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SEPARABLE REFLEXIVE BANACH
SUBLATTICES OF WeakL!

JEONGHEUNG KANG*

ABSTRACT. We investigate complemented Banach sublattices of the Ba-
nach envelope of WeakL!. In particular, the Banach envelope of WeakL!
contains a complemented Banach sublattice that is isometrically isomorphic
to a separable reflexive Banach lattice.

1. Introduction

The space WeakL' was introduced in analysis when it was observed that
some important operators such as the Hilbert transform and the Hardy-
Littlewood maximal functions did not map L' into L'. In this view point,
it became natural to investigate WeakL", the space of measurable functions

f satisfying
(1.1) mweazu@ﬂ>yn<§.

For 0 < p < oo, the space WeakLP taken over the measure space (€2, 3, i)
consists of all equivalence classes of measurable functions f for which the

quasinorm

(1.2) 0 (f) = swpalu({z € @ |f(@)| > a})]?

is finite. Define g to be the Minkowski functional of the convex hull of the
unit ball {f € WeakL! : q;(f) < 1} of WeakL', where

u(f) = it;gau({w €Q:[f(x)] > a})
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It was shown in [2] that

(13 o=, it Sl

where the infimum is taken over all finite decompositions f = fi +---+ f,
of f in WeakL'. So ¢ is a seminorm on WeakL!. The quotient space of
WeakL' modulo the subspace of elements f satisfying ¢(f) = 0 is a Banach
space normed by ¢ whose dual coincides with the dual of WeakL!. In [2],
M. Cwikel and C. Fefferman showed that if p is nonatomic then we get an

equivalent integral-like seminorm

) 1
(1.4) ||f||wLi = lim sup lq/ ’f’du,
o0 d>n M J{p<|fI<q}

It was shown in [3] that the Banach envelope seminorm on WeakL! is ex-
actly the same as the seminorm on WeakL! given in (1.4). Note that the
seminorm on WeakL"' given in (1.4) is a lattice seminorm. This is not quite
obvious, but using integration by parts one can show (see [7, 1.5]) that

| fllw,is exactly the same as

(1.5) lim sup

n—oo 9>p n
p=

o [ et s @) > e

p /P

Even though WeakL' is complete with respect to the quasinorm ¢, it
is not complete with respect to the seminorm || - ||,z,. This is due to M.
Cwikel and C. Feffreman in [3] and also we can see this in [7, 1.4].

Now, let N' = {f € WeakL" : | f|lwz, = 0}. Then we obtain the quo-
tient space WeakL!/N. We define wLj as the normed envelope (and its
completion as the Banach envelope) of WeakL!.

It is known that WeakL' is not normable except for some trivial mea-
sure spaces (see [4]). In [4, Theorem 6], the authers showed that there
exist nontrivial continuous linear functionals on WeakL'. This implies that
WeakL!' has a nontrivial dual space. Moreover, in [7], J. Kupka and T.
Peck showed that the space L™ is dense in the dual space of WeakL' with
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weak*-topology, and that there exist lattice embeddings of L, 1[0, 1], I>°
and ¢[0,1] into wL;. In particular, the author proved that there exists a
lattice isometry T : L' — wL; whose range is a complemented subspace
of wL; (see [7, Theorem 3.9]. Later on, T. Peck and M. Talagrand [10,
Theorem 1] proved that every separable order continuous Banach lattice is
lattice isometric to a sublattice of wL; and H. Lotz and T. Peck removed
the hypothesis ‘order continuity’ (see [9, Theorem 2]).

In this paper, we will show that the Banach envelope wL; of WeakL*
contains a lot of complemented Banach sublattices. In particular, for a
separable reflexive Banach lattice F/, we find a lattice isometry T : £ — wlL;
such that the range of T" is a complemented sublattice of the Banach envelope
wLj of WeakL'. So the main result of this paper is an extension of 7,
Theorem 3.9]. Since for 1 < p < oo, LP space is a reflexive Banach lattice,
we can see that L is a complemented sublattice of wL;. We will give the

answer for this at the end of section 2.

