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CONDITIONAL INTEGRAL TRANSFORMS AND
CONVOLUTIONS OF BOUNDED FUNCTIONS ON AN

ANALOGUE OF WIENER SPACE

Dong Hyun Cho*

Abstract. Let C[0, t] denote the function space of all real-valued
continuous paths on [0, t]. Define Xn : C[0, t] → Rn+1 and Xn+1 :
C[0, t] → Rn+2 by Xn(x) = (x(t0), x(t1), · · · , x(tn)) and Xn+1(x) =
(x(t0), x(t1), · · · , x(tn), x(tn+1)), where 0 = t0 < t1 < · · · < tn <
tn+1 = t. In the present paper, using simple formulas for the
conditional expectations with the conditioning functions Xn and
Xn+1, we evaluate the Lp(1 ≤ p ≤ ∞)-analytic conditional Fourier-
Feynman transforms and the conditional convolution products of
the functions which have the form∫

L2[0,t]

exp{i(v, x)}dσ(v)

∫

Rr

exp

{
i

r∑
j=1

zj(vj , x)

}
dρ(z1, · · · , zr)

for x ∈ C[0, t], where {v1, · · · , vr} is an orthonormal subset of
L2[0, t] and σ and ρ are the complex Borel measures of bounded
variations on L2[0, t] and Rr, respectively. We then investigate
the inverse transforms of the function with their relationships and
finally prove that the analytic conditional Fourier-Feynman trans-
forms of the conditional convolution products for the functions, can
be expressed in terms of the products of the conditional Fourier-
Feynman transforms of each function.
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1. Introduction and preliminaries

Let C0[0, t] denote the Wiener space, that is, the space of real-valued
continuous functions x on the closed interval [0, t] with x(0) = 0. Chang
and Skoug ([3]) introduced the concepts of conditional Fourier-Feynman
transform and conditional convolution product on the Wiener space
C0[0, t]. In that paper, they examined the effects that drift has on
the conditional Fourier-Feynman transform, the conditional convolu-
tion product, and various relationships that occur between them. Fur-
ther works were studied by the author and his coauthors ([2, 9]). In
fact, they ([2]) introduced the L1-analytic conditional Fourier-Feynman
transform and the conditional convolution product over Wiener paths
in abstract Wiener space and then, established their relationships be-
tween them of certain cylinder type functions. The author ([9]) ex-
tended the relationships between the conditional convolution product
and the Lp(1 ≤ p ≤ 2)-analytic conditional Fourier-Feynman trans-
form of the same kind of cylinder functions. Moreover, on C[0, t], the
space of the real-valued continuous paths on [0, t], Kim ([12]) extended
the relationships between the conditional convolution product and the
Lp(1 ≤ p ≤ ∞)-analytic conditional Fourier-Feynman transform of
the functions in a Banach algebra which corresponds to the Cameron-
Storvick’s Banach algebra S ([1]). The author ([4, 5, 6]) established
several relationships between the Lp(1 ≤ p ≤ ∞)-analytic conditional
Fourier-Feynman transforms and the conditional convolution products
of the cylinder functions on C[0, t]. In particular, he ([4, 5]) derived
an evaluation formula for the Lp-analytic conditional Fourier-Feynman
transforms and the conditional convolution products of the same cylin-
der functions with the conditioning functions Xn : C[0, t] → Rn+1 and
Xn+1 : C[0, t] → Rn+2 given by Xn(x) = (x(t0), x(t1), · · · , x(tn)) and
Xn+1(x) = (x(t0), x(t1), · · · , x(tn), x(tn+1)), where 0 = t0 < t1 < · · · <
tn < tn+1 = t is a partition of [0, t], and then, derived their relationships.
Note that Xn is independent of the present time t while Xn+1 is wholly
dependent on the present time. In this paper, we further develop the
relationships in ([4, 5, 12]) on the more generalized space (C[0, t], wϕ),
an analogue of the Wiener space associated with the probability measure
ϕ on the Borel class B(R) of R ([11, 13, 14]). For the conditioning func-
tions Xn and Xn+1, we proceed to study the relationships between the
conditional convolution products and the analytic conditional Fourier-
Feynman transforms of bounded functions defined on C[0, t]. In fact, us-
ing simple formulas for the conditional wϕ-integrals given Xn and Xn+1,
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we evaluate the Lp(1 ≤ p ≤ ∞)-analytic conditional Fourier-Feynman
transforms and the conditional convolution products for the functions
of the form

∫

L2[0,t]
exp{i(v, x)}dσ(v)

∫

Rr

exp
{

i
r∑

j=1

zj(vj , x)
}

dρ(z1, · · · , zr)(1.1)

for wϕ-a.e. x ∈ C[0, t], where {v1, · · · , vr} is an orthonormal set in
L2[0, t], σ is a complex Borel measure of bounded variation on L2[0, t]
and ρ is a bounded complex Borel measure on Rr. We then investigate
various relationships between the conditional Fourier-Feynman trans-
forms and the conditional convolution products of the functions given
by (1.1). Finally, we show that the Lp-analytic conditional Fourier-
Feynman transform of the conditional convolution product for the func-
tions Ψ1 and Ψ2 given by (1.1), can be expressed by the formula

