POISSON BRACKETS DETERMINED BY JACOBIANS

Jaehyun Ahn*, Sei-Qwon Oh**, and Sujin Park***

ABSTRACT. Fix n-2 elements h_1, \dots, h_{n-2} of the quotient field B of the polynomial algebra $\mathbb{C}[x_1, x_2, \dots, x_n]$. It is proved that B is a Poisson algebra with Poisson bracket defined by $\{f,g\} = \det(\operatorname{Jac}(f,g,h_1,\dots,h_{n-2}))$ for any $f,g\in B$, where $\det(\operatorname{Jac})$ is the determinant of a Jacobian matrix.

In [1], Jordan and the author studied Poisson brackets on the polynomial algebra $\mathbb{C}[x,y,z]$ in three indeterminates x,y,z determined by Jacobians. In particular, for an arbitrary rational function $s/t \in \mathbb{C}(x,y,z)$, they analyzed the Poisson bracket determined by the formula

(1)
$$(\{x,y\},\{y,z\},\{z,x\}) = t^2 \nabla(s/t), \quad s/t \in \mathbb{C}(x,y,z),$$

where $\nabla=(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z})$ is the gradient. The general rule is that, for $f,g\in\mathbb{C}[x,y,z],$

$$\{f,g\} = t^2 \det(\operatorname{Jac}(f,g,s/t)),$$

where $\det(\operatorname{Jac}(f,g,s/t))$ denotes the determinant of the Jacobian matrix of (f,g,s/t).

The purpose of this paper is to generalize the bracket (1) to the general polynomial algebra $A := \mathbb{C}[x_1, x_2, \dots, x_n], n \geq 3$. For fixed n-2 elements h_1, \dots, h_{n-2} of the quotient field B of A, the fact that, for any $f, g \in B$, the bracket defined by

(2)
$$\{f, g\} = \det(\operatorname{Jac}(f, g, h_1, \dots, h_{n-2}))$$

is a Poisson bracket is proved in [4] and [2, Theorem 1.4]. But the proof of [4] is not clear and that of [2] uses the Plücker relation and special derivations induced by the n-Jacobi identity in [3]. Here we prove by using only elementary algebraic theories that (2) is a Poisson bracket on B. Fix $s_1, t_1, \dots, s_{n-2}, t_{n-2} \in A$ such that s_i and $t_i \neq 0$ are coprime

Received January 24, 2013; Accepted April 04, 2013.

²⁰¹⁰ Mathematics Subject Classification: Primary 17B63; Secondary 16S36.

Key words and phrases: Poisson bracket, Jacobian matrix, polynomial algebra.

Correspondence should be addressed to Sei-Qwon Oh, sqoh@cnu.ac.kr.

^{**}Supported by a research fund of Chungnam National University.

for each $i = 1, 2, \dots, n-2$. Next, as a corollary, we obtain that, for all $f, g \in A$,

(3)
$$\{f,g\} = (t_1 \cdots t_{n-2})^2 \det(\operatorname{Jac}(f,g,s_1/t_1,s_2/t_2,\cdots,s_{n-2}/t_{n-2}))$$

is a Poisson bracket in A, which is a generalization of (1). The presence of the factor $(t_1 \cdots t_{n-2})^2$ ensures that this restricts to a Poisson bracket on A.

Throughout the paper, A and B denote the algebra $\mathbb{C}[x_1, x_2, \cdots, x_n]$ with $n \geq 3$ and the quotient field of A respectively, as above.

NOTATION 1. Let $\mathcal{F} = (\varphi^{ij})$ be an $(n-2) \times n$ -matrix with entries $\varphi^{ij} \in B$.

