing literature on the subject,
in many different ways (see, for example, [2, 3, 6, 7, 9, 10, 13, 15, 17, 18]
and the references therein). By making use of the familiar Beta function
B(a, B) (see, for example, [18, p. 8, Eq. (43)])

/ L1 08 (R(a) > 0: R(B) > 0)
0

(11) Bla, B) =
[(a)D(8)

o+ 9) (R(a) <0; R(B) <0; o, BEZy ),
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where Zy = Z~ U{0}, Z7 := {—1, =2, =3, ...}, and T’ is the familiar
Gamma function, Choi [6] presented evaluations of some families of log-
sine and log-cosine integrals. In the present sequel to the investigation
[6], we evaluate the log-sine and log-cosine integrals involved in more
complicated integrands than those in [6], by also using the Beta function
(1.1).

Setting ¢ = sin?@ in (1.1), we have the following equivalent form of
the Beta function B(a, 3):
(1.2)

w/2
Bla, §) =2 /O (sin0)21 (cos )21 d9 (R(a) > 0; R(3) > 0).

For our purpose, let us replace « and 3 by p+ 1 and v + 1, respectively,
in (1.2) and we get:

/2 D(p+1)T(v+1)
in §)2nt1 0)2v+1 4 — H
/0 (sin6) (cos ) 2T +v+2)

(R(p) > =13 R(v) > —1).

(1.3)

Differentiating each side of (1.3) p times with respect to the variable p,
we obtain

/2
/ / (log sin A (sin 6)***1 (cos §)* 1 dp
0

(1.4) 1o [P+ )T +1)
Ctl gup | T(u+v+2)
(R(p) > —1; R(v) > —1; p € No:=NU{0}),

where N is the set of positive integers. Differentiating each side of (1.4)
q times with respect to the variable v, we get

/2
0
(1.5) 1 99 8 [T(u+1)T(r+1)

T optatl Guagpr | T(p+v+2)
R(p) > =1 R(v) > —1; p, ¢ € Ng :=NU{0}).

We also need the following notations and functions. The generalized

harmonic numbers H." of order s are defined by (c¢f. [1]; see also [11],
[17, p. 156] and [18, Section 3.5])
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1
(1.6) H® =" — (neN; seC)
— J°
J
and
"1
(1.7) H, := H = 5 (n € N)
j=1

are the harmonic numbers. Here C denotes the set of complex numbers,
and we assume that

Hy:=0, H:=0 (seC\{0}) and H :=1.

The generalized harmonic functions H,(f)(z) are defined by (see [4, 11];
see also [14, 16])

n

() (2) = _ n Dz s
(1.8) H) (2) ;(ﬁz)s (neN; zeC\Z™; se€C),

so that, obviously,
HE0) = H.

The generalized odd harmonic numbers O,(f) of order s are defined by

n

1
j=1 A
and
"1
(1.10) Op =00 =>" 71 (n € N)
j=1

are the odd harmonic numbers.
The Riemann Zeta function ((s) is defined by (see, for example, [18,
Section 2.3])

(1.11)
1 R 1
nz ns . 1-—2-° nzl ooy (RE)>1)
R RIFR VT .
1 — 21—5 Z ns (%(3) > 0, S 7& 1)a



772 Junesang Choi

which is an obvious special case of the Hurwitz (or generalized) Zeta
function ((s,a) defined by

(1.12) ((s,a):= (k+a)™ (R(s)>1;aeC\Zy).
k=0

Equation (1.6) can be written in the following form:
(1.13) H® =((s)=C(s,n+1)  (R(s)>1; neN)

by recalling the well-known (easily-derivable) relationship between the
Riemann Zeta function ¢(s) and the Hurwitz (or generalized) Zeta func-
tion ((s,a) (see [17, Eq. 2.3(9)]):

n
(1.14) ((s)=Cls,n+1)+> k™ (neNy).
k=1
The Polygamma functions 1™ (s) (n € N) are defined by
(1.15) o™(s) := Lﬂlog I'(s) = ﬁ7,D(3) (n€Np; s e C\Zy)
dznt1 ds™ ' 0/

where 9 (s) denotes the Psi (or Digamma) function defined by

(1.16)  #(s) = % logT(s) and ¥ (s) =1(s) (seC\Zy).