T (p)
q [[(Ψ1 ∗Ψ2)q|Xn](·, ~ξn)|Xn](y, ~ζn)

=
[
T (p)

q [Ψ1|Xn]
(

1√
2
y,

1√
2
(~ζn + ~ξn)

)]

×
[
T (p)

q [Ψ2|Xn]
(

1√
2
y,

1√
2
(~ζn − ~ξn)

)]

for a nonzero real q, wϕ-a.e. y ∈ C[0, t] and PXn-a.e. ~ξn, ~ζn ∈ Rn+1.
Thus the analytic conditional Fourier-Feynman transform of the condi-
tional convolution product for the functions, can be interpreted as the
product of the analytic conditional Fourier-Feynman transform of each
function.

Let C, C+ and C∼+ denote the set of complex numbers, the set of
complex numbers with positive real parts and the set of nonzero complex
numbers with nonnegative real parts, respectively.

Let C = C[0, t] be the space of all real-valued continuous functions on
the closed interval [0, t] with its Borel class B(C[0, t]). For a probability
measure ϕ on (R,B(R)), let wϕ be an analogue of the Wiener measure
on B(C[0, t]) associated with ϕ ([11, 13, 14]). Let F : C[0, t] → C be
integrable and X be a random vector on C[0, t] assuming that the value
space of X is a normed space equipped with the Borel σ-algebra. Then,
we have the conditional expectation E[F |X] of F given X from a well
known probability theory. Furthermore, there exists a PX -integrable C-
valued function ψ on the value space of X such that E[F |X](x) = (ψ ◦
X)(x) for wϕ-a.e. x ∈ C[0, t], where PX is the probability distribution
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of X. The function ψ is called the conditional wϕ-integral of F given X
and it is also denoted by E[F |X].

Throughout this paper, let 0 = t0 < t1 < · · · < tn < tn+1 = t be
a partition of [0, t], where n is a positive integer. For any x in C[0, t],
define the polygonal function [x] of x by

[x](s) =
n+1∑

j=1

χ(tj−1,tj ](s)
(

tj − s

tj − tj−1
x(tj−1) +

s− tj−1

tj − tj−1
x(tj)

)
(1.2)

+χ{t0}(s)x(t0)

for s ∈ [0, t], where χ(tj−1,tj ] and χ{t0} denote the indicator functions.
Similarly, for ~ξn+1 = (ξ0, ξ1, · · · , ξn+1) ∈ Rn+2, define the polygonal
function [~ξn+1] of ~ξn+1 by (1.2), where x(tj) is replaced by ξj for j =
0, 1, · · · , n + 1. Let Xn+1 : C[0, t] → Rn+2 and Xn : C[0, t] → Rn+1 be
given by

Xn+1(x) = (x(t0), x(t1), · · · , x(tn), x(tn+1))(1.3)

and

Xn(x) = (x(t0), x(t1), · · · , x(tn)),(1.4)

respectively. For a function F : C[0, t] → C and λ > 0, let F λ(x) =
F (λ−

1
2 x), Xλ

n+1(x) = Xn+1(λ−
1
2 x) and Xλ

n(x) = Xn(λ−
1
2 x), where

Xn+1 and Xn are given by (1.3) and (1.4), respectively. Suppose that
E[F λ] exists for each λ > 0. By the definition of the conditional wϕ-
integral and the equation (6) of Theorem 2.9 in [8],

E[F λ|Xλ
n+1](~ξn+1) = E[F (λ−

1
2 (x− [x]) + [~ξn+1])]

for PXλ
n+1

-a.e. ~ξn+1 ∈ Rn+2, where PXλ
n+1

is the probability distribution

of Xλ
n+1 on (Rn+2,B(Rn+2)). Throughout this paper, for y ∈ C[0, t] let

Iλ
F (y, ~ξn+1) = E[F (y + λ−

1
2 (x− [x]) + [~ξn+1])]

unless otherwise specified, where the expectation is taken over the vari-
able x. Moreover, we can obtain from (2.6) of Theorem 2.5 in [7]

E[F λ|Xλ
n ](~ξn)(1.5)

=
[

λ

2π(t− tn)

] 1
2
∫

R
Iλ
F (0, ~ξn+1) exp

{
−λ

2
(ξn+1 − ξn)2

t− tn

}
dξn+1

for PXλ
n
-a.e. ~ξn = (ξ0, ξ1, · · · , ξn) ∈ Rn+1, where ~ξn+1 = (ξ0, ξ1, · · · , ξn,