- (a) For any $i, j = 1, \dots, n$, denote by \mathcal{F}_{ij} the determinant of the $n \times n$ -matrix $\begin{pmatrix} e_i \\ e_j \\ \mathcal{F} \end{pmatrix}$, where $\{e_i\}_{i=1}^n$ is the standard basis of B^n .
 - (b) For $z \in B$, ∇z denotes the row vector of B^n

$$\nabla z = \left(\frac{\partial z}{\partial x_1}, \frac{\partial z}{\partial x_2}, \cdots, \frac{\partial z}{\partial x_n}\right) = \frac{\partial z}{\partial x_1} e_1 + \frac{\partial z}{\partial x_2} e_2 + \cdots + \frac{\partial z}{\partial x_n} e_n.$$

LEMMA 2. For all $i, j = 1, \dots, n$, $\mathcal{F}_{ij} = -\mathcal{F}_{ji}$. In particular, $\mathcal{F}_{ii} = 0$.

Proof. It is clear from the elementary linear algebra.

For any $(n-2) \times n$ -matrix \mathcal{F} in Notation 1 and for any $f, g \in B$, set

(4)
$$\{f, g\}^{\mathcal{F}} = \begin{vmatrix} \nabla f \\ \nabla g \\ \mathcal{F} \end{vmatrix} \in B.$$

Then the bilinear product $\{\cdot,\cdot\}^{\mathcal{F}}$ in (4) is antisymmetric and satisfies the Leibniz rule. Thus the algebra B with the bilinear product $\{\cdot,\cdot\}^{\mathcal{F}}$ becomes a Poisson algebra if and only if $\{\cdot,\cdot\}^{\mathcal{F}}$ satisfies the Jacobi identity. In such case, $\{\cdot,\cdot\}^{\mathcal{F}}$ is said to be a Poisson bracket in B.

NOTATION 3. For $a, b, c \in B$, let

$$J_{\mathcal{F}}(a,b,c) = \{\{a,b\}^{\mathcal{F}},c\}^{\mathcal{F}} + \{\{b,c\}^{\mathcal{F}},a\}^{\mathcal{F}} + \{\{c,a\}^{\mathcal{F}},b\}^{\mathcal{F}}.$$

Thus a, b and c satisfy the Jacobi identity for $\{\cdot, \cdot\}^{\mathcal{F}}$ if and only if $J_{\mathcal{F}}(a, b, c) = 0$.

Note that any derivation on an algebra is determined by values of generators.

PROPOSITION 4. [1, Proposition 1.14] The algebra B is a Poisson algebra under $\{\cdot,\cdot\}^{\mathcal{F}}$ if and only if $J_{\mathcal{F}}(x_i,x_j,x_k)=0$ for any $1 \leq i,j,k \leq n$.

LEMMA 5. Let $1 \leq i, j, k \leq n$. Then $J_{\mathcal{F}}(x_i, x_j, x_k) = 0$ if and only if

(5)
$$\sum_{\ell=1}^{n} \left[\frac{\partial \mathcal{F}_{ij}}{\partial x_{\ell}} \mathcal{F}_{\ell k} + \frac{\partial \mathcal{F}_{jk}}{\partial x_{\ell}} \mathcal{F}_{\ell i} + \frac{\partial \mathcal{F}_{ki}}{\partial x_{\ell}} \mathcal{F}_{\ell j} \right] = 0.$$

Proof. If i = j, i = k or j = k then we have $J_{\mathcal{F}}(x_i, x_j, x_k) = 0$ since $\{\cdot, \cdot\}^{\mathcal{F}}$ is antisymmetric, and (5) holds by Lemma 2. Hence we may assume that i < j < k. Observe that

$$J_{\mathcal{F}}(x_{i}, x_{j}, x_{k}) = \begin{vmatrix} \nabla \begin{vmatrix} e_{i} \\ e_{j} \\ \mathcal{F} \end{vmatrix} + \begin{vmatrix} \nabla \begin{vmatrix} e_{j} \\ e_{k} \\ \mathcal{F} \end{vmatrix} + \begin{vmatrix} \nabla \begin{vmatrix} e_{k} \\ e_{i} \\ \mathcal{F} \end{vmatrix} \end{vmatrix}$$

