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MINIMAL QUASI-F COVERS OF SOME EXTENSION

Cuang In Kiv* AND KapP HUN JUNnGg**

ABSTRACT. Observing that every Tychonoff space X has an exten-
sion kX which is a weakly Lindel6f space and the minimal quasi-F
cover QF (kX) of kX is a weakly Lindelof, we show that ®px :
QF(kX) — kX is a z¥-irreducible map and that QF(8X) =
BQF(kX). Using these, we prove that QF(kX) = kQF(X) if
and only if ®% : kQF(X) — kX is an onto map and SQF(X) =
QF(BX).

1. Introduction

All spaces in this paper are assumed to be Tychonoff and X (vX,
resp.) denotes the Stone-Clech compactification (Hewitt realcompactifi-
cation, resp.) of X.

Iliadis constructed the absolute of a Hausdorff space X, which is
the minimal exteamally disconnected cover (E(X),7x) of X and they
turn out to be the perfect onto projective covers ([6]). To generalize
extremally disconnected spaces, basically disconnected spaces, quasi-F
spaces and cloz-spaces have been introduced and their minimal covers
have been studied by various aurthors ([1], [4], [5], [8], [9]). In these
ramifications, minimal covers of compact spaces can be nisely charac-
terized.

In particular, Henriksen and Gillman intoduced the concept of quasi-
F' spaces in which every dense cozero-set is C*-embedded ([2]). Each
space X has the minimal quasi-F cover (QF(X),®x) ([5]). In [5], au-
thors investigated when SQF(X) = QF(8X) and QF(X) = &3 (X),
where (QF(8X), ®3x) is the minimal quasi-F' cover of 5X.

It is well-known that each space has the minimal extremally discon-
nected cover (E(X), kx) and that SE(X) = E(5X) ([8]). Moreover,
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internal characterizations of a space X that is equivalent to E(vX) =
vE(X) is known ([8]). Similar results for the minimal basically discon-
nected cover (AX, Ax) are given by [7].

For any space X, there is an extension (kX, kx) of X such that

(1) kX is a weakly Lindeldf space, and
(2) for any continuous map f : X — Y, there is a continuous map
f*¥: kX — kY such that f*|x = f([10]).

The purpose to write this paper is to find the relation of the minimal
quasi-F' cover QF(kX) of kX and kQF(X). For any space X, we show
that QF (kX) is a weakly Lindelof space and ®px : QF (kX) — kX is
a 27 - irreducible map and that QF(8X) = BQF (kX). Moreover, we
show that kQF(X) = QF(kX) if and only if ®% : kQF(X) — kX is an
onto map and QF(5X) = BQF(X).

For the termlnology, we refer to [2] and [9)].

2. Quasi-F' covers

Let X be a space. It is well-known that the collection R(X) of all
regular closed sets in X, when partially ordered by inclusion, becomes a
complete Boolean algebra, in which the join, meet, and complementation
operations are defined as follows :

For any A € R(X) and any F C R(X),

VF =cx(U{F|FeZF}),

AF = cx(intx (N{F | F € F})), and

AI = Clx(X - A)

A sublattic of R(X) is a subset of R(X) that contains (), X and is closed
under finite joins and finite meets ([8]).

A map f:Y — X is called a covering map if it is an onto continuous,
perpect, and irreducible map ([8]).

LeMmMA 2.1. ([8])
(1) Let X be a dense subspace of Y. Then the map ¢ : R(Y) — R(X),
defined by ¢(A) = AN X, is a Boolean isomorphism.
(2) Let f : Y — X be a covering map. Then the map ¢ : R(Y) —
R(X), defined by ¢(A) = f(A), is a Boolean isomorphism.

In the above lemma, the inverse map ¢! : R(X) — R(Y) of ¢ is given
by ¢~1(B) = cly(B) (B € R(X)) and the inverse map ¢ : R(X) —
R(Y) of ¢ is given by v~ 1(B) = cly (inty (f~1(B))) = cly (f~*(intx(B)))
(B € R(X)).
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DEFINITION 2.2. A space X is called a quasi-F space if for any ze-
rosets A, B in X, clx (intx(A N B)) = clx (intx(A)) N clx (intx(B)),
equivalently, every dense cozero-set in X is C*-embedded in X.

It is well-known that a space X is a quasi-F' space if and only if §X
(or vX) is a quasi-F' space.

DEFINITION 2.3. Let X be a space. Then a pair (Y, f) is called

(1) a cover of Xif f: X — Y is a covering map,

(2) a quasi-F cover of X if (Y, f) is a cover of X and Y is a quasi-F
space, and

(3) a minimal quasi-F cover of X if (Y, f) is a quasi-F cover of X
and for any quasi-F cover (Z,g) of X, there is a covering map
h:Z —Y such that foh=g.

Let X be a space, Z(X) = {Z | Z is a zero-set in X} and Z(X)#=
{clx (intx(A)) | A € Z(X)}. Then Z(X)¥# is a sublattice of R(X).