ξn+1) for ξn+1 ∈ R and PXλ
n

is the probability distribution of Xλ
n on
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(Rn+1, B(Rn+1)). For y ∈ C[0, t], let Kλ
F (y, ~ξn) be given by (1.5)

where 0 is replaced by y. If Iλ
F (0, ~ξn+1) has the analytic extension

J∗λ(F )(~ξn+1) on C+ as a function of λ, then it is called the condi-
tional analytic Wiener wϕ-integral of F given Xn+1 with parameter λ

and denoted by Eanwλ [F |Xn+1](~ξn+1) = J∗λ(F )(~ξn+1) for ~ξn+1 ∈ Rn+2.
Moreover, if for a nonzero real q, Eanwλ [F |Xn+1](~ξn+1) has a limit as
λ approaches to −iq through C+, then it is called the conditional ana-
lytic Feynman wϕ-integral of F given Xn+1 with parameter q and de-
noted by Eanfq [F |Xn+1](~ξn+1) = limλ→−iq Eanwλ [F |Xn+1](~ξn+1). Sim-
ilarly, the definitions of Eanwλ [F |Xn](~ξn) and Eanfq [F |Xn](~ξn) are un-
derstood with Kλ

F (0, ~ξn) if Xn+1 is replaced by Xn.
For a given extended real number p with 1 < p ≤ ∞, suppose that p

and p′ are related by 1
p + 1

p′ = 1(possibly p′ = 1 if p = ∞). Let Fn and F

be measurable functions such that limn→∞
∫
C |Fn(x)−F (x)|p′dwϕ(x) =

0. Then we write l.i.m.n→∞(wp′)(Fn) = F and call F the limit in the
mean of order p′. A similar definition is understood when n is replaced
by a continuously varying parameter.

Let F and G be defined on C[0, t] and let Xn+1 be given by (1.3).
For λ ∈ C+ and wϕ-a.e. y ∈ C[0, t], let

Tλ[F |Xn+1](y, ~ξn+1) = Eanwλ [F (y + ·)|Xn+1](~ξn+1)

for PXn+1-a.e. ~ξn+1 ∈ Rn+2 if it exists. For a nonzero real q and wϕ-
a.e. y ∈ C[0, t], define the L1-analytic conditional Fourier-Feynman
transform T

(1)
q [F |Xn+1] of F given Xn+1 by the formula

T (1)
q [F |Xn+1](y, ~ξn+1) = Eanfq [F (y + ·)|Xn+1](~ξn+1)

for PXn+1-a.e. ~ξn+1 ∈ Rn+2 if it exists. For 1 < p ≤ ∞, define the
Lp- analytic conditional Fourier-Feynman transform T

(p)
q [F |Xn+1] of F

given Xn+1 by the formula

T (p)
q [F |Xn+1](·, ~ξn+1) = l.i.m.

λ→−iq
(wp′)(Tλ[F |Xn+1](·, ~ξn+1))

for PXn+1-a.e. ~ξn+1 ∈ Rn+2, where λ approaches to −iq through C+.
We also define the conditional convolution product [(F ∗ G)λ|Xn+1] of
F and G given Xn+1 by the formula, for wϕ-a.e. y ∈ C[0, t]
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[(F ∗G)λ|Xn+1](y, ~ξn+1)

=





Eanwλ

[
F

(
y + ·√

2

)
G

(
y − ·√

2

)∣∣∣∣Xn+1

]
(~ξn+1), λ ∈ C+;

Eanfq

[
F

(
y + ·√

2

)
G

(
y − ·√

2

)∣∣∣∣Xn+1

]
(~ξn+1), λ = −iq

if they exist for PXn+1-a.e. ~ξn+1 ∈ Rn+2. If λ = −iq, we replace [(F ∗
G)λ|Xn+1] by [(F ∗ G)q|Xn+1]. Similar definitions and notations are
understood with ~ξn ∈ Rn+1 if Xn+1 is replaced by Xn which is given by
(1.4).

2. Conditional Fourier-Feynman transform with final time
conditioning function

For v in L2[0, t] and x in C[0, t], let (v, x) denote the Paley-Wiener-
Zygmund integral of v according to x ([11]). Note that 〈·, ·〉 and 〈·, ·〉Rr

denote the inner product over L2[0, t] and the dot product on the r-
dimensional Euclidean space Rr, respectively.

For each j = 1, · · · , n + 1, let αj = (tj − tj−1)−
1
2 χ(tj−1,tj ] on [0, t].

Let V be the subspace of L2[0, t] generated by {α1, · · · , αn+1} and V ⊥

denote the orthogonal complement of V . Let P and P⊥ be the or-
thogonal projections from L2[0, t] to V and V ⊥, respectively. Through-
out this paper, let {v1, v2, · · · , vr} be an orthonormal subset of L2[0, t]
such that {P⊥v1, · · · , P⊥vr} is an independent set. Let {e1, · · · , er}
be the orthonormal set obtained from {P⊥v1, · · · , P⊥vr} by the Gram-
Schmidt orthonormalization process. Now, for l = 1, · · · , r, let P⊥vl =∑r

j=1 βljej be the linear combinations of the ejs and let A = [βlj ]r×r

be the coefficient matrix of the combinations. We can regard A as the
linear transformation TA : Rr → Rr given by TA~z = ~zA, where ~z is any
row-vector in Rr. Note that A is invertible so that TA is an isomorphism.
For v ∈ L2[0, t], let

cj(v) = 〈v, ej〉(2.1)

for j = 1, · · · , r and let

(~v, x) = ((v1, x), · · · , (vr, x))(2.2)

for x ∈ C[0, t]. Furthermore, for ~z ∈ Rr and ~ξn+1 ∈ Rn+2 let

H1(x, ~ξn+1, v, ~z) = exp{i[(v, x + [~ξn+1]) + 〈(~v, x + [~ξn+1]), ~z〉Rr ]}(2.3)
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and for λ ∈ C∼+ let