$$= \begin{vmatrix} \sum_{\ell=1}^{n} \frac{\partial \mathcal{F}_{ij}}{\partial x_{\ell}} e_{\ell} \\ e_{k} \\ \mathcal{F} \end{vmatrix} + \begin{vmatrix} \sum_{\ell=1}^{n} \frac{\partial \mathcal{F}_{jk}}{\partial x_{\ell}} e_{\ell} \\ e_{i} \\ \mathcal{F} \end{vmatrix} + \begin{vmatrix} \sum_{\ell=1}^{n} \frac{\partial \mathcal{F}_{ki}}{\partial x_{\ell}} e_{\ell} \\ e_{i} \\ \mathcal{F} \end{vmatrix} + \begin{vmatrix} \sum_{\ell=1}^{n} \frac{\partial \mathcal{F}_{ki}}{\partial x_{\ell}} e_{\ell} \\ e_{j} \\ \mathcal{F} \end{vmatrix}$$

$$= \sum_{\ell=1}^{n} \left[\frac{\partial \mathcal{F}_{ij}}{\partial x_{\ell}} \mathcal{F}_{\ell k} + \frac{\partial \mathcal{F}_{jk}}{\partial x_{\ell}} \mathcal{F}_{\ell i} + \frac{\partial \mathcal{F}_{ki}}{\partial x_{\ell}} \mathcal{F}_{\ell j} \right].$$

Hence the result holds.

LEMMA 6. For any $1 \le i, j, k, \ell \le n$,

(6)
$$\mathcal{F}_{ij}\mathcal{F}_{\ell k} + \mathcal{F}_{jk}\mathcal{F}_{\ell i} + \mathcal{F}_{ki}\mathcal{F}_{\ell j} = 0.$$

Proof. If any two indices among i, j, k, ℓ are equal, say $\ell = i$, then

$$\mathcal{F}_{ij}\mathcal{F}_{\ell k} + \mathcal{F}_{jk}\mathcal{F}_{\ell i} + \mathcal{F}_{ki}\mathcal{F}_{\ell j} = \mathcal{F}_{ij}\mathcal{F}_{ik} + \mathcal{F}_{jk}\mathcal{F}_{ii} + \mathcal{F}_{ki}\mathcal{F}_{ij} = 0$$

since $\mathcal{F}_{ii}=0$ and $\mathcal{F}_{ki}=-\mathcal{F}_{ik}$, and thus (6) holds in this case. So we may assume that $n\geq 4$ and that all i,j,k,ℓ are distinct. For any p,q such that $1\leq p,q\leq n$ and $p\neq q$, denote by X_{pq} the set of all bijective maps from $\{1,\cdots,n-2\}$ onto $\{1,\cdots,n\}\setminus\{p,q\}$ and, for $p=1,\cdots,n-2,q=1,\cdots,n$, denote by z_{pq} the (p,q)-entry of \mathcal{F} . The left hand of (6) is as

follows:

$$\sum_{\sigma \in X_{ij}, \tau \in X_{\ell k}} \left(\prod_{p=1}^{n-2} z_{p\sigma(p)} z_{p\tau(p)} \right) \begin{vmatrix} e_i \\ e_j \\ e_{\sigma(1)} \\ \vdots \\ e_{\sigma(n-2)} \end{vmatrix} \begin{vmatrix} e_{\ell} \\ e_{\tau(1)} \\ \vdots \\ e_{\tau(n-2)} \end{vmatrix}$$

$$+ \sum_{\sigma \in X_{jk}, \tau \in X_{\ell i}} \left(\prod_{p=1}^{n-2} z_{p\sigma(p)} z_{p\tau(p)} \right) \begin{vmatrix} e_j \\ e_k \\ e_{\sigma(1)} \\ \vdots \\ e_{\sigma(n-2)} \end{vmatrix} \begin{vmatrix} e_{\ell} \\ e_{\tau(1)} \\ \vdots \\ e_{\tau(n-2)} \end{vmatrix}$$

