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SEPARABLE REFLEXIVE BANACH
SUBLATTICES OF WeakL1

JeongHeung Kang*

Abstract. We investigate complemented Banach sublattices of the Ba-
nach envelope of WeakL1. In particular, the Banach envelope of WeakL1

contains a complemented Banach sublattice that is isometrically isomorphic
to a separable reflexive Banach lattice.

1. Introduction

The space WeakL1 was introduced in analysis when it was observed that

some important operators such as the Hilbert transform and the Hardy-

Littlewood maximal functions did not map L1 into L1. In this view point,

it became natural to investigate WeakL1, the space of measurable functions

f satisfying

(1.1) µ({x ∈ Ω : |f(x)| > y}) <
c

y
.

For 0 < p < ∞, the space WeakLp taken over the measure space (Ω,Σ, µ)

consists of all equivalence classes of measurable functions f for which the

quasinorm

(1.2) qp(f) = sup
a>0

a[µ({x ∈ Ω : |f(x)| > a})] 1
p

is finite. Define q to be the Minkowski functional of the convex hull of the

unit ball {f ∈ WeakL1 : q1(f) ≤ 1} of WeakL1, where

q1(f) = sup
a>0

aµ({x ∈ Ω : |f(x)| > a})
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It was shown in [2] that

(1.3) q(f) = inf
f=f1+···+fn

n∑

i=1

q1(fi),

where the infimum is taken over all finite decompositions f = f1 + · · ·+ fn

of f in WeakL1. So q is a seminorm on WeakL1. The quotient space of

WeakL1 modulo the subspace of elements f satisfying q(f) = 0 is a Banach

space normed by q whose dual coincides with the dual of WeakL1. In [2],

M. Cwikel and C. Fefferman showed that if µ is nonatomic then we get an

equivalent integral-like seminorm

(1.4) ‖f‖wL1̂
= lim

n→∞
sup
q
p≥n

1
ln q

p

∫

{p≤|f |≤q}
|f |dµ.

It was shown in [3] that the Banach envelope seminorm on WeakL1 is ex-

actly the same as the seminorm on WeakL1 given in (1.4). Note that the

seminorm on WeakL1 given in (1.4) is a lattice seminorm. This is not quite

obvious, but using integration by parts one can show (see [7, 1.5]) that

‖f‖wL1̂
is exactly the same as

(1.5) lim
n→∞

sup
q
p≥n

1
ln q

p

∫ q

p

µ({x ∈ µ : |f(x)| > t})dt.

Even though WeakL1 is complete with respect to the quasinorm q1, it

is not complete with respect to the seminorm ‖ · ‖wL1̂
. This is due to M.

Cwikel and C. Feffreman in [3] and also we can see this in [7, 1.4].

Now, let N = {f ∈ WeakL1 : ‖f‖wL1̂
= 0}. Then we obtain the quo-

tient space WeakL1/N . We define wL1̂ as the normed envelope (and its

completion as the Banach envelope) of WeakL1.

It is known that WeakL1 is not normable except for some trivial mea-

sure spaces (see [4]). In [4, Theorem 6], the authers showed that there

exist nontrivial continuous linear functionals on WeakL1. This implies that

WeakL1 has a nontrivial dual space. Moreover, in [7], J. Kupka and T.

Peck showed that the space L∞ is dense in the dual space of WeakL1 with
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weak∗-topology, and that there exist lattice embeddings of L1, l1[0, 1], l∞

and c0[0, 1] into wL1̂. In particular, the author proved that there exists a

lattice isometry T : L1 → wL1̂ whose range is a complemented subspace

of wL1̂ (see [7, Theorem 3.9]. Later on, T. Peck and M. Talagrand [10,

Theorem 1] proved that every separable order continuous Banach lattice is

lattice isometric to a sublattice of wL1̂ and H. Lotz and T. Peck removed

the hypothesis ‘order continuity’ (see [9, Theorem 2]).