H2(λ, v, ~z)(2.4)

= exp
{
− 1

2λ
[‖P⊥v‖2

2 + 2〈~c(P⊥v), TA~z〉Rr + ‖TA~z‖2
Rr ]

}
,

where ~c(P⊥v) = (c1(P⊥v), · · · , cr(P⊥v)) and the cjs are given by (2.1).
Note that by the Bessel’s inequality,

|H2(λ, v, ~z)|
= exp

{
− Reλ

2|λ|2 [‖P⊥v‖2
2 − ‖~c(P⊥v)‖2

Rr + ‖~c(P⊥v) + TA~z‖2
Rr ]

}
(2.5)

≤ 1.

Using the same method as used in the proof of Theorem 2.6 in [10],
we can prove the following lemma.

Lemma 2.1. For x ∈ C[0, t], λ > 0, v ∈ L2[0, t] and ~z ∈ Rr, let

H3(λ, v, ~z, x) = exp{iλ− 1
2 [(v, x− [x]) + 〈(~v, x− [x]), ~z〉Rr ]}.(2.6)

Then ∫

C
H3(λ, v, ~z, x)dwϕ(x) = H2(λ, v, ~z),

where H2 is given by (2.4).

Let M̂(Rr) be the set of all functions φ on Rr defined by

φ(~u) =
∫

Rr

exp{i〈~u, ~z〉Rr}dρ(~z),(2.7)

where ρ is a complex Borel measure of bounded variation over Rr, and
let Φ be given by

Φ(x) = φ(~v, x)(2.8)

for wϕ-a.e. x ∈ C[0, t], where (~v, x) and φ ∈ M̂(Rr) are given by (2.2)
and (2.7), respectively. Let M = M(L2[0, t]) be the class of all C-
valued Borel measures of bounded variation over L2[0, t] and let Swϕ be
the space of all functions F which for σ ∈M have the form

F (x) =
∫

L2[0,t]
exp{i(v, x)}dσ(v)(2.9)

for wϕ-a.e. x ∈ C[0, t]. Note that Swϕ is a Banach algebra which is
equivalent to M with the norm ‖F‖ = ‖σ‖, the total variation of σ [11].

Now we have the following theorem.
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Theorem 2.2. Let 1 ≤ p ≤ ∞ and Xn+1 be given by (1.3). For wϕ-
a.e. x ∈ C[0, t], let Ψ(x) = F (x)Φ(x), where Φ and F are given by (2.8)
and (2.9), respectively. Then for a nonzero real q, wϕ-a.e. y ∈ C[0, t]
and PXn+1-a.e. ~ξn+1 ∈ Rn+2,

T (p)
q [Ψ|Xn+1](y, ~ξn+1)(2.10)

=
∫

Rr

∫

L2[0,t]
H1(y, ~ξn+1, v, ~z)H2(−iq, v, ~z)dσ(v)dρ(~z),

where H1 and H2 are given by (2.3) and (2.4), respectively.

Proof. For λ > 0, y ∈ C[0, t] and ~ξn+1 ∈ Rn+2,

Iλ
Ψ(y, ~ξn+1)

=
∫

Rr

∫

L2[0,t]

∫

C
H1(y, ~ξn+1, v, ~z)H3(λ, v, ~z, x)dwϕ(x)dσ(v)dρ(~z),

where H3 is given by (2.6). By Lemma 2.1, we obtain that

Iλ
Ψ(y, ~ξn+1) =

∫

Rr

∫

L2[0,t]
H1(y, ~ξn+1, v, ~z)H2(λ, v, ~z)dσ(v)dρ(~z).

By (2.5), the Moreras theorem and the dominated convergence theorem,
we have the existence of Tλ[Ψ|Xn+1](y, ~ξn+1) as the analytic extension
of Iλ

Ψ(y, ~ξn+1) on C+. Let T
(p)
q [Ψ|Xn+1](y, ~ξn+1) be given by (2.10) and

1
p + 1

p′ = 1. Then

‖Tλ[Ψ|Xn+1](·, ~ξn+1)− T (p)
q [Ψ|Xn+1](·, ~ξn+1)‖p′

≤
∫

Rr

∫

L2[0,t]
|H2(λ, v, ~z)−H2(−iq, v, ~z)|d|σ|(v)d|ρ|(~z)

which converges to 0 as λ approaches to −iq through C+ by the domi-
nated convergence theorem. Now, the proof is completed.