$$+ \sum_{\sigma \in X_{ki}, \tau \in X_{\ell j}} \left(\prod_{p=1}^{n-2} z_{p\sigma(p)} z_{p\tau(p)} \right) \begin{vmatrix} e_k \\ e_i \\ e_{\sigma(1)} \\ \vdots \\ e_{\sigma(n-2)} \end{vmatrix} \begin{vmatrix} e_{\ell} \\ e_j \\ e_{\tau(1)} \\ \vdots \\ e_{\sigma(n-2)} \end{vmatrix} \begin{vmatrix} e_{\ell} \\ e_j \\ e_{\tau(1)} \\ \vdots \\ e_{\sigma(n-2)} \end{vmatrix} .$$

Let $(\sigma, \tau) \in X_{ij} \times X_{\ell k}$. We will find a unique $(\mu, \nu) \in X_{jk} \times X_{\ell i}$ (or $(\mu,\nu) \in X_{ki} \times X_{\ell j}$ such that $z_{p\sigma(p)}z_{p\tau(p)} = z_{p\mu(p)}z_{p\nu(p)}$ for each p=0

then
$$\begin{vmatrix} e_k \\ e_{\mu(1)} \\ \vdots \\ e_{\mu(n-2)} \end{vmatrix} \begin{vmatrix} e_\ell \\ e_{\nu(1)} \\ \vdots \\ e_{\nu(n-2)} \end{vmatrix}$$
 is nonzero. (If $(\mu, \nu) \in X_{ki} \times X_{\ell j}$) is nonzero. (If $(\mu, \nu) \in X_{ki} \times X_{\ell j}$) is nonzero. There exists a unique p_1 such that $\begin{vmatrix} e_k \\ e_i \\ e_{\mu(1)} \\ \vdots \\ e_{\nu(1)} \\ \vdots \\ e_{\nu(1)} \\ \vdots \\ e_{\nu(1)} \end{vmatrix}$ is nonzero.)

 $k = \sigma(p_1)$, and then choose $\tau(p_1)$. If $\tau(p_1) \neq i$ and $\tau(p_1) \neq j$ then there exists a unique p_2 such that $\tau(p_1) = \sigma(p_2)$. If $\tau(p_2) \neq i$ and $\tau(p_2) \neq j$ then choose p_3 such that $\tau(p_2) = \sigma(p_3)$. This process stops only when $\tau(p_r) = i$ or $\tau(p_r) = j$, say $\tau(p_r) = i$, since there does not exist p such that $\sigma(p) = i$ or j. Hence we get a unique sequence

$$k = \sigma(p_1), \tau(p_1) = \sigma(p_2), \tau(p_2) = \sigma(p_3), \cdots, \tau(p_r) = i.$$

Note that all terms of the sequence are different since all $\sigma(p_1), \dots, \sigma(p_r), i$ are distinct. Set

$$\mu(q) = \begin{cases} \sigma(q) & q \neq p_m \text{ for all } m = 1, \dots, r \\ \tau(p_m) & q = p_m \end{cases},$$

$$\nu(q) = \begin{cases} \tau(q) & q \neq p_m \text{ for all } m = 1, \dots, r \\ \sigma(p_m) & q = p_m. \end{cases}$$