In this paper, we will show that the Banach envelope wL1̂ of WeakL1

contains a lot of complemented Banach sublattices. In particular, for a

separable reflexive Banach lattice E, we find a lattice isometry T : E → wL1̂

such that the range of T is a complemented sublattice of the Banach envelope

wL1̂ of WeakL1. So the main result of this paper is an extension of [7,

Theorem 3.9]. Since for 1 < p < ∞, Lp space is a reflexive Banach lattice,

we can see that Lp is a complemented sublattice of wL1̂. We will give the

answer for this at the end of section 2.

2. Separable complemented sublattice in wL1̂.

To study this subject, we need some basic facts about the dual of wL1̂.

We would like to change nonlinear limit superior expression (1.4) for ‖·‖wL1̂

into a linear expression by directing the number Ib
a(f) = 1

ln b
a

∫
{a≤|f |≤b} |f |dµ

in some fashion. By [4, §1], we can define (1.4) as

(2.1) ‖f‖wL1̂
= lim

n→∞
(sup{Ib

a(f) : b/a ≥ n}).

For this, we introduce an ultrafilter U so that the limit of the Ib
a along U

will determine a canonical integral-like linear functional IU ∈ wL∗
1̂
.

We now construct an ultrafilter U (see [7, §2.1]). For n = 1, 2, · · · , let

Fn = {(a, b) : 1 ≤ a < b, b
a ≥ n} and then define F = {Fn : n ≥ 1}. Treating

F as a filter of subsets of the set S = [1,∞)× [1,∞), we obtain from Zorn’s

lemma an ultrafilter U of subsets of S such that F ⊂ U . From now, we’ll fix

the ultrafilter F ⊂ U . The significance of the ultrafilter property lies in the

fact that for every function f ∈ WeakL1, and for every integer n sufficiently

large {Ib
a(f) : (a, b) ∈ Fn} is bounded, so that the limit l = limU Ib

a(f)
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always exists(for every ε > 0, there is a set U ∈ U such that |Ib
a(f)− l| < ε

whenever (a, b) ∈ U).

Define the“ersatz integral” IU for every nonnegative function f ∈ wL1̂ by

IU (f) = limU Ib
a(f). For more properties of IU (f), refer to [7, 2.3 key lemma].

We define for an arbitrary function f ∈ wL1̂ by IU (f) = IU (f+)− IU (f−).

Then we have |IU (f)| ≤ ‖f‖wL1̂
. Define ‖f‖U = IU (|f |). Note that (see [7,

2.12])

(2.2) ‖f‖U ≤ ‖f‖wL1̂
.

For the dual of WeakL1(or wL1̂), we state the theorem which is due to

J. Kupka and T. Peck in [7, 2.8].

Theorem 2.1. Define a linear operator TU : L∞(µ) → WeakL1∗ by

TU (m) = IU (mf) for all m ∈ L∞, and for all f ∈ WeakL1. Then TU consti-

tutes an isometric order isomorphism of L∞(µ) into WeakL1∗. Moreover,

the linear span of the subspaces TU (L∞(µ)), as U ranges over the collection

of ultrafilter (of subset of S) which contain F constitutes a norming, and

hence a weak∗ dense, subspace of WeakL1∗.

The operator TU of Theorem 2.1 determines an isometric order isomor-

phic embedding of L∞(µ) into WeakL1(U)∗ where WeakL1(U) = {f ∈
WeakL1 : ‖f‖U < ∞}. Moreover, the range of this embedding is norming,

and hence weak∗ dense in WeakL1(U)∗.

Let L(U) = {f ∈ WeakL1 : ‖f‖wL1̂
= ‖f‖U}. Then L(U) is a closed

subset of wL1̂(see [6]) and if f is a 1
x -like function, then ‖f‖wL1̂

= ‖f‖U =

IU (f).

Lemma 2.2. If φ 6= 0 is a linear functional on WeakL1(U), then φ is a

linear functional on wL1̂ with ‖φ‖ 6= 0.