Theorem 2.3. Let φ1, φ2 and ρ1, ρ2 be related by (2.7), respectively,
and let F1, F2 and σ1, σ2 be related by (2.9), respectively. Let Ψ1(x) =
F1(x)φ1(~v, x) and Ψ2(x) = F2(x)φ2(~v, x) for wϕ-a.e. x ∈ C[0, t]. Fur-
thermore, let Xn+1 be given by (1.3). Then for a nonzero real q, wϕ-a.e.
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y ∈ C[0, t] and PXn+1-a.e. ~ξn+1 ∈ Rn+2,

[(Ψ1 ∗Ψ2)q|Xn+1](y, ~ξn+1)

=
∫

Rr

∫

Rr

∫

L2[0,t]

∫

L2[0,t]
H1

(
y, ~ξn+1,

1√
2
v1,

1√
2
~z1

)
H1

(
y,

−~ξn+1,
1√
2
v2,

1√
2
~z2

)
H2

(
−iq,

1√
2
(v1 − v2),

1√
2
(~z1 − ~z2)

)

dσ1(v1)dσ2(v2)dρ1(~z1)dρ2(~z2),

where H1 and H2 are given by (2.3) and (2.4), respectively.

Proof. For λ > 0, wϕ-a.e. y ∈ C[0, t] and PXn+1-a.e. ~ξn+1 ∈ Rn+2,

[(Ψ1 ∗Ψ2)λ|Xn+1](y, ~ξn+1)

=
∫

Rr

∫

Rr

∫

L2[0,t]

∫

L2[0,t]

∫

C
exp

{
i√
2
[(v1, y + [~ξn+1]) + 〈(~v, y+

[~ξn+1]), ~z1〉Rr + (v2, y − [~ξn+1]) + 〈(~v, y − [~ξn+1]), ~z2〉Rr ] +
i√
2λ

[(v1 − v2, x− [x]) + 〈(~v, x− [x]), ~z1 − ~z2〉Rr ]
}

dwϕ(x)

dσ1(v1)dσ2(v2)dρ1(~z1)dρ2(~z2)

=
∫

Rr

∫

Rr

∫

L2[0,t]

∫

L2[0,t]

∫

C
H1

(
y, ~ξn+1,

1√
2
v1,

1√
2
~z1

)
H1

(
y,

−~ξn+1,
1√
2
v2,

1√
2
~z2

)
H3

(
λ,

1√
2
(v1 − v2),

1√
2
(~z1 − ~z2), x

)

dwϕ(x)dσ1(v1)dσ2(v2)dρ1(~z1)dρ2(~z2),

where H3 is given by (2.6). By Lemma 2.1, we obtain that

[(Ψ1 ∗Ψ2)λ|Xn+1](y, ~ξn+1)

=
∫

Rr

∫

Rr

∫

L2[0,t]

∫

L2[0,t]
H1

(
y, ~ξn+1,

1√
2
v1,

1√
2
~z1

)
H1

(
y,

−~ξn+1,
1√
2
v2,

1√
2
~z2

)
H2

(
λ,

1√
2
(v1 − v2),

1√
2
(~z1 − ~z2)

)

dσ1(v1)dσ2(v2)dρ1(~z1)dρ2(~z2).

By (2.5), the Morera’s theorem and the dominated convergence theorem,
we have the result.
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3. Conditional Fourier-Feynman transform without final time
conditioning function

In this section, we evaluate time-independent conditional Fourier-
Feynman transform and conditional convolution product of the functions
as given in the previous section.

Lemma 3.1. For ~ξn = (ξ0, ξ1, · · · , ξn) ∈ Rn+1, let ~ξn+1 = (ξ0, ξ1, · · · ,
ξn, ξn+1), where ξn+1 ∈ R. Furthermore, for y ∈ C[0, t], v ∈ L2[0, t],
~z = (z1, · · · , zr) ∈ Rr, let H1(y, ~ξn+1, v, ~z) be given by (2.3), let

H4(~ξn, v, ~z) = exp
{

i
n∑

j=1

(ξj − ξj−1)
[
(Pv)(tj) +

r∑

l=1

zl(Pvl)(tj)
]}

(3.1)

and for λ ∈ C∼+, let

H5(λ, v, ~z) = exp
{
− 1

2λ

[
(Pv)(t) +

r∑

l=1

zl(Pvl)(t)
]2}

.(3.2)

Then for λ > 0,
[

λ

2π(t− tn)

] 1
2
∫

R
H1(y, ~ξn+1, v, ~z) exp

{
−λ(ξn+1 − ξn)2

2(t− tn)

}
dξn+1(3.3)

= H1(y, 0, v, ~z)H4(~ξn, v, ~z)H5(λ, v, ~z).

Proof. By the definition of the Paley-Wiener-Zygmund integral, it is
not difficult to show that for v ∈ L2[0, t]

(v, [~ξn+1]) =
n∑

j=1

(Pv)(tj)(ξj − ξj−1) + (Pv)(t)(ξn+1 − ξn).