Then $\mu \in X_{jk}$ and $\nu \in X_{\ell i}$ and it is easy to see that $z_{p\sigma(p)}z_{p\tau(p)} = z_{p\mu(p)}z_{p\nu(p)}$ for each $p=1,\cdots,n-2$ and each row of the matrices

$$\begin{pmatrix} e_j \\ e_k \\ e_{\mu(1)} \\ \vdots \\ e_{\mu(n-2)} \end{pmatrix} \text{ and } \begin{pmatrix} e_\ell \\ e_i \\ e_{\nu(1)} \\ \vdots \\ e_{\nu(n-2)} \end{pmatrix} \text{ is different, as claimed. Changing suitable}$$

rows in the matrices

$$\begin{pmatrix} e_{j} \\ e_{k} \\ e_{\mu(1)} \\ \vdots \\ e_{\mu(n-2)} \end{pmatrix} = \begin{pmatrix} e_{j} \\ e_{\sigma(1)} \\ \vdots \\ e_{\tau(p_{1})} = e_{\sigma(p_{2})} \\ \vdots \\ e_{\tau(p_{m})} = e_{\sigma(p_{m+1})} \\ \vdots \\ e_{\sigma(n-2)} \end{pmatrix} \text{ and } \begin{pmatrix} e_{\ell} \\ e_{i} \\ e_{\nu(1)} \\ \vdots \\ e_{\nu(1)} \\ \vdots \\ e_{\nu(n-2)} \end{pmatrix} = \begin{pmatrix} e_{\ell} \\ e_{i} \\ e_{\sigma(1)} \\ \vdots \\ e_{\sigma(p_{1})} = e_{k} \\ \vdots \\ e_{\sigma(p_{m})} = e_{\tau(p_{m-1})} \\ \vdots \\ e_{\tau(n-2)} \end{pmatrix},$$

we have
$$\begin{vmatrix} e_j \\ e_k \\ e_{\mu(1)} \\ \vdots \\ e_{\mu(n-2)} \end{vmatrix} = (-1)^{r+1} \begin{vmatrix} e_i \\ e_j \\ e_{\sigma(1)} \\ \vdots \\ e_{\sigma(n-2)} \end{vmatrix} \text{ and } \begin{vmatrix} e_\ell \\ e_i \\ e_{\nu(1)} \\ \vdots \\ e_{\nu(n-2)} \end{vmatrix} = (-1)^r \begin{vmatrix} e_\ell \\ e_k \\ e_{\tau(1)} \\ \vdots \\ e_{\tau(n-2)} \end{vmatrix},$$

hence

$$\begin{vmatrix} e_i \\ e_j \\ e_{\sigma(1)} \\ \vdots \\ e_{\sigma(n-2)} \end{vmatrix} \begin{vmatrix} e_\ell \\ e_k \\ e_{\tau(1)} \\ \vdots \\ e_{\tau(n-2)} \end{vmatrix} = - \begin{vmatrix} e_j \\ e_k \\ e_{\mu(1)} \\ \vdots \\ e_{\mu(n-2)} \end{vmatrix} \begin{vmatrix} e_\ell \\ e_i \\ e_{\nu(1)} \\ \vdots \\ e_{\nu(n-2)} \end{vmatrix}.$$

Therefore (6) holds.

LEMMA 7. For any $1 \le i, j, k \le n$, $J_{\mathcal{F}}(x_i, x_j, x_k) = 0$ if and only if

(7)
$$\sum_{\ell=1}^{n} \left[\mathcal{F}_{ij} \frac{\partial \mathcal{F}_{\ell k}}{\partial x_{\ell}} + \mathcal{F}_{jk} \frac{\partial \mathcal{F}_{\ell i}}{\partial x_{\ell}} + \mathcal{F}_{ki} \frac{\partial \mathcal{F}_{\ell j}}{\partial x_{\ell}} \right] = 0.$$