2. Separable complemented sublattice in wl;.

To study this subject, we need some basic facts about the dual of wL;.
We would like to change nonlinear limit superior expression (1.4) for || -[[,L;
into a linear expression by directing the number I°(f) = L& f{a§|f|§b} |f|du

In

in some fashion. By [4, §1], we can define (1.4) as
21) [Flhut; = Yim (sup{Z%(f) : bfa = n}).

For this, we introduce an ultrafilter I so that the limit of the I along U
will determine a canonical integral-like linear functional Iy € wL3.

We now construct an ultrafilter U (see [7, §2.1]). For n = 1,2,---, let
F, ={(a,b) : 1 <a <b,2 >n} and then define F = {F, : n > 1}. Treating
F as a filter of subsets of the set S = [1,00) X [1,00), we obtain from Zorn’s
lemma an ultrafilter I/ of subsets of S such that F C U. From now, we’ll fix
the ultrafilter 7 C U. The significance of the ultrafilter property lies in the
fact that for every function f € WeakL', and for every integer n sufficiently
large {I%(f) : (a,b) € F,} is bounded, so that the limit [ = limg, I2(f)
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always exists(for every e > 0, there is a set U € U such that |[I8(f) — 1] < €
whenever (a,b) € U).

Define the “ersatz integral” I, for every nonnegative function f € wL; by
Iy/(f) = limy, I°(f). For more properties of I/ (f), refer to [7, 2.3 key lemma].
We define for an arbitrary function f € wLi by Iy(f) = Lu(f+) — Lu(f™).
Then we have [I(f)| < ||f|lwz,. Define || fllsy = I/(|f]). Note that (see [7,
2.12])

(2.2) 1l < Dty

For the dual of WeakL!(or wL;), we state the theorem which is due to
J. Kupka and T. Peck in [7, 2.8].

THEOREM 2.1. Define a linear operator Ty : Loo(p) — WeakL'™ by
Ty (m) = Iy(mf) for allm € Lo, and for all f € WeakL'. Then Ty consti-
tutes an isometric order isomorphism of Lo (p) into WeakL'". Moreover,
the linear span of the subspaces Ty (Loo (1)), as U ranges over the collection
of ultrafilter (of subset of S) which contain F constitutes a norming, and

hence a weak* dense, subspace of WeakL'".

The operator Ty, of Theorem 2.1 determines an isometric order isomor-
phic embedding of Lo (u) into WeakL!(U)* where WeakL'(U) = {f €
WeakL!' : ||f|lu < oo}. Moreover, the range of this embedding is norming,
and hence weak* dense in WeakL'(U)*.

Let L(U) = {f € WeakL" : ||fllwr, = ||fllu}. Then L(U) is a closed
subset of wLj(see [6]) and if f is a L-like function, then || f|lwr, = [|f|lu =
Iu(f)-

LEMMA 2.2. If ¢ # 0 is a linear functional on WeakL' (i), then ¢ is a

linear functional on wlL;i with ||¢|| # 0.
Proof. Let ¢ # 0 be a linear functional on WeakL! (U). Then for any f €
wL; with [|f]jzr > 0 ( since f € wL;j is also regarded as f € WeakL'(U)).

0 <[o(H < el fllee
< loMlfllwz; by (22).
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Hence, ||¢]| # 0 on wL;. This implies ¢ # 0 is a linear functional on wL;.00

We now give a lemma about linear functionals on w/L; which is actually
due to J. Kupka and T. Peck (see [7, 2.20]).

LEMMA 2.3. For a ultrafilter U defined as above, let f € wL; be a
nonnegative function with ||f|lyy = 1. Then for any g € wLj, disjointly

supported from f, we can find ¢ € wL} such that lloll = 1, ¢(f) = 1 and
¢(g) = 0.

Let (fn)n1 be a sequence of nonnegative elements in wL; with || fy|lwz, =
1, foralln =1,2,3,--- and such that the f,, have pairwise disjoint supports.
Applying the inductive argument to Lemma 2.3, for each f,,, we can find a
linear functional ¢,, on wLj such that ¢, (f,) =1, ||¢n|| = 1 and ¢, (frm) =0
if n # m.