Now, let Iλ be the left hand side of (3.3). Then

Iλ = H1(y, 0, v, ~z)
[

λ

2π(t− tn)

] 1
2
∫

R
H4(~ξn, v, ~z) exp

{
i

[
(Pv)(t)

+
r∑

l=1

zl(Pvl)(t)
]
(ξn+1 − ξn)− λ(ξn+1 − ξn)2

2(t− tn)

}
dξn+1

= H1(y, 0, v, ~z)H4(~ξn, v, ~z)H5(λ, v, ~z)

by the following well-known integration formula
∫

R
exp{−au2 + ibu}du =

(
π

a

) 1
2

exp
{
− b2

4a

}
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for a ∈ C+ and b ∈ R. Now, the proof is completed.

Theorem 3.2. Let 1 ≤ p ≤ ∞ and Xn be given by (1.4). For wϕ-a.e.
x ∈ C[0, t], let Ψ(x) = F (x)Φ(x), where Φ and F are given by (2.8) and
(2.9), respectively. Then for a nonzero real q, wϕ-a.e. y ∈ C[0, t] and

PXn-a.e. ~ξn ∈ Rn+1,

T (p)
q [Ψ|Xn](y, ~ξn) =

∫

Rr

∫

L2[0,t]
H1(y, 0, v, ~z)H4(~ξn, v, ~z)

×H2(−iq, v, ~z)H5(−iq, v, ~z)dσ(v)dρ(~z),

where H1, H2, H4, and H5 are given by (2.3), (2.4), (3.1) and (3.2),
respectively.

Proof. For ~ξn = (ξ0, ξ1, · · · , ξn) ∈ Rn+1, let ~ξn+1 = (ξ0, ξ1, · · · , ξn,

ξn+1), where ξn+1 ∈ R. For λ > 0, y ∈ C[0, t] and ~ξn ∈ Rn+1,

Kλ
Ψ(y, ~ξn) =

[
λ

2π(t− tn)

] 1
2
∫

R
Iλ
Ψ(y, ~ξn+1) exp

{
−λ(ξn+1 − ξn)2

2(t− tn)

}
dξn+1

=
[

λ

2π(t− tn)

] 1
2
∫

Rr

∫

L2[0,t]
H2(λ, v, ~z)

∫

R
H1(y, ~ξn+1, v, ~z)

× exp
{
−λ(ξn+1 − ξn)2

2(t− tn)

}
dξn+1dσ(v)dρ(~z)

by Theorem 2.2. By Lemma 3.1, we obtain that

Kλ
Ψ(y, ~ξn) =

∫

Rr

∫

L2[0,t]
H1(y, 0, v, ~z)H2(λ, v, ~z)H4(~ξn, v, ~z)

×H5(λ, v, ~z)dσ(v)dρ(~z).

By (2.5), the Morera’s theorem and the dominated convergence theorem,
we have the existence of Tλ[Ψ|Xn](y, ~ξn) as the analytic extension of
Kλ

Ψ(y, ~ξn) on C+. Let 1
p + 1

p′ = 1. Then for λ ∈ C+,

‖Tλ[Ψ|Xn](·, ~ξn)− T (p)
q [Ψ|Xn](·, ~ξn)‖p′

≤
∫

Rr

∫

L2[0,t]

|H2(λ, v, ~z)H5(λ, v, ~z)−H2(−iq, v, ~z)H5(−iq, v, ~z)|d|σ|(v)d|ρ|(~z)

which converges to 0 as λ approaches to −iq through C+. Now, the
proof is completed.
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Theorem 3.3. Let Ψ1 and Ψ2 be as given in Theorem 2.3, and let
Xn be given by (1.4). Then for a nonzero real q, wϕ-a.e. y ∈ C[0, t] and

PXn-a.e. ~ξn ∈ Rn+1, [(Ψ1 ∗Ψ2)q|Xn](y, ~ξn) is given by

[(Ψ1 ∗Ψ2)q|Xn](y, ~ξn)

=
∫

Rr

∫

Rr

∫

L2[0,t]

∫

L2[0,t]
H1

(
y, 0,

1√
2
(v1 + v2),

1√
2
(~z1 + ~z2)

)
H4

(
~ξn,

1√
2
(v1 − v2),

1√
2
(~z1 − ~z2)

)
H2

(
−iq,

1√
2
(v1 − v2),

1√
2
(~z1 − ~z2)

)

×H5

(
−iq,

1√
2
(v1 − v2),

1√
2
(~z1 − ~z2)

)
dσ1(v1)dσ2(v2)dρ1(~z1)dρ2(~z2),

where H1, H2, H4 and H5 are given by (2.3), (2.4), (3.1) and (3.2),
respectively.