Proof. Since

$$\frac{\partial \mathcal{F}_{ij}}{\partial x_{\ell}} \mathcal{F}_{\ell k} + \frac{\partial \mathcal{F}_{jk}}{\partial x_{\ell}} \mathcal{F}_{\ell i} + \frac{\partial \mathcal{F}_{ki}}{\partial x_{\ell}} \mathcal{F}_{\ell j} = \frac{\partial}{\partial x_{\ell}} \left(\mathcal{F}_{ij} F_{\ell k} + \mathcal{F}_{jk} \mathcal{F}_{\ell i} + \mathcal{F}_{ki} \mathcal{F}_{\ell j} \right) \\
- \left[\mathcal{F}_{ij} \frac{\partial \mathcal{F}_{\ell k}}{\partial x_{\ell}} + \mathcal{F}_{jk} \frac{\partial \mathcal{F}_{\ell i}}{\partial x_{\ell}} + \mathcal{F}_{ki} \frac{\partial \mathcal{F}_{\ell j}}{\partial x_{\ell}} \right],$$

$$(7)$$
 follows from (5) and (6) .

LEMMA 8. For any
$$\varphi^1, \dots, \varphi^{n-2} \in B$$
, let $\mathcal{F} = \begin{pmatrix} \nabla \varphi^1 \\ \vdots \\ \nabla \varphi^{n-2} \end{pmatrix}$. Then
$$\sum_{\ell=1}^n \frac{\partial \mathcal{F}_{i\ell}}{\partial x_{\ell}} = 0 \text{ for each } i = 1, \dots, n.$$

Proof. We may assume that $i \neq \ell$ since $\mathcal{F}_{ii} = 0$. Denote by $X_{i\ell}$ the set of all bijective maps from $\{1, \dots, n-2\}$ onto $\{1, \dots, n\} \setminus \{i, \ell\}$ as in the proof of Lemma 6 and set

$$\label{eq:local_equation} < i, \ell > = \left\{ \begin{aligned} i + \ell - 1 & \text{if } i < \ell, \\ i + \ell & \text{if } i > \ell. \end{aligned} \right.$$

Then we have

$$\sum_{\ell=1,\ell\neq i}^{n} \frac{\partial \mathcal{F}_{i\ell}}{\partial x_{\ell}}$$

$$= \sum_{\ell=1,\ell\neq i}^{n} \sum_{\sigma \in X_{i\ell}} (-1)^{\langle i,\ell \rangle} \operatorname{sgn}(\sigma) \frac{\partial}{\partial x_{\ell}} \left(\frac{\partial \varphi^{1}}{\partial x_{\sigma(1)}} \frac{\partial \varphi^{2}}{\partial x_{\sigma(2)}} \cdots \frac{\partial \varphi^{n-2}}{\partial x_{\sigma(n-2)}} \right)$$

$$= \sum_{\ell=1,\ell\neq i}^{n} \sum_{\sigma \in X_{i\ell}} (-1)^{\langle i,\ell \rangle} \operatorname{sgn}(\sigma) \left[\frac{\partial^{2} \varphi^{1}}{\partial x_{\ell} \partial x_{\sigma(1)}} \left(\frac{\partial \varphi^{2}}{\partial x_{\sigma(2)}} \cdots \frac{\partial \varphi^{n-2}}{\partial x_{\sigma(n-2)}} \right) + \cdots$$

$$+ \left(\frac{\partial \varphi^{1}}{\partial x_{\sigma(1)}} \cdots \frac{\partial \varphi^{n-3}}{\partial x_{\sigma(n-3)}} \right) \frac{\partial^{2} \varphi^{n-2}}{\partial x_{\ell} \partial x_{\sigma(n-2)}} \right].$$

Fix a term

$$A = \left(\frac{\partial \varphi^1}{\partial x_{\sigma(1)}} \cdots \frac{\partial \varphi^{k-1}}{\partial x_{\sigma(k-1)}}\right) \frac{\partial^2 \varphi^k}{\partial x_\ell \partial x_{\sigma(k)}} \left(\frac{\partial \varphi^{k+1}}{\partial x_{\sigma(k+1)}} \cdots \frac{\partial \varphi^{n-2}}{\partial x_{\sigma(n-2)}}\right).$$

