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SOME EXAMPLES OF THE UNION OF TWO LINEAR
STAR-CONFIGURATIONS IN P2 HAVING GENERIC

HILBERT FUNCTION

Yong Su Shin*

Abstract. In [20] and [22], the author proved that the union of
two linear star-configurations in P2 of type t × s with 3 ≤ t ≤ 10
and t ≤ s has generic Hilbert function. In this paper, we prove that
the union of two linear star-configurations in P2 of type t× s with
3 ≤ t and

(
t
2

)− 1 ≤ s has also generic Hilbert function.

1. Introduction

Let R = k[x0, x1, . . . , xn] be an (n + 1)-variable polynomial ring and
A = R/I where I is a homogeneous ideal in R. Then A =

⊕∞
i=0 Ai

is also a graded ring. In this situation the Hilbert function of A is the
function

H(A, i) := dimkAi = dimkRi − dimk Ii =
(
i+n
n

)− dimk Ii.

If I := IX is the ideal of a subscheme X in Pn, then we denote the Hilbert
function of X by

HX(t) = H(R/IX, t)
(see [1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13]). In particluar, If X is a subscheme
in P2 and

HX(d) = min
{(

d+2
2

)
, deg(X)

}

for every d ≥ 0, then we say that X has generic Hilbert function.
In this paper, we study the union of two star-configurations in P2

defined by general forms (see also [2, 20, 21, 22]). In [21], the author
found conditions for a star-configuration in P2 to have generic Hilbert
function based on the degrees of these general forms. In [2, 21], the
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authors also found conditions when a graded Artinian ring R/(IX + IY)
has the Weak Lefschetz property for two star-configurations X and Y in
P2 (see also [14, 15, 16, 17, 18, 19]).

The following proposition in [3] is about the ideal of general forms
in R, which leads to the definition of a star-configuration and a linear
star-configuration in Pn.

Proposition 1.1. [3, Proposition 2.1] Let F1, F2, . . . , Fs be general
forms in R = k[x0, x1, . . . , xn] with s ≥ 3. Then

⋂
1≤i<j≤s(Fi, Fj) = (F̃1, . . . , F̃s), where F̃i =

∏s
j=1 Fj

Fi
for i = 1, . . . , s.

The variety X in Pn of the ideal
⋂

1≤i<j≤s(Fi, Fj) = (F̃1, . . . , F̃s) in
Proposition 1.1 is called a star-configuration in Pn of type s. Further-
more, if the Fi are all general linear forms in R, the star-configuration
X is called a linear star-configuration in Pn.

In this paper, if X := X(t,s) is the union of two linear star-configurations
X1 and X2 in P2 of types t and s (type t×s for short), then X has generic
Hilbert function for 3 ≤ t and

(
t
2

)− 1 ≤ s. Moreover, we also show that
σ(X) = s for such t and s, where σ(X) := min{d | HX(d− 1) = HX(d)}.

In Section 3, we propose some questions for further study.

2. The union of two linear star-configurations in P2

Before we start to prove the main theorem, we introduce some nota-
tions for convenience. Let L1, . . . , Ls−1, Ls, and M1, . . . , Mt be general
linear forms for s ≥ 3 and t ≥ 3, respectively. Define

X1 = Y1 is a linear star-configuration in P2 defined by M1, . . . , Mt,
X2 is a linear star-configuration in P2 defined by L1, . . . , Ls−1, Ls,
Y2 ⊆ X2 is a linear star-configuration in P2 defined by L1, . . . , Ls−1.
Y := X(t,s−1) := Y1 ∪ Y2, X := X(t,s) := X1 ∪ X2, and
Gs−1 := L1 · · ·Ls−1, respectively.

The first idea is that if X′ is the union of two finite sets of points
defined by linear forms M1, . . . , Mt and L1, L2, . . . , Ls in R (not neces-
sarily general), respectively, then the points in X are more general than
the points in X′. This implies for every i ≥ 0 we get

HX′(i) ≤ HX(i).

The second idea is using Bezout’s Theorem in P2 to find the union X′ of
two sets of points defined by linear forms M1, . . . ,Mt and L1, L2, . . . , Ls
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in R, respectively, such that

HX(i) = HX′(i) = min
{|X|, (i+2

2

)}
for some i ≥ 0.