Proof. Let φ 6= 0 be a linear functional on WeakL1(U). Then for any f ∈
wL1̂ with ‖f‖U > 0 ( since f ∈ wL1̂ is also regarded as f ∈ WeakL1(U)).

0 < |φ(f)| ≤ ‖φ‖‖f‖U
≤ ‖φ‖‖f‖wL1̂

by (2.2).
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Hence, ‖φ‖ 6= 0 on wL1̂. This implies φ 6= 0 is a linear functional on wL1̂.¤

We now give a lemma about linear functionals on wL1̂ which is actually

due to J. Kupka and T. Peck (see [7, 2.20]).

Lemma 2.3. For a ultrafilter U defined as above, let f ∈ wL1̂ be a

nonnegative function with ‖f‖U = 1. Then for any g ∈ wL1̂, disjointly

supported from f , we can find φ ∈ wL∗
1̂

such that ‖φ‖ = 1, φ(f) = 1 and

φ(g) = 0.

Let (fn)∞n=1 be a sequence of nonnegative elements in wL1̂ with ‖fn‖wL1̂
=

1, for all n = 1, 2, 3, · · · and such that the fn have pairwise disjoint supports.

Applying the inductive argument to Lemma 2.3, for each fn, we can find a

linear functional φn on wL1̂ such that φn(fn) = 1, ‖φn‖ = 1 and φn(fm) = 0

if n 6= m.

Lemma 2.4. Let (fn)∞n=1 be a sequence of nonnegative elements in wL1̂

such that the fn have pairwise disjoint supports with ‖fn‖wL1̂
= 1, for all

n = 1, 2, · · · and let (φn)∞n=1 be a sequence of linear functionals on wL1̂

selected as above. Then for any f ∈ wL1̂, we have
∑∞

n=1 |φn(f)| ≤ ‖f‖wL1̂
.

Proof. For an arbitrary element f ∈ wL1̂, the number φn(f) is the limit

of a subnet of the sequence {IU (χEn,k
· f)} where (En,k)∞k=1 is a decreasing

sequence of subsets of En = supp(fn), and fn is bounded on Ec
n,k for all

k (see [7, 2.20]). Fix n 6= m, let (En,k)∞k=1 be the decreasing sequence of

measurable sets for fn and (Em,k)∞k=1 the corresponding sequence for fm.

Let r = sgnIU (χEn,k
· f), s = sgnIU (χEm,k

· f). Put m = rχEn,k
+ sχEm,k

so that ‖m‖∞ = 1. By Theorem 2.1 and Lemma 2.3, we can identify

TU (m) = m̂ as a linear functional on wL1̂. Then we have

m̂(f) = |IU (χEn,k
· f)|+ |IU (χEm,k

· f)|
= IU (m · f)

≤ ‖m‖∞‖f‖U since ‖m‖∞ = 1

= ‖f‖U by (2.2)

≤ ‖f‖wL1̂
.
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By the additive rule for nets [5, Lemma 6, p28], we can say that in the limit

|φn(f)|+ |φm(f)| ≤ ‖f‖U by (2.2)

≤ ‖f‖wL1̂
.

To show
∑∞

n=1 |φn(f)| ≤ ‖f‖wL1̂
, it suffices to show that for any N ∈ N,∑N

n=1 |φn(f)| ≤ ‖f‖wL1̂
. For n = 1, 2, · · · , let (En,k)∞k=1 be the decreasing

sequence of measurable sets for fn and En = supp(fn). Let rn = sgn(χEn,k
·

f). Put m =
∑N

n=1 rnχEn,k
. Then we have ‖m‖∞ = 1. By the same

argument as above, one can get

m̂(f) =
N∑

n=1

|IU (χEn,k
· f)|

= IU (m · f)

≤ ‖m‖∞‖f‖U since ‖m‖∞ = 1 and by (2.2)

≤ ‖f‖wL1̂
.

By the additive rule for nets [5, Lemma 6, p28], we can say that in the limit

N∑
n=1

|φn(f)| ≤ ‖f‖U since ‖m‖∞ = 1

≤ ‖f‖wL1̂
.