A well-known (and potentially useful) relationship between the Poly-
gamma functions (" (s) and the generalized Zeta function ((s,a) is
given by

> 1
(n) — (_1\n L) — (_1\nt1l
(1.17) ™ (s) = (—=1)"* 1 n! kzo T ()" pl¢(n+1,s)
(neN; seC\Zy).
It is also easy to have the following expression (cf. [17, Eq. 1.2(54)]):
(1.18) ™ (s+n) —p™(s) = (=)™ m! H™ V(s —1) (m, n € Ny),

which immediately gives H,Ef) the following another expression (cf. [12,
Eq. (20))):

(1.19)
my _ D™ (m=1) ,
B = [w (n+1)— ™ D) (meN; neNy).
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2. Some properties and special values of the Psi and Gamma
functions

In this section, for easy reference in the next section, we recall some
properties and special values of the Psi and Gamma functions. The fun-
damental functional relation for the Gamma function is given as follows:

(2.1) I(z+1)=2I(z),
so that, obviously,
B I'(z+n)
(2.2) F(z)_z(z—i—l)---(z—i—n—l) (n € Np).
(2.3) U(z+n) =1(2) + Hpo(z — 1) (n€No),

which is an obvious special case (m = 0) of (1.18).
1 2n)!
(2.4) I'n+1)=n! and F<n+2> :W (n € Np).
n!

(2.5) Y(n)=—v+Hp1 (neN),

where Hy := 0 and ~ denotes the Euler-Mascheroni constant defined by
(2.6)

n
1
v := lim (Z T log n) = 0.57721 56649 01532 86060 6512 - - - .

1
(2.7) w<n+2>:—7—210g2+20n (n € Np).
(2.8) P <;> = —y—2log2.
(2.9) HE) (-i) _ 220 (neN; seC)

(2.10) vy <n—;m+ 2>

- _% + 407(12-i)-m+2 - H7(12) (n7 m e NO) :
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¢mn+n_¢m(n+m+§)

(2.11)
:2<6qm+iﬁ$+80$@W» (n, m € No).
) <n+3> — <n+m+ 5)
(2.12) 2 2

1
= —QHSL <n+ 2> (n, m € Np).

3. Log-Sine and its related integrals

For convenience, let
M(p+1)T(v+1)
flp,v) =
D(p+v+2)

Taking the logarithmic partial derivative of f(u,r) with respect to the
variable u, we get

(3.1) éiﬂmWZfWWHMu+U—¢w+V+%l

Then, applying Leibniz’s rule for differentiation to Equation (3.1), we
obtain

akJrl k k 8j
(m)mﬁﬁww_;<»&ﬂww
b
e W )~ b+ D) (FEN).

Now, from Equations (1.4), (3.1) and (3.2), we find the following formula:

/2
/ log sin #)? (sin 8)**1 (cos )21 db
0

(
Dp+1)T(v+1)
D(p+v+2)
@+ 1) =+ v +2)? + 9 (1) = ¢ (p+ v+ 2)]
(R() > —1; R(v) > 1)
where the prime’ indicates the differentiation with respect to the variable
1h.

1
(3.3) = 3



Further log-sine and log-cosine integrals 775

Here, we present some interesting special cases of (3.3) without their
proofs. It is noted that each of the formulas presented here can be
easily derived by using suitably chosen identities and, if necessary, their
easily-derivable variants, given in Sections 1 and 2.

(1) (u, v) = (n, m) € Ny x Np.

w/2
/ (log sin )2 (sin 8)>" 1 (cos 6)*™+L dp
4 0
(34) n!m)! 9 (2)
= Srmen) [~ Hume) 4 Hy ()]

(2) (i, v) = (n, m+1/2) and (n, m) € Ny x Ny.

w/2
/ (log sin 6)? (sin 6)>" ! (cos #)2™+1) 4o
0

_ 22l (2m + 2) (n 4 m + 2)!

(8:5) (m+1)!(2n + 2m + 4)!

2
™
. |:(2 10g2 + Hn - 20n+m+2)2 - ? + 40,22_,')_7.”_’_2 — HT(LQ)

(3) (i, v) = (n+1/2, m) and (n, m) € Ng x Ny.

w/2
/ (log sin 0)? (sin 6)2+1) (cos )2+ db
0

22l (2n 4+ 2)! (m + n + 2)!
B (n+ 1! (2m + 2n + 4)!

1
: [4 (Ons1 — Onimin) + Hffll (n + )] .

(3.6)

2
(4) (n, v)=(m+1/2, m+1/2) and (n, m) € Ny x Ny.

/2
/ (log sin ) (sin 9)2(n+1) (cos 9)2(m+1) do
0

B 7 (2n + 2)! (2m + 2)!
(3.7) = 22n+2m+T (n 4+ 1) (m + 1)! (n 4+ m + 2)!

2
s
: [(2 10g2 = 20n41 + Hyyms2)® + EN 405321 + Hr(z242m+2 :

Differentiating both sides of Equation (3.3) with respect to pu, we
obtain
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(3.8)
/2
/ (log sin §)3 (sin 8)** 1 (cos §)* 1 dh
0

- 1% ”‘&Z?ff; D[t )~ g+ v+ 2)°

+3W(n+1) —v(p+rv+2) (@ (p+1) =¥ (p+v+2)
D+ 1) =@t v +2)] (R > ~1; RE) > -1).