In other words, if a form F of degree d in R vanishes on (d + 1)-points
on a line defined by a linear form M in R, then F is divided by a linear
form M . Throughout this section, we shall not distinguish X from X′
for convenience.

Proposition 2.1. With notation as above, X := X(t,s) has generic
Hilbert function and σ(X) = s for s ≥ (

t
2

)
and t ≥ 3.

Proof. We shall prove this by induction on s. First, let s =
(

t
2

)
, and

assume that X := X1∪X2 where X1 and X2 are linear star-configurations
in P2 defined by general linear forms M1, . . . , Mt and L1, . . . , Ls, respec-
tively. Let X1 := {Q1, . . . , Qs}. Without loss of generality, we may as-
sume that Li vanishes on a point Qi for i = 1, . . . , s− 1. If F ∈ (IX)s−1

then, by Bezóut’s Theorem,

F = αL1 · · ·Ls−1

for some α ∈ k. Moreover, since F also vanishes on the point Qs, which
none of L1, . . . , Ls−1 vanishes, we get that F = 0, that is , (IX)s−1 = 0.
Hence

H(R/IX, s− 1) =
(
s+1
2

)
=

(
s
2

)
+ s =

(
s
2

)
+

(
t
2

)
= deg(X),

and so X has generic Hilbert function as

HX : 1
(
3
2

) · · · (
(s−3)+2

2

) (
(s−2)+2

2

) (
(s−1)+2

2

)
‖

deg(X)

(
(s−1)+2

2

) →,

and σ(X) = s, as we wished.
Now suppose s >

(
t
2

)
. Let Y := X(t,s−1) be the union of two lin-

ear star-configurations in P2 defined by linear forms M1, . . . ,Mt and
L1, . . . , Ls−1, respectively. Now we consider the following equations:

H(R/IX,−) : 1
(
1+2
2

) · · ·
(s−2)-nd
− (

s
2

)
+

(
t
2

) →,

H(R/IY,−) : 1
(
1+2
2

) · · · (
s−1
2

)
+

(
t
2

) (
s−1
2

)
+

(
t
2

) →,

H(R/(Ls, Gs−1),−) : 1 2 · · · s− 1 s− 1 →,
H(R/(IY, Ls, Gs−1),−) : 1 2 · · · − 0 →,

H(R/(IY, Ls),−) : 1 2 · · · (
t
2

)
0 →.

Since deg Gs−1 = s− 1, we have

H(R/(IY, Ls, Gs−1), s− 2) = H(R/(IY, Ls), s− 2) =
(

t
2

)
,
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and thus
H(R/IX, s− 2)
= H(R/IY, s− 2) + H(R/(Ls, Gs−1), s− 2)−H(R/(IY, Ls, Gs−1), s− 2)
=

(
(s−3)+2

2

)
+

(
t
2

)
+ (s− 1)− (

t
2

)
=

(
(s−3)+2

2

)
+ (s− 1)

=
(
(s−2)+2

2

)
.

This means that X has generic Hilbert function as

HX : 1
(
1+2
2

) · · · (
(s−3)+2

2

) (
(s−2)+2

2

) (
s
2

)
+

(
t
2

) (
s
2

)
+

(
t
2

) →,

and σ(X) = s, which completes the proof.

Corollary 2.2. With notation as above, X := X(t,s−1) has generic
Hilbert function and σ(X) = s for s =

(
t
2

)
and t ≥ 3.

Proof. Note that, by Proposition 2.1, Z := X(t,s) has generic Hilbert
function, and so we get the following equation.

H(R/IZ,−) : 1
(
1+2
2

) · · ·
(s−1)-st(
s
2

)
+

(
t
2

) (
s
2

)
+

(
t
2

) →,

H(R/IX,−) : 1
(
1+2
2

) · · · (
s−1
2

)
+

(
t
2

) (
s−1
2

)
+

(
t
2

) →,

H(R/(Ls, Gs−1),−) : 1 2 · · · s− 1 s− 1 →,
H(R/(IX, Ls, Gs−1),−) : 1 2 · · · 0 0 →,

H(R/(IX, Ls),−) : 1 2 · · · − 0 →.