We can therefore say that
∑∞

n=1 |φn(f)| ≤ ‖f‖wL1̂
.

This proves the lemma. ¤

We now need to recall the T. Peck and M. Talagrand’s theorem. In [10,

Theorem 1], one can see the following theorem; Let Ω be a set and Ωi,n,

n ≥ 0, 1 ≤ i ≤ 2n be a set of Ω such that Ω1,0 = Ω, Ωi,n ∩Ωj,n = ∅, if i 6= j

and Ωi,n = Ω2i−1,n+1 ∪ Ω2i,n+1. Let χi,n be the characteristic function of

Ωi,n, n > 0, 1 ≤ i ≤ 2n and let Y be the linear span of the functions χi,n,

n > 0, 1 ≤ i ≤ 2n.

Theorem 2.5. [10, T. Peck and M. Talagrand] Let X be the completion

of Y under some lattice norm on Y where Y is given the usual pointwise

order. Then there is a lattice isometry of X into wL1̂.
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T. Peck and M. Talagrand constructed for all natural number n, 1 ≤ i ≤
2n under lattice isometry T , Tχi,n = fi,n, where

fi,n =
∑

m≥n

2m−n∑

j=1

e2m−n(i−1)+j,m

and for x ∈ [vi,n, wi,n], each ei,n(x) = bi,n

x−ui,n
is a 1

x -like function. Note

that fi,n are all nonnegative and pairwise disjointly supported in wL1̂ and

fi,n = f2i,n+1 + f2i+1,n+1, for all n, and 1 ≤ i ≤ 2n (see [10, proof of

Theorem 1]).

Theorem 2.6. Let E be a separable reflexive Banach lattice and T :

E −→ wL1̂ be the lattice isometry given in Theorem 2.5. Then the range

of T is a complemented sublattice of wL1̂.

Proof. Let E be a reflexive Banach lattice. Then TE is also a reflexive

sublattice of wL1̂. This implies that the unit ball BTE is weakly compact.

Since every separable reflexive Banach lattice has an order continuous norm,

E has an order continuous norm. Hence we can apply the construction of

T in Theorem 2.5. Let (χi,n)2
n

i=1 be the subset of E defined in Theorem

2.5. Without loss of generality, one can assume ‖χi,n‖ = 1 for all 1 ≤
i ≤ 2n by normalizing. Then we have span(χi,n)2

n

i=1 ⊂ E. Define Tχi,n =

fi,n, then span(fi,n) ' span(χi,n). Since {χi,n} form a dense subset of

E, {fi,n} form a dense subset of TE. Moreover, for fixed n, the fi,n are

pairwise disjointly supported nonnegative elements in TE with ‖fi,n‖wL1̂
=

1. Hence by Lemma 2.3, we can find linear functionals φi,n on wL1̂ such

that φi,n(fj,n) = δi,j and ‖φi,n‖ = 1, for all i = 1, 2, · · · . For each n, let

Bn = {fi,n}2n

i=1 and define PBn
: wL1̂ −→ span(fi,n)2

n

i=1 ⊂ TE by

(2.3) PBn(f) =
2n∑

i=1

φi,n(f)fi,n.

Since, for all f ∈ wL1̂, by Lemma 2.4 and ‖fi,n‖wL1̂
= 1

‖PBn(f)‖wL1̂
= ‖

2n∑

i=1

φi,n(f)fi,n‖wL1̂
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≤
2n∑

i=1

|φi,n(f)|‖fi,n‖wL1̂

≤
2n∑

i=1

|φi,n(f)| ≤ ‖f‖wL1̂
.(2.4)

This implies ‖PBn
‖ ≤ 1, and PBn

is a well defined linear map. Moreover,

fj,n ∈ TE ⊂ wL1̂,

PBn(fj,n) =
2n∑

i=1

φi,n(fj,n)fi,n

= φj,n(fj,n)fj,n = fj,n.(2.5)

