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POISSON BRACKETS DETERMINED BY JACOBIANS

JAEHYUN AHN*, SEI-QWON OH**, AND SUJIN PARK***

ABSTRACT. Fix n — 2 elements hi,--- , hp—2 of the quotient field
B of the polynomial algebra C[z1,z2, - ,zs]. It is proved that
B is a Poisson algebra with Poisson bracket defined by {f,¢} =
det(Jac(f, g, h1, -+ ,hn—2)) for any f,g € B, where det(Jac) is the
determinant of a Jacobian matrix.

In [1], Jordan and the author studied Poisson brackets on the polyno-
mial algebra C|z,y, z] in three indeterminates x,y, z determined by Ja-
cobians. In particular, for an arbitrary rational function s/t € C(z,y, 2),
they analyzed the Poisson bracket determined by the formula

(1) ({9} {y, 2}, {z,2}) = £V (s/t), s/t € C(x,y,2),
where V = (8%, 8%, %) is the gradient. The general rule is that, for
f.9 € Clz,y, 2],

{f,9} = t* det(Jac(f, g. /1)),
where det(Jac(f, g, s/t)) denotes the determinant of the Jacobian matrix
of (f,9,5/1).

The purpose of this paper is to generalize the bracket (1) to the
general polynomial algebra A := Clzy,z2, -+ ,zy),n > 3. For fixed
n — 2 elements hq,--- , h,_o of the quotient field B of A, the fact that,
for any f,g € B, the bracket defined by

(2) {fag} :det(Jac(f,g,hl,--- 7hn72))

is a Poisson bracket is proved in [4] and [2, Theorem 1.4]. But the proof
of [4] is not clear and that of [2] uses the Pliicker relation and special
derivations induced by the n-Jacobi identity in [3]. Here we prove by
using only elementary algebraic theories that (2) is a Poisson bracket on
B. Fix s1,t1, -+ ,8n-9,th_2 € A such that s; and t; # 0 are coprime
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for each i = 1,2, --- ,n — 2. Next, as a corollary, we obtain that, for all
fi9 €A,

(3)  {f,g9} = (t1---tu_2)*det(Jac(f, g, s1/t1, s2/t2, -+, 5n—2/tn—2))

is a Poisson bracket in A, which is a generalization of (1). The presence
of the factor (t1 - - - t,_2)? ensures that this restricts to a Poisson bracket
on A.

Throughout the paper, A and B denote the algebra Clzi,xo, -, Zy]
with n > 3 and the quotient field of A respectively, as above.

- NoTATION 1. Let F = (¢¥) be an (n — 2) x n-matrix with entries
pY € B.

(a) For any 4,5 = 1,---,n, denote by F;; the determinant of the
€
n x n-matrix | e; |, where {e;}!'_; is the standard basis of B".
f
(b) For z € B, Vz denotes the row vector of B"
< 0z 0z 0z 0z n 0z oy 0z
z = B = —¢ —e —e,.
Oz’ O0zs’ ' Oz, 0x1 ! 0z 2 Oz,

LEMMA 2. Foralli,j =1,---,n, F;; = —Fj;. In particular, F; = 0.
Proof. 1t is clear from the elementary linear algebra. O

For any (n — 2) x n-matrix F in Notation 1 and for any f,g € B, set

Vf

(4) {f,9} =|Vyg| € B.
f

Then the bilinear product {-,-}* in (4) is antisymmetric and satisfies the
Leibniz rule. Thus the algebra B with the bilinear product {-,-}” be-
comes a Poisson algebra if and only if {-, -} satisfies the Jacobi identity.
In such case, {-,-}” is said to be a Poisson bracket in B.

NoOTATION 3. For a,b,c € B, let
Jr(a,b,¢) = {{a,b}7, }” + {{b,c}”, a}” + {{c,a}", 0}

Thus a,b and c satisfy the Jacobi identity for {-,-}” if and only if
Jr(a,b,c) =0.

Note that any derivation on an algebra is determined by values of
generators.
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PROPOSITION 4. [1, Proposition 1.14] The algebra B is a Poisson
algebra under {-,-}” if and only if Jr(x;,x;, 1) = 0 for any 1 < i, 4,k <
n.

LEMMA 5. Let 1 <14,j,k <n. Then Jr(x;,xj,x) = 0 if and only if

" [0F;; OF; OF ki
Z [ For + jkfgi 4+ =k Fei| = 0.