Suppose that X is a compact space. Let QF(X) = {a | a is a
Z(X)#—ultrafilter} and for any A € Z(X)¥, let Zi(x)# = {a €
QF(X) | A € a}. Then the space QF(X), equipped with the topol-
ogy for which {QF(X) — ZZ(X)# | A€ Z(X)#} is a base, is a quasi-F
space. Define the map ®x : QF(X) — X by ®x(a) = N{A | A € a}.
Then (QF (X),® X) is the minimal quasi-F' cover of X and for any
A€ Z(X)#, &x(XE5M7) = A(4)),

Let X, Y be spaces and f:Y — X a map. For any U C X, let fy :
f~Y(U) — U denote the restriction and co-restriction of f with respect
to f~1(U) and U, respectively. For any space X, let (QF(ﬁX),(Dg)
denote the minimal quasi-F' cover of 3X.

We recall that a covering map f:Y — X is called z# — irreducible
if f(Z(Y)#) = Z(X)#. Let f:Y — X be a covering map and Z a
zero-set in X. By Lemma 2.1, f(cly (inty (f~1(2)))) = clx (intx(Z))
and cly (inty (f~1(2))) € Z(Y)#. Hence Z(X)# C f(Z(Y)#) and so
f:Y — X is z#-irreducible if and only if f(Z(Y)#) C Z(X)#. Using
these we have the following :

ProproOSITION 2.4. Let f:Y — X and g: W — Y be covering maps.
Then fog: W — X is z#-irreducible if and only if f : Y — X and
g: W — Y are z#-irreducible.

It is well-known that @ is z#-irreducible ([5]).



430 Chang Il Kim and Kap Hun Jung
3. Minimal quasi-F' covers of kX

A z-filter F on a space X is called real if F is closed under the
countable intersection.

For any space X, let kX=vXU{p € BX —vX | there is a real z—filter
F on X such that N{clyx(F) | F € F} =0 and p € N{clpx(F) | F €
F}}. Then kX is an extension of a space X such that vX C kX C X
(110).

We recall that a space X is called a weakly Lindeldf space if for any
open cover U of X, there is a countable subfamily V of U such that
U{V | V € V} is a dense subset of X .

LEMMA 3.1. ([10]) For any space X, kX is a weakly Lindeléf space.

It is well known that a space X is weakly Lindelof if and only if for any

Z(X)#-filter A with the countable meet property, N"{A | A € A} # ().
Let X be a space. For any A € Z(8X)?, let Zi(ﬁx)# = > , and

S 4N QF(kX) = A4. Then for any A € Z(3X)#, ®5(3.,) = A, and
Opx(Aa) = ANEX, because QF(kX) = ®5'(kX) and ®px = g,
([7D)-

THEOREM 3.2. Let X be a space. Then we have the following :

(1) QF(kX) is a weakly Lindel6f space, and
(2) ®px : QF(kX) — kX is a z7-irreducible map.

Proof. (1) Let A be a z-filter on QF(kX) with the countable meet
property and N{A | A € A} = (. Suppose that N{Prx(A) | A € A} # 0.
Pick x € N{®px(A) | A € A}. Since A is a z-filter on QF (kX), A
has the finite intersection property. Hence {AN @ x(7) | A € A} is a
family of closed set in ®, 1 (z) with the finite intersection property. Since
®, ¢ () is a compact subset in QF(kX), N{AN @ x(v) | A€ A} £ 0
and so N{A | A € A} # (). This is a contracdiction. Thus N{Pxx(A) |
A e A} = (). Since kX is a weakly Lindelof space, there is a sequence
(A,) in A such that clpx (U {kX — ®px(A,) | n € N}) =kX. Let
A€ A. Then @;x (QF(kX)—A) D kX —®,x(A) and hence ®x(A") 2
Ppx (QF (kX)— A) D kX — ®px(A). Thus clpx (U{Prx(A},) | n € N})
=kX. Note that

kX = clpx (U {®rx(4;,) | n € N})

(I)kX(U{A;l ’ n e N}))
o (U{A] | n € N})
V{4 |neNY).

= ClkX

= Ppx

~ o~~~

= ®px
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Since @y x is a covering map, V{A}, |n € N} = QF (kX) and so (V{4 |
n € N})/ = M4, | n € N} = 0. Since A has the countable meet
property, it is a contradiction. Hence N{A | A € A} = () and so QF (kX)
is a weakly Lindel6f space.

(2) Take any zero-set Z in QF(kX). Since QF(kX) is a weakly
Lindelof space, QF(kX) — Z is an open weakly Lindel6f subspace of
QF(kX). Hence there is a sequence (Z,) in Z(8X)# such that for any
ne€N, QF(kX) - (Xz,N QF(kX)) C QF(kX) — Z and
cAgrix)(U{QF(kX) = (3z,N QF (kX)) |n € N}) N (QF(kX) — Z)
= dorex)(U{QF(kX) — Az, |ne N}) N (QF(kX) — Z)
= QF(kX) - Z.