Let $\sigma(k) = j$. Define $\tau \in X_{ij}$ by $\tau(k) = \ell, \tau(q) = \sigma(q)$ for all $q \neq k$. Then the term

$$B = \left(\frac{\partial \varphi^1}{\partial x_{\tau(1)}} \cdots \frac{\partial \varphi^{k-1}}{\partial x_{\tau(k-1)}}\right) \frac{\partial^2 \varphi^k}{\partial x_j \partial x_{\tau(k)}} \left(\frac{\partial \varphi^{k+1}}{\partial x_{\tau(k+1)}} \cdots \frac{\partial \varphi^{n-2}}{\partial x_{\tau(n-2)}}\right)$$

is equal to A since $\frac{\partial^2 \varphi^k}{\partial x_\ell \partial x_j} = \frac{\partial^2 \varphi^k}{\partial x_j \partial x_\ell}$ for all ℓ, j, k , and the coefficients of A and B are $(-1)^{<i,\ell>} \mathrm{sgn}(\sigma)$ and $(-1)^{<i,\ell>} \mathrm{sgn}(\tau)$, respectively. Let $|\ell-j|=m$. We may assume that $j<\ell< i$. Thus $\ell=j+m$. Let $\sigma(k_1)=\sigma(k)=j, \sigma(k_2)=j+1, \cdots, \sigma(k_m)=j+m-1$. Hence $\tau(k_1)=\ell, \tau(k_2)=j+1, \cdots, \tau(k_m)=j+m-1$. Arrange elements of $X_{i\ell}$ and X_{ij} by using order relation:

$$\begin{array}{ll} X_{i\ell} &= \{p_1 < p_2 < \cdots < p_{n-2}\} \\ &= \{\cdots, j-1, \quad j, \cdots, \qquad j+m-1 = \ell-1, \quad \ell+1, \cdots\} \\ X_{ij} &= \{q_1 < q_2 < \cdots < q_{n-2}\} \\ &= \{\cdots, j-1, j+1, \cdots, \qquad \ell, \qquad \ell+1, \cdots\}. \end{array}$$

Identifying p_s and q_s to s for all $s=1,\dots,n-2,\sigma$ and τ are permutations in $\{1,\dots,n-2\}$ and $\tau^{-1}\sigma$ is defined as follows:

$$\tau^{-1}\sigma(k_1) = k_2, \tau^{-1}\sigma(k_2) = k_3, \tau^{-1}\sigma(k_3) = k_4, \cdots, \tau^{-1}\sigma(k_m) = k_1$$

$$\tau^{-1}\sigma(p) = p \text{ for all } p \neq k_q, q = 1, \cdots, m.$$

Thus $\tau^{-1}\sigma$ is the cycle $(k_1k_2\cdots k_m)$ in the set $\{1,\cdots,n-2\}$. Hence $\operatorname{sgn}(\sigma)=\operatorname{sgn}(\tau)$ if and only if $\ell-j=m$ is odd since $\operatorname{sgn}(\tau)=\operatorname{sgn}(\tau^{-1})$. It follows that the coefficient $(-1)^{< i,\ell>}\operatorname{sgn}(\sigma)$ of A is $-(-1)^{< i,j>}\operatorname{sgn}(\tau)$ and thus $\sum_{\ell=1,\ell\neq i}^n \frac{\partial \mathcal{F}_{i\ell}}{\partial x_\ell} = 0$.

Theorem 9. For any
$$\varphi^1, \dots, \varphi^{n-2} \in B$$
, let $\mathcal{F} = \begin{pmatrix} \nabla \varphi^1 \\ \vdots \\ \nabla \varphi^{n-2} \end{pmatrix}$. Then

B is a Poisson algebra under $\{\cdot,\cdot\}^{\mathcal{F}}$.