Hence ‖PBn
(fj,n)‖wL1̂

= ‖fj,n‖wL1̂
= 1, and P 2

Bn
= PBn . Hence PBn is

a projection wL1̂ onto span(fi,n)2
n

i=1 ⊂ TE. From this, we want to find a

projection P from wL1̂ onto TE. We define a partial order on {Bn}∞n=1

by Bn ≺ Bm if span(fi,n) ⊂ span(fi,m). Then for each Bn, we have

‖PBn(f)‖wL1̂
≤ ‖f‖wL1̂

, for all f ∈ wL1̂ by (2.4). Hence the vector PBn(f)

belongs to {g ∈ TE : ‖g‖wL1̂
≤ ‖f‖wL1̂

} which is a weakly compact subset

in TE. Now consider the following product space;

(2.6)
∏

f∈wL1̂

{g ∈ TE : ‖g‖wL1̂
≤ ‖f‖wL1̂

}.

Note that by Tychonoff’s theorem,
∏

f∈wL1̂
{g ∈ TE : ‖g‖wL1̂

≤ ‖f‖wL1̂
} is

compact for the weak topology. Hence the net {PBn
} of projections from

wL1̂ to TE has a subnet which converges to some limit point P , in the

topology of pointwise convergence on wL1̂, taking the weak topology on

TE. Let {PBnα
} be a subnet of {PBn

} which converges to P . Then we

have the weak limit P (f) = limα PBnα
(f), for all f ∈ wL1̂. Since each PBn

is contractive, positive, and norm one, P is contractive, positive, and norm

one.

Finally, we need to show that for all f ∈ TE, P (f) = f . Since (fi,n)

are dense, given ε > 0 one can find Bn = {fi,n} such that ‖∑2n

i=1 aifi,n −
f‖wL1̂

< ε/2 for some (ai)2
n

i=1. Let g =
∑2n

i=1 aifi,n. Then since ‖P (g) −
g‖wL1̂

= 0, we can have
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‖P (f)− f‖wL1̂
≤ ‖P (f)− P (g)‖wL1̂

+ ‖P (g)− g‖wL1̂
+ ‖g − f‖wL1̂

≤ ‖P (f − g)‖wL1̂
+ ‖g − f‖wL1̂

≤ ‖f − g‖wL1̂
+ ‖g − f‖wL1̂

< ε.

Hence P (f) = f for all f ∈ TE. Therefore P is a positive norm one

projection from wL1̂ onto TE. This proves the theorem. ¤

Now for (1 < p < ∞), we can have the Lp(µ) space structure which is

lattice isometric to a complemented in wL1̂.

Corollary 2.7. For 1 < p < ∞, the Banach envelope of WeakL1 con-

tains a complemented sublattice that is isometrically isomorphic to Lp(Ω, Σ, µ)

where µ is a separable probability measure.

Proof. For 1 < p < ∞, Lp(µ) is a reflexive separable Banach lattice. By

Theorem 2.5, there exists a lattice isometry T from Lp(µ) into wL1̂. Then

TLp(µ) is a separable reflexive Banach sublattice of the Banach envelope of

WeakL1. Hence by Theorem 2.6, one can find a projection P from wL1̂ onto

TLp(µ). Since Lp(µ) is lattice isometric to TLp(µ), TLp(µ) is the desired

sublattice. This proves the corollary. ¤

Corollary 2.8. Let E be a separable reflexive Banach lattice. Then

any ideal I of E is lattice isometric to a complemented sublattice of wL1̂.

Proof. Let T : E −→ wL1̂ be the isometric order isomorphism of Theorem

2.5. Then by Theorem 2.6, TE is complemented in wL1̂. Let P : wL1̂ −→
TE be a projection and I be an any ideal of E. Then TI is an ideal of

TE. Since E is order continuous, TE is also an order continuous sublattice

of wL1̂. Hence by Ando’s theorem [8, 1.a.11], TI is the range of a positive

projection from TE. Let P1 : TE −→ TI be a such projection. Then

Q = P1 ◦ P is the desired projection from wL1̂ onto TE. This proves the

corollary. ¤
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