Proof. For ~ξn = (ξ0, ξ1, · · · , ξn) ∈ Rn+1, let ~ξn+1 = (ξ0, ξ1, · · · , ξn,
ξn+1), where ξn+1 ∈ R. Note that for y ∈ C[0, t], for v1, v2 ∈ L2[0, t] and
for ~z1, ~z2 ∈ Rr

H1

(
y, ~ξn+1,

1√
2
v1,

1√
2
~z1

)
H1

(
y,−~ξn+1,

1√
2
v2,

1√
2
~z2

)

= H1

(
y, 0,

1√
2
(v1 + v2),

1√
2
(~z1 + ~z2)

)

×H1

(
0, ~ξn+1,

1√
2
(v1 − v2),

1√
2
(~z1 − ~z2)

)

so that we have for λ > 0

Iλ(~ξn) ≡
[

λ

2π(t− tn)

] 1
2
∫

R
H1

(
y, ~ξn+1,

1√
2
v1,

1√
2
~z1

)
H1

(
y,−~ξn+1,

1√
2
v2,

1√
2
~z2

)
exp

{
−λ(ξn+1 − ξn)2

2(t− tn)

}
dξn+1

= H1

(
y, 0,

1√
2
(v1 + v2),

1√
2
(~z1 + ~z2)

)
H4

(
~ξn,

1√
2
(v1 − v2),

1√
2
(~z1 − ~z2)

)
H5

(
λ,

1√
2
(v1 − v2),

1√
2
(~z1 − ~z2)

)

by Lemma 3.1. Now, by Theorem 2.3, we obtain that
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[(Ψ1 ∗Ψ2)λ|Xn](y, ~ξn)

=
∫

Rr

∫

Rr

∫

L2[0,t]

∫

L2[0,t]
H1

(
y, 0,

1√
2
(v1 + v2),

1√
2
(~z1 + ~z2)

)
H2

(
λ,

1√
2
(v1 − v2),

1√
2
(~z1 − ~z2)

)
H4

(
~ξn,

1√
2
(v1 − v2),

1√
2
(~z1 − ~z2)

)

×H5

(
λ,

1√
2
(v1 − v2),

1√
2
(~z1 − ~z2)

)
dσ1(v1)dσ2(v2)dρ1(~z1)dρ2(~z2).

By (2.5), the Morera’s theorem and the dominated convergence theorem,
we have the result.

4. Relationships between conditional Fourier-Feynman trans-
forms and convolutions

In this section, we investigate the inverse conditional transform of the
conditional Fourier-Feynman transforms of the functions as given in the
previous sections.

Theorem 4.1. Let 1 ≤ p ≤ ∞. Then, under the assumptions as

given in Theorem 2.2, we have for PXn+1-a.e. ~ξn+1, ~ζn+1 ∈ Rn+2

‖Tλ[Tλ[Ψ|Xn+1](·, ~ξn+1)|Xn+1](·, ~ζn+1)−Ψ(·+ [~ζn+1 + ~ξn+1])‖p → 0

as λ approaches to −iq through C+.

Proof. For λ1 > 0, λ ∈ C+, wϕ-a.e. y ∈ C[0, t] and PXn+1-a.e.
~ξn+1, ~ζn+1 ∈ Rn+2,

Iλ1

Tλ[Ψ|Xn+1](·,~ξn+1)
(y, ~ζn+1)

=
∫

Rr

∫

L2[0,t]

∫

C
H1(λ

− 1
2

1 (x− [x]) + y + [~ζn+1], ~ξn+1, v, ~z)H2(λ, v, ~z)

dwϕ(x)dσ(v)dρ(~z)

=
∫

Rr

∫

L2[0,t]

∫

C
H1(y, ~ζn+1 + ~ξn+1, v, ~z)H2(λ.v.~z)H3(λ1, v, ~z, x)

dwϕ(x)dσ(v)dρ(~z)

=
∫

Rr

∫

L2[0,t]
H1(y, ~ζn+1 + ~ξn+1, v, ~z)H2(λ1, v, ~z)H2(λ, v, ~z)dσ(v)dρ(~z)
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by Lemma 2.1 and Theorem 2.2, where H1, H2 and H3 are given by
(2.3), (2.4) and (2.6), respectively. By (2.5) and the Morera’s Theorem,
we have for λ1 ∈ C+

Tλ1 [Tλ[Ψ|Xn+1](·, ~ξn+1)|Xn+1](y, ~ζn+1)

=
∫

Rr

∫

L2[0,t]
H1(y, ~ζn+1 + ~ξn+1, v, ~z)H2(λ1, v, ~z)H2(λ, v, ~z)dσ(v)dρ(~z).

Now, we have for λ ∈ C+

Tλ[Tλ[Ψ|Xn+1](·, ~ξn+1)|Xn+1](y, ~ζn+1)

=
∫

Rr

∫

L2[0,t]
H1(y, ~ζn+1 + ~ξn+1, v, ~z)H2

( |λ|2
2Reλ

, v, ~z

)
dσ(v)dρ(~z)

so that

‖Tλ[Tλ[Ψ|Xn+1](·, ~ξn+1)|Xn+1](·, ~ζn+1)−Ψ(·+ [~ζn+1 + ~ξn+1])‖p

≤
∫

Rr

∫

L2[0,t]

[
1−H2

( |λ|2
2Reλ

, v, ~z

)]
d|σ|(v)d|ρ|(~z)

which converges to 0 as λ approaches to −iq through C+ by the domi-
nated convergence theorem.