Proof. It is enough to show that $J_{\mathcal{F}}(x_i, x_j, x_k) = 0$ for all $1 \leq i, j, k \leq n$ by Proposition 4. By Lemma 8, (7) holds since $\mathcal{F}_{i\ell} = -\mathcal{F}_{\ell i}$, and thus we have $J_{\mathcal{F}}(x_i, x_j, x_k) = 0$ for all $1 \leq i, j, k \leq n$ by Lemma 7.

LEMMA 10. Let \mathcal{F} and \mathcal{G} be $(n-2) \times n$ -matrices in B such that $\mathcal{G}_i = a_i \mathcal{F}_i$ for each i, where $a_i \in B$ and \mathcal{F}_i and \mathcal{G}_i are the i-rows of \mathcal{F} and \mathcal{G} respectively. If $\{\cdot,\cdot\}^{\mathcal{F}}$ is a Poisson bracket on B then $\{\cdot,\cdot\}^{\mathcal{G}}$ is also a Poisson bracket and $\{\cdot,\cdot\}^{\mathcal{G}} = (a_1 \cdots a_{n-2})\{\cdot,\cdot\}^{\mathcal{F}}$.

Proof. Set $a = a_1 \cdots a_{n-2}$. Since $\mathcal{G}_{ij} = a\mathcal{F}_{ij}$ for all i, j, we have

$$\frac{\partial \mathcal{G}_{ij}}{\partial x_{\ell}} \mathcal{G}_{\ell k} + \frac{\partial \mathcal{G}_{jk}}{\partial x_{\ell}} \mathcal{G}_{\ell i} + \frac{\partial \mathcal{G}_{ki}}{\partial x_{\ell}} \mathcal{G}_{\ell j} = a^{2} \left[\frac{\partial \mathcal{F}_{ij}}{\partial x_{\ell}} \mathcal{F}_{\ell k} + \frac{\partial \mathcal{F}_{jk}}{\partial x_{\ell}} \mathcal{F}_{\ell i} + \frac{\partial \mathcal{F}_{ki}}{\partial x_{\ell}} \mathcal{F}_{\ell j} \right]
+ a \frac{\partial a}{\partial x_{\ell}} \left(\mathcal{F}_{ij} F_{\ell k} + \mathcal{F}_{jk} \mathcal{F}_{\ell i} + \mathcal{F}_{ki} \mathcal{F}_{\ell j} \right).$$

Thus $\{\cdot,\cdot\}^{\mathcal{G}}$ is a Poisson bracket by (5) and (6).

COROLLARY 11. Fix $s_1, t_1, \dots, s_{n-2}, t_{n-2} \in A$ such that s_i and $t_i \neq 0$ are coprime for each $i = 1, 2, \dots, n-2$. Then (3) is a Poisson bracket on A.

Proof. Under the notation of Theorem 9 and Lemma 10, set $\varphi^i = s_i/t_i$ and $a_i = t_i^2$ for all $i = 1, \dots, n-2$. Then the result follows immediately by Theorem 9 and Lemma 10 since each component of $t_i^2 \nabla(s_i/t_i)$ is an element of A.

References

- D. A. Jordan and S. Oh, Poisson brackets and Poisson spectra in polynomial algebras, New Trends in Noncommutative Algebra, Contemp. Math. 562 (2012), 169–187.
- [2] _____, Poisson spectra in polynomial algebras, arXiv:math.RA/1212.5158 (2012).
- [3] A. N. Panov, n-Poisson and n-Sklyanin brackets, Journal of Mathematical Sciences 110 (2002), 2322–2329.
- [4] R. Przybysza, On one class of exact Poisson structures, Journal of Mathematical Physics **424** (2001), no. 4, 1913–1920.

*

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: jhahn@cnu.ac.kr

**

Department of Mathematics Chungnam University Daejeon 305-764, Republic of Korea *E-mail*: sqoh@cnu.ac.kr

Department of Mathematics Chungnam University Daejeon 305-764, Republic of Korea