LEMMA 2.4. Let (f,)s2; be a sequence of nonnegative elements in wLj
such that the f,, have pairwise disjoint supports with | f,|lwz; = 1, for all
n =1,2,--- and let (¢,,)32, be a sequence of linear functionals on wL;
selected as above. Then for any f € wLj, we have >~ | ¢ (f)| < || fllwz,-

Proof. For an arbitrary element f € wL;, the number ¢, (f) is the limit
of a subnet of the sequence {I;y(xE, , - f)} where (E, )72, is a decreasing
sequence of subsets of F,, = supp(f,), and f, is bounded on E7 . for all
k (see [7, 2.20]). Fix n # m, let (E, x)32; be the decreasing sequence of
measurable sets for f,, and (E,, ;)32 the corresponding sequence for fy,.
Let r = sgnly(Xg, . - [), s = sgnlu(xe,. . - [)- Put m =rxg, , + sXB,,.
so that ||m|l.c = 1. By Theorem 2.1 and Lemma 2.3, we can identify

Ty(m) = m as a linear functional on wL;. Then we have

m(f) = u(xEe,., - )+ Hu(xe,.,. - )l

= Iy(m- f)
< |[mflsoll fllee  since [[m|le =1
= Iflle Dby (2.2)

< [l -
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By the additive rule for nets [5, Lemma 6, p28], we can say that in the limit

O ()] + 1Dm (N < 1 fllee by (2.2)

<z -

To show Y7 1 [dn(f)] < | fllwr;, it suffices to show that for any N € N,
22;1 |60 ()] < N fllwr,- Forn=1,2,---, let (E, )2, be the decreasing
sequence of measurable sets for f,, and E,, = supp(f,). Let 7, = sgn(xe, , -
f). Put m = 25:1 TnXE, . Then we have |m|. = 1. By the same

argument as above, one can get

() = u(xe,,  f)

= Iy(m- f)
<|mllso|lfllee  since ||m[loc =1 and by (2.2)

< [ fllwis -

By the additive rule for nets [5, Lemma 6, p28], we can say that in the limit

N

Z D0 ()] < |1 f]lee since ||m||eo =1

n=1

< [ fllews -

We can therefore say that " | |5 (f)| < || fllwL, -

This proves the lemma. U

We now need to recall the T. Peck and M. Talagrand’s theorem. In [10,
Theorem 1], one can see the following theorem; Let Q be a set and €, ,,,
n>0,1<1i<2"beaset of Qsuchthat Q1 0=, Q;, N, =0,ifi #j
and €; , = Qo141 U Qo ny1. Let x4, be the characteristic function of
Qin,n>0,1<14<2" and let Y be the linear span of the functions x; »,
n>01<i<2"

THEOREM 2.5. [10, T. Peck and M. Talagrand] Let X be the completion
of Y under some lattice norm on Y where Y is given the usual pointwise

order. Then there is a lattice isometry of X into wLj.
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T. Peck and M. Talagrand constructed for all natural number n, 1 <14 <

2™ under lattice isometry T', T'x; », = fi n, Where

27TL—TL
fin = E E €am—n(;i—1)4j,m

m>n j=1

bi,n

T—Ui,n

that f;, are all nonnegative and pairwise disjointly supported in wL; and

and for x € [v;,,w; ], each €; ,(z) = is a %—like function. Note
fin = fain+1 + foit1,nt1, for all n, and 1 < ¢ < 2™ (see [10, proof of
Theorem 1]).

THEOREM 2.6. Let E be a separable reflexive Banach lattice and T :
E — wL; be the lattice isometry given in Theorem 2.5. Then the range

of T' is a complemented sublattice of wL;.

Proof. Let E be a reflexive Banach lattice. Then TFE is also a reflexive
sublattice of wL;. This implies that the unit ball Brg is weakly compact.
Since every separable reflexive Banach lattice has an order continuous norm,
E has an order continuous norm. Hence we can apply the construction of
T in Theorem 2.5. Let (xin)?., be the subset of E defined in Theorem
2.5. Without loss of generality, one can assume |x;,| = 1 for all 1 <
i < 2" by normalizing. Then we have span(x; )%, C E. Define Tx;, =
fin, then span(fi,) ~ span(xin). Since {x;,} form a dense subset of
E, {fin} form a dense subset of TE. Moreover, for fixed n, the f;, are
pairwise disjointly supported nonnegative elements in T'E with || f; »||wr; =
1. Hence by Lemma 2.3, we can find linear functionals ¢;, on wL; such
that ¢; »(fjn) = 0:i; and ||¢; »|| = 1, for all i = 1,2,---. For each n, let
B, = {fiyn}?; and define Pp, : wL; — W(fi,n)gil C TE by

on

(2.3) Pg,(f) = Z Gisn(f) fim-

Since, for all f € wLj, by Lemma 2.4 and || f;n|lwz; =1

277.
1Pz, (Fllwz; = 11D din(f) finllwr,
i=1
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.
<3 el il
=1