(5) oxy oxy Oxy

(=1

Proof. If i = j, i = k or j = k then we have Jr(z;,z;, 1) = 0 since
{-,-}7 is antisymmetric, and (5) holds by Lemma 2. Hence we may
assume that ¢ < j < k. Observe that

€; €; €L
\V4 €; \Y% €L \V4 €;
Jr(zi, xj, 1) = Fll+| |F||+] |F
(&% €; €
F F F
n  0F;; n OF; n  OF
D1 Fao €| |ie1 mee| | 2t=1 Bzl
= €L + €; + €j
F F F
" [0F; OF OF i
= Z [ L Fu + ]k}_& + K Foj
— ox oxy oxy
Hence the result holds. O

LEMMA 6. For any 1 <i,j,k, £ < n,
(6) FijFor + FjpFoi + FriFej = 0.
Proof. If any two indices among 1, j, k, £ are equal, say ¢ = i, then
FijFo + FiFoi + FriFo; = FijFir + FipFii + FriFij =0

since Fy; = 0 and Fy; = —Fjx, and thus (6) holds in this case. So we may
assume that n > 4 and that all 4, j, k, ¢ are distinct. For any p, ¢ such
that 1 < p,q < n and p # ¢, denote by X,,, the set of all bijective maps
from {1,--- ,n—2} onto {1,--- ,n}\{p,q¢} and, forp=1,--- ;. n—2,¢=
1,---,n, denote by z,, the (p,q)-entry of F. The left hand of (6) is as
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follows:

n—2

Z H Zpo(p)#pT(p) ea'(l) 67.(1)

O'EXZ'j,TEX[k p=1

—2
+ Z H Zpo (p) #pr(p) 6‘7‘(1) 67_(1)
1 : :

n
0€Xjk,TEXy \P=

n—2
+ Z H Zpo (p) “pr(p) eg'(l) 67.(1)

o€Xyi,T€Xy; \P=1

€o(n—2)| |€r(n—2)

Let (0,7) € Xi; x Xgp. We will find a unique (p,v) € X, x Xy (or
(1, v) € Xp; X ng) such that Zpa(p)Zpr(p) = Zpu(p)Zpv(p) for each p =
€ €y
€k €;
1,---,n—2and that | €u(1) €v(1) | is nonzero. (If (u,v) € Xi; x Xy

Cu(n—-2)| |Cv(n—2)

€k €y
e e
then | ©u(1) €v(1) | is nonzero.) There exists a unique p; such that

€u(n—2)| |Cv(n—2)
k = o(p1), and then choose 7(p1). If 7(p1) # i and 7(p1) # j then there
exists a unique po such that 7(p1) = o(p2). If 7(p2) # i and 7(p2) # j
then choose p3 such that 7(p2) = o(p3). This process stops only when
7(pr) =i or 7(py) = j, say 7(p,) = i, since there does not exist p such
that o(p) =i or j. Hence we get a unique sequence

k=o(p1),7(p1) = o(p2), 7(p2) = o(ps3), -+, 7(pr) =1i.
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Note that all terms of the sequence are different since all o(p1),--- , o(py),
are distinct. Set

o(q) q#pmforallm=1,---r
Tpm) q = Pm ’

(
7(q)  q#pmforallm=1,--,r
)= o(Pm) 4= DPm.

w(q) =

Then p € Xj, and v € Xy; and it is easy to see that zp,(p)2pr(p) =
Zpu(p) Zpr(p) for each p = 1,--- ,n — 2 and each row of the matrices
€ €y
(&% €;
u(1) and | €v(1) is different, as claimed. Changing suitable
€u(n—-2) €v(n—2)
rows in the matrices
€4 €y
€k €;
ej 60’(1) e 67-(1)
(&% €; :
€u(1) = €7(p1) = Co(p2) and €u(1) = €o(p1) = €k
e:u'(n72) eT(pm) = eg(pm+1) 61,(”,2) eg(pm) = eT(pm—l)
€o(n—2) €r(n—2)
€;j e ey ey
(&7 ej €; (&%
we have | €u(1) | = (=1)""1| €(1) | and | (1) | = (=1)"| (1) |,
€u(n—2) €o(n—2) €y(n—2) €r(n—2)
hence
€; €y €4 €y
€ €k €k €;
€a(1) €r(1) | =—1 €n() €u(1)
€o(n—2)| |€r(n—2) Cu(n—2)| |€v(n—-2)

Therefore (6) holds. O
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LEMMA 7. For any 1 <i,j,k <n, Jr(x;,x;,x;) = 0 if and only if

- OF . OFy; 0Fy;]
(7) ; [f” oy T g, T kg | =0
Proof. Since
O0Fj 0Fk OF ki 0
Fok 1% Foi + Foi = — (FijFo + FipFoi + FriFoj
oy +a bt 5 T 8.Tg(]€k+ kFei + FriFuj)
8fgk 8.7:42' 6]:(]'
— T2+ Fu s
[ J&xg * ]kaxg t 7k 8%4
(7) follows from (5) and (6). O
Vol
LEMMA 8. For any ¢',---,0" 2 € B, let F = : . Then
vcpn—Z
Z?la];”*OforeachZ—l , .