Let F ∈ (IX)s−2 and let X1 := {Q1, . . . , Qs}. Without loss of generality,
we assume that

L1 vanishes on (s− 1)-points P1,2, . . . , P1,s−1, Q1,
L2 vanishes on (s− 2)-points P2,3, . . . , P2,s−1, Q2,

...
Lt−1 vanishes on (s− t + 1)-points Pt−1,t, . . . , Pt−1,s−1, Qt−1,

...
Ls−3 vanishes on 3-points Ps−3,s−2, Ps−3,s−1, Qs−3,
Ls−2 vanishes on 2-points Ps−2,s−1, Qs−2,

where Pi,j is the point defined by two linear forms Li and Lj for i <
j. Then, by Bezóut’s theorem, F = αL1 · · ·Ls−2. Moreover, since F
has to vanish on two more points Qs−1 and Qs, we see that F =
0, that is, (IX)s−2 = 0. It follows that X has generic Hilbert func-
tion

H(R/IX,−) : 1 3 · · · (
(s−2)+2

2

) (
s−1
2

)
+

(
t
2

) (
s−1
2

)
+

(
t
2

) →,

and σ(X) = s, as we wished.
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3. Additional comments and questions

In [4], the authors proved that the secant variety Secs−1(Splitd(Pn))
to the variety Splitd(Pn) of split forms in R = k[x0, x1, . . . , xn] is not
defective for 3(s − 1) ≤ n and 2 < d (see also [5]). Moreover, in [20],
the author proved that the secant variety Sec1(Splitd(P2)) to the variety
Splitd(P2) of split forms in R = k[x0, x1, x2] is not defective for 2 < d,
which is not covered by the result of [4], calculating the Hilbert function
of two linear star-configurations in P2 of type d× d with d > 2.

In particular, in [20, 22], the author found that the union of two linear
star-configurations in P2 of type t × s has generic Hilbert function for
3 ≤ t ≤ 10 and t ≤ s, and we also found that some different type of
the union of two linear star-configurations in P2 has also generic Hilbert
function (see Proposition 2.1 and Corollary 2.2). Hence it is natural to
ask the following question.

Question 3.1. Let X1 and X2 be star-configurations in P2 defined
by s-general forms of degrees 1 ≤ d1 ≤ · · · ≤ ds with 3 ≤ s, respectively,
and let X := X1 ∪ X2.

(a) Does X have generic Hilbert function in general?
(b) Does X have generic Hilbert function if 1 ≤ d1 = · · · = ds?
(c) Does X have generic Hilbert function if 1 = d1 = · · · = ds?

In fact, Question 3.1 (a) is not true in general. Here is an example.

Example 3.2. Let Li,Mj ∈ R1 for i, j = 1, . . . , 5 and F,G ∈ R5.
Assume X is the union of two star-configurations in P2 defined by 6-forms
L1, . . . , L5, F and M1, . . . , M5, G, respectively. Then there exists one
generator L1 . . . L5M1 . . . M5 ∈ (IX)10, and hence, by Proposition 1.1,
the Hilbert function of X is of the form

HX : 1
(
1+2
2

) · · · (
9+2
2

) (
10+2

2

)− 1 · · · ,

which indicates HX(10) = 65 6= 70 = deg(X). Thus, X does not have
generic Hilbert function.

Indeed, we can generalize Example 3.2 as follows:

Remark 3.3. Let L1, . . . , Ls−1,M1, . . . , Ms−1 ∈ R1 and F, G ∈ Rc

with s ≥ 6 and c ≥ s − 1. Assume X is the union of two star-
configurations X1 and X2 in P2 defined by s-forms L1, . . . , Ls−1, F and
M1, . . . ,Ms−1, G, respectively. Since the ideal IX has one generator
L1 · · ·Ls−1M1 · · ·Ms−1 in degree d = 2(s− 1), the Hilbert function of X
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is of the form

HX : 1
(
1+2
2

) · · · (
(2s−3)+2

2

) (
2(s−1)+2

2

)− 1 · · · ,

and hence HX(d) <
(
d+2
2

)
. Moreover, since s ≥ 6, we also have that

HX(d) <
(
d+2
2

)
< deg(X),

which follows that X does not have generic Hilbert function.
Note that if X is the union of two star-configurations in P2 defined

by forms of degrees 1, 1, 1, 1, 4, then X has generic Hilbert function as

HX : 1 3 6 10 15 21 28 36 44 → .

However, we don’t have any counter example to Question 3.1 (b) and
(c) yet.
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