Here we give four special cases of Equation (3.8).

(1) (u, v) = (n, m) € Ny x Np.
(3.9)

/2
/ (log sin #)3 (sin 8)>" 1 (cos §)*™+1 dp
0

n!m!
16 (n+m+1)!

: [(Hn - Hn+m+1)3 +3 (Hn - Hn-‘rm-i-l) H?szrl (n) -2 H}jll(n)} .

(u, v) = (n, m+1/2) and (n, m) € Ny x Np.

w/2
(log sin 6)? (sin 6)>" 1 (cos 6)2™+1) g

0
227201 (2m + 2)! (n+ m + 2)!

(m+1)!'(2n+2m +4)!

[(2 log2+ H, —2 On+m+2)3

7T2

+2(6¢@3) + HP +80,,.,)] -
(u, v) = (n+1/2, m) and (n, m) € Ny x Ny.

w/2 )
(log sin 0)5 (sin 9)2(n+1) (cos 9)2m+1 do
0
. 92m—2 (2’[7, + 2)! (m +n+ 2)!
T (n+1)!2m+2n+4)

1 1
+6 (Ont1 — Optme2) Hr(r?—)l-l <n + 2) o QHT(’?‘)H (n + 2> } '

{8 (On+1 - On+m+2)3
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(4) (u, v)=(mn+1/2, m+1/2) and (n, m) € Ny x No.
(3.12)

w/2
/ (log sin 6)3 (sin 6)2" D (cos 9)2(m+1) gg
0

B m(2n + 2)! (2m + 2)!
- 22428 (p 4+ 1) (m + 1)! (n + m + 2)!

: [(72 log2+20p41 — Hn+m+2)3

3
2(-6¢3) - B0 +800) ) |.

72
+3(—21log2+ 20,41 — Hyymy2) < - 40(421 + iﬁmz)

The case of (1.5) when p =1 = ¢ gives

w/2
/ (log sin ) (log cos 6) (sin #)%* T (cos 0)* 1 df
0

(3.13) = LTEEDTEAD o0 gt 4 2) W+ 1)

8 TI(p+v+2)
—V(p+v+2) =P (ptv+2)
(R(u) > —1; R(v) > -1).
Here we give four special cases of Equation (3.13).

(1) (u, v) = (n, m) € Ny x Np.
(3.14)

w/2
/ (log sin ) (log cos 6) (sin 8)2" T (cos #)>™ 1 dp
0

nlm! @) 2
= St |~ Hove) (o~ Hsn) + 52,0 =
(2) (u, v) = (n, m +1/2) and (n, m) € Ng x No.
(3.15)
w/2
/ (log sin ) (log cos 6) (sin #)*" T (cos 9)2(m+1) do
0
_ 2l @m+2) (n+m + 2)!
(m+ D! (2n + 2m + 4)!
2
v
. |:2 (Oerl - On+m+2) (2 log2 + H,, — 2 On+m+2) +4 Oﬁi)_m+2 o ?
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(3) (u, v) = (n+1/2, m) and (n, m) € Ng x Np.
(3.16)
w/2
/ (log sin 8) (log cos ) (sin 6)2"+Y) (cos )>"+1 db
0

227l (2n 4+ 2)! (n + m + 2)!
B (n+ 1! (2n 4 2m + 4)!

2
: {2 (On+1 — Ontmi2) (2log2 + Hyy — 2 Opm2) + 4 01(12—1)—m+2 - %
(4) (n, v)=(m+1/2, m+1/2) and (n, m) € Ny x Ny.
(3.17)

w/2
/ (log sin @) (log cos @) (sin 9)2(”+1) (cos 9)2(m+1) do
0

—_

B T (2n +2)! (2m + 2)! §® 2
C222mAT (L ) (m A+ 1) (n+m +2)I L2 6

+ (*210g2 + 2 On+1 — Hn+m+2) (*210g2 + 2 Om+1 — Hn+m+2> ] .

4. Concluding remarks

In view of Equation (1.1), it is easy to see the following symmetric
relation with respect to the variables o and :

(4.1) B(a, 8) = B(f,a).

Since we begin by giving a partial differentiation to the Equation (1.3),
which preserves the symmetry with respect to the variables p and v,
if we interchange sinf < cosf and p < v in each of those integrals
given in Section 3, we can obtain formulas each of whose evaluations is
the same as in the corresponding results in Section 3. For example, we
present only one formula corresponding to Equation (3.4):

(4.2)

w/2
/ (log cos)? (sin §)*" ! (cos §)?™ L dg
0

n!m! 2 (2)
=———— |(H,— H, H ,m € Np).
) (TL +m+ 1), ( n n+m+1) + m+1(n) (TL m 0)
Here we showed how we can obtain some interesting and (potentially)
useful integrals by using a well known function. We leave the integrals
involved in more complicated integrands to the interested reader.
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