Proof. We may assume that i £ £ since F; = 0. Denote by Xy the
set of all bijective maps from {1,--- ,n — 2} onto {1,---,n}\ {i,¢} as
in the proof of Lemma 6 and set

” i+0—-1 ifi </,
< >_{z’+€ ifi> 0.

Then we have

n

Z 8?%
=1 Z;ﬁi O

1 2 n—2
Z Z <z€>sgn O’)i ( dp Iy Op >
(= 1@;&1 c€X 0 Oz \074(1) 04 (2) DLy (n—2)

Z 3™ (1)< sen( )[ P! (3902 9 )+
0=10#i0€X;y 00z (1) \ Oy (2) 02 5(n—2)

N ( 8@1 69071—3 ) 824,0”_2 :|
0Ty1y  0%o(n-3)) 0Te0Tym_2)|

Fix a term

A_< 8(,01 agokfl ) 82(,0k ( 8(pk+1 8(,0”72 )
0ry01) o1y 0200To(ky \OTo(hy1)  OTom—z)/)
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Let o(k) = j. Define 7 € X;; by 7(k) = {,7(¢q) = o(q) for all ¢ # k.
Then the term

B_ < 8901 a(pkfl > 828016 < a(karl N a(pan >

Oxr(1y 01y ) 0200,y \OTr(hr1y  OTr(n_o)
. . 02k 02k . .
is equal to A since (%;ng = 8mj§xe for all £,4,k, and the coefficients

of A and B are (—1)<**>sgn(o) and (—1)<%*>sgn(r), respectively. Let
|¢ — j| = m. We may assume that 7 < ¢ < i. Thus £ = j + m.
Let o(k1) = o(k) = j,o(k:) = j+1,--- ,0(ky) = j+m — 1. Hence
T(k1) =4, 1(ke) = j+ 1, ,7(km) = j +m — 1. Arrange elements of
Xi¢ and X;; by using order relation:

Xie ={pm <p2<---<pp2}

:{7]_1a ]aa ]+m_1:£_1a £+17}
Xij ={n <@ < <g-2t}

:{7]_1a]+177 Ea f—{—l,}
Identifying ps and ¢gs to s for all s =1,--- ,n —2, 0 and 7 are permuta-
tions in {1,--- ,n — 2} and 7~ !0 is defined as follows:

77 o(k1) = ko, 7 Yo (ko) = k3, 7 to(ks) = kg, -, 7 Lo (k) = k1
7 lo(p) =pforall p # ky,q=1,--- ,m.

Thus 7710 is the cycle (kiks---ky,) in the set {1,---,n —2}. Hence

sgn(o) = sgn(7) if and only if £ — j = m is odd since sgn(7) = sgn(7~1).

It follows that the coefficient (—1)<**>sgn(o) of A is —(—1)<%/>sgn(r)
n O0Fiv __

and thus } p_; o G4 = 0. O

Vil
THEOREM 9. For any @', ,0" 2 € B, let F = : . Then
vwn—Q
B is a Poisson algebra under {-,-}”.

Proof. It is enough to show that Jr(x;, zj,zx) = 0forall 1 <i,5,k <
n by Proposition 4. By Lemma 8, (7) holds since F;y = —Fy;, and thus
we have Jz (x4, z;,25) =0 for all 1 <4, j,k <n by Lemma 7. O

LEMMA 10. Let F and G be (n — 2) X n-matrices in B such that
G; = a;F; for each i, where a; € B and F; and G; are the i-rows of F
and G respectively. If {-,-}” is a Poisson bracket on B then {-,-}9 is
also a Poisson bracket and {-,-}9 = (a1 - - an_2){-,"}”.
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Proof. Set a = ay - - - an—2. Since G;; = aF;; for all 4, j, we have

9Gij Gk OGki o [O0Fi; OFjk OFki
i ;= Fi Foi + ——Fy;
oy Gor, + Oy Gei + Oy Guj = a Oy o+ oxy bt Oxy b
da
+05§(fﬁ@k+fﬁfb+7%fbf
Thus {-,-}Y is a Poisson bracket by (5) and (6). O
COROLLARY 11. Fix s1,t1, -+ ,8p_2,tn_2 € A such that s; and t; # 0
are coprime for each i = 1,2,--- ,n — 2. Then (3) is a Poisson bracket
on A.

Proof. Under the notation of Theorem 9 and Lemma 10, set <pi = s;/t;
and a; = t? forallt=1,--- ,n—2. Then the result follows immediately
by Theorem 9 and Lemma 10 since each component of t2V(s;/t;) is an
element of A.
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