(2.4) < S 16in(H)] < 1flhu,-
=1

This implies ||Pg,
fim € TE C wLy,

< 1, and Pp, is a well defined linear map. Moreover,

277/
Py, (fin) =Y bin(fin) fim
i=1
(25) = ¢j,n(fj,n)fj,n = fj,n-
Hence ||Pg, (fjn)llwz; = [Ifinllwz; = 1, and P§ = Pp,. Hence Pp, is

a projection wL; onto span(f; )%, C TE. From this, we want to find a
projection P from wLj onto TE. We define a partial order on {B,}52;
by B, < By, if span(fi,) C span(f;m,). Then for each B,, we have
1P, ()lwr; < fllwe;, for all f € wLj by (2.4). Hence the vector Pp, (f)
belongs to {g € TE : ||g|lwr; < || fllwz,} which is a weakly compact subset

in TE. Now consider the following product space;

(2.6) II t9€TE llglloz; < Ifllwrs}-
waLi

Note that by Tychonoff’s theorem, [;c,,; {9 € TE : [|gllwr; < |[fllwr;} is
compact for the weak topology. Hence the net {Pg, } of projections from
wLj; to TE has a subnet which converges to some limit point P, in the
topology of pointwise convergence on wlj, taking the weak topology on
TE. Let {Pp,_} be a subnet of {Pp,} which converges to P. Then we
have the weak limit P(f) = lim, Pp,_(f), for all f € wL;. Since each Pp,
is contractive, positive, and norm one, P is contractive, positive, and norm
one.

Finally, we need to show that for all f € TE, P(f) = f. Since (fin)
are dense, given € > 0 one can find B, = {f; »} such that | 212:1 aifin —
fllwz, < €/2 for some (a;)%,. Let g = 222;1 a;fin. Then since ||P(g) —

gllwz; =0, we can have
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1P(f) = fllwz, < NP = P@)llwz; + 1P(9) = gllwr; +1lg — fllwr,
<P = Dllwr; + g = fllw,
<If=9gllwe; +llg = fllwr;

< €.

Hence P(f) = f for all f € TE. Therefore P is a positive norm one

projection from wL; onto T'E. This proves the theorem. O

Now for (1 < p < o0), we can have the L,(u) space structure which is

lattice isometric to a complemented in wLj.

COROLLARY 2.7. For 1 < p < oo, the Banach envelope of WeakL, con-
tains a complemented sublattice that is isometrically isomorphic to L,(Q, X, 1)

where  is a separable probability measure.

Proof. For 1 < p < 0o, L,(p) is a reflexive separable Banach lattice. By
Theorem 2.5, there exists a lattice isometry 7" from L, (p) into wL;. Then
TLy(p) is a separable reflexive Banach sublattice of the Banach envelope of
WeakL'. Hence by Theorem 2.6, one can find a projection P from wL; onto
TL,(p). Since Ly(p) is lattice isometric to T'Ly(p), TLy(p) is the desired
sublattice. This proves the corollary. O

COROLLARY 2.8. Let E be a separable reflexive Banach lattice. Then

any ideal I of E is lattice isometric to a complemented sublattice of wLj;.

Proof. LetT : E — wL;j be the isometric order isomorphism of Theorem
2.5. Then by Theorem 2.6, TE is complemented in wL;. Let P: wL; —
TFE be a projection and I be an any ideal of £. Then T is an ideal of
TE. Since F is order continuous, T'F is also an order continuous sublattice
of wL;. Hence by Ando’s theorem [8, 1.a.11], T'I is the range of a positive
projection from TFE. Let P, : TE — T1I be a such projection. Then
Q) = Py o P is the desired projection from wL; onto T'E. This proves the

corollary. O
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