Hence V{Az, | n € N} D QF(kX) —Z 2 U{\z; | n € N}. Thus
MAz, | n € N} = clgorux)(intgrax)(Z)). Note that for any A €
Z(BX)#, ®oppx)(Aa) = ANkX. By Lemma 2.1,

Porkx) (corx) (intorax)(2)))

= Porux)(A{Az, | n € N})

= M®qrrx)(Az,) | n € N}

= MZyNkX |ne N}
and hence g o) (clorrx) (intorex)(Z))) € Z(kX)#. Thus @op )
is a z7-irreducible map. O

Let X be a space. Then SQF(X) = QF(SX) if and only if ®x is
z#-irreducible ([5]). Using this, we have the following :

COROLLARY 3.3. For any space, QF (X)) = pQF (kX).

LEMMA 3.4. ([10]) For any continuous map f : X — Y, there is a
unique continuous map f* : kX — kY such that f¥oky = ky o f.

Let X be a space. Then there is a covering map h : SQF(X) —
QF(6X) such that ®50ho Bgpx) = fx o Px. By Lemma 3.4, there is
a continuous map <I>’§( : kQF(X) — kX such that (I)lg(ok:QF(X) = kxodx.
Since @gl(kX) = QF(kX), there is a continuous map tx : kQF(X) —
QF(kX) such that jotx = hoB,orx) and ®oppx)otx = <I>’§(, where j :
QF(kX) — QF(4X) is a dense embedding. If tx is a homeomorphism,
then we write kQF (X) = QF (kX).

COROLLARY 3.5. Let X be a space. If kQF(X) = QF(kX), then
BQF(X) = QF (BX).
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Proof. Since tx : kQF(X) — QF(kX) is a homeomorphism and
Ppx 1 QF(kX) — kX is z#-irreducible, ®% : kQF(X) — kX is 27-
irreducible. Take any zero-set Z in SQF(X). Then, by Lemma 2.1,

X (clsqrex) (intsor(x)(Z)) NEAX)

By Lemma 2.1, 3 (h(clgor(x) (intsorx)(Z)))) € Z(BX)# and so ®go
h is a z7-irreducible map. Proposition 2.4, h : BQF(X) — QF(3X) is
a z7-irreducible map. Since BQF(X) and QF(3X) are quasi-F spaces,
h is a homeomorphism. O

Let X be a space such that SQF(X) = QF(8X). By Corollary
3.3, there is a homeomorphism myx : fQF(X) — BQF(kX) such that
/BQF(]CX) olx =mxo ﬂk:QF(X)' Since mx o ﬁkQF(X) is an embedding, tx
is an embedding.

A subspace X of a space Y is called C*-embedded in Y if for any real-
valued continuous map f : X — R, there is a continuous map g: Y — R
such that g|x = f. For any space X, X is C*-embedded in X and if
X 2DY DOW DX, thenY is C*-embedded in W ([2]). Hence we have
the following

COROLLARY 3.6. Let X be a space such that fQF(X) = QF(6X).
Then kQF (X) is a C*-embedded subspace of QF (kX).

THEOREM 3.7. Let X be a space.Then the following are equivalent :
(1) FQF(X) = QF(kX),
(2) tx is an onto map and fQF(X) = QF(6X), and
(3) ®% is an onto map and BQF(X) = QF (BX).

Proof. (1) = (2) By Corollary 3.5, it is trivial.
(2) = (3) Since ®x and tx are onto maps, ®% is an onto map.
(3) = (1) Let f = ®%. Take any € kX. Since f is an onto map
and @y is a covering map, f(kQF(X)—QF(X)) = kX — X([8]). Since
Bex o f = g oho Brorx), [7Hx) = (g0 ) H(z) = ¢57(X) C
kQF(X)—QF(X). Since ®5oh is a covering map, f~*(z) is a compact
subset of kQF(X) and hence f is a compact map. By Corollary 3.6,
f7Hx) = @5 (z) C QF(kX).

Let F be a closed set in kQF(X) and x € kX — f(F). Then f~!(z)N
F = (). Since f~!(x) is compact, there are A, B € Z(8X)# such that
Y z) € B4, F C g and ANB = 0. Since ®3(Xp) = B and
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o (x)NTp = fHe)NTp = 0, = ¢ B. Since clpx(f(F)) C B,
x ¢ clgx (f(F)). Thus f is a closed map and so f is a perfect map.
Since mx o ®go Bror(x) = Brx © <I>"§( and mx o ®g is a covering map,

<I>’§( is a covering map. Since kQF(X) is a quasi-F' space, there is a
covering map [ : kQF(X) — QF (kX) such that ®gpx)ol = @k . Since
QF(X)=®;(X) and QF (kX) = q»gl(k;X), Lokgr(x) = tx © kor(x)-

B
Since kgp(x) is a dense embedding, | = {x is a homeomorphism. O
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