Theorem 4.2. Let 1 ≤ p ≤ ∞ and Xn be given by (1.4). For wϕ-a.e.
x ∈ C[0, t], let Ψ(x) = F (x)Φ(x), where Φ and F are given by (2.8) and
(2.9), respectively. Furthermore, for y ∈ C[0, t] and ~un ∈ Rn+1 let

Ψ1(y, ~un)

=
∫

Rr

∫

L2[0,t]
exp{i(v, y)} exp{i〈(~v, y), ~z〉Rr}H4(~un, v, ~z)dσ(v)dρ(~z),

where H4 is given by (3.1). Then, for PXn-a.e. ~ξn, ~ζn ∈ Rn+1

‖Tλ[Tλ[Ψ|Xn](·, ~ξn)|Xn](·, ~ζn)−Ψ1(·, ~ζn + ~ξn)‖p → 0

as λ approaches to −iq through C+.

Proof. For ~ζn = (ζ0, ζ1, · · · , ζn) ∈ R, let ~ζn+1 = (ζ0, ζ1, · · · , ζn, ζn+1),
where ζn+1 ∈ R. Then, for λ1 > 0 and λ ∈ C+

Iλ1

Tλ[Ψ|Xn](·,~ξn)
(y, ~ζn+1) =

∫

Rr

∫

L2[0,t]
H1(y, ~ζn+1, v, ~z)H2(λ1, v, ~z)

×H2(λ, v, ~z)H4(~ξn, v, ~z)H5(λ, v, ~z)dσ(v)dρ(~z)
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by Theorems 2.2 and 3.2, so that by Lemma 3.1

Kλ1

Tλ[Ψ|Xn](·,~ξn)
(y, ~ζn)

=
[

λ

2π(t− tn)

] 1
2
∫

R
Iλ1

Tλ[Ψ|Xn](·,~ξn)
(y, ~ζn+1) exp

{
−λ(ζn+1 − ζn)2

2(t− tn)

}
dζn+1

=
∫

Rr

∫

L2[0,t]
H1(y, 0, v, ~z)H2(λ1, v, ~z)H2(λ, v, ~z)H4(~ζn + ~ξn, v, ~z)

×H5(λ1, v, ~z)H5(λ, v, ~z)dσ(v)dρ(~z),

where H1, H2 and H5 are given by (2.3), (2.4) and (3.2), respectively.
By (2.5), the Moreras theorem and the dominated convergence theorem,
we have the existence of Tλ1 [Tλ[Ψ|Xn](·, ~ξn)|Xn](y, ~ζn) with respect to
λ1 ∈ C+ as the analytic extension of Kλ1

Tλ[Ψ|Xn](·,~ξn)
(y, ~ζn). Now, for

λ ∈ C+ and y ∈ C[0, t]

Tλ[Tλ[Ψ|Xn](·, ~ξn)|Xn](y, ~ζn)

=
∫

Rr

∫

L2[0,t]
H1(y, 0, v, ~z)H4(~ζn + ~ξn, v, ~z)H2

( |λ|2
2Reλ

, v, ~z

)

×H5

( |λ|2
2Reλ

, v, ~z

)
dσ(v)dρ(~z)

so that we have

‖Tλ[Tλ[Ψ|Xn](·, ~ξn)|Xn](·, ~ζn)−Ψ1(·, ~ζn + ~ξn)‖p

≤
∫

Rr

∫

L2[0,t]

[
1−H2

( |λ|2
2Reλ

, v, ~z

)
H5

( |λ|2
2Reλ

, v, ~z

)]
d|σ|(v)d|ρ|(~z)

which converges to 0 as λ approaches to −iq through C+ by the domi-
nated convergence theorem.

Theorem 4.3. Let Xn+1 be given by (1.3) and let 1 ≤ p ≤ ∞.
Furthermore, let Ψ1 and Ψ2 be as given in Theorem 2.3. Then for a

nonzero real q, wϕ-a.e. y ∈ C[0, t] and PXn+1-a.e. ~ξn+1, ~ζn+1 ∈ Rn+2,

T (p)
q [[(Ψ1 ∗Ψ2)q|Xn+1](·, ~ξn+1)|Xn+1](y, ~ζn+1)(4.1)

=
[
T (p)

q [Ψ1|Xn+1]
(

1√
2
y,

1√
2
(~ζn+1 + ~ξn+1)

)]

×
[
T (p)

q [Ψ2|Xn+1]
(

1√
2
y,

1√
2
(~ζn+1 − ~ξn+1)

)]
.
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Proof. Let λ ∈ C∼+. For λ1 > 0, wϕ-a.e. y ∈ C[0, t] and PXn+1-a.e.
~ξn+1, ~ζn+1 ∈ Rn+2,

Iλ1

[(Ψ1∗Ψ2)λ|Xn+1](·,~ξn+1)
(y, ~ζn+1)

=
∫

Rr

∫

Rr

∫

L2[0,t]

∫

L2[0,t]

∫

C
H1

(
λ
− 1

2
1 (x− [x]) + y + [~ζn+1], ~ξn+1,

1√
2
v1,

1√
2
~z1

)
H1

(
λ
− 1

2
1 (x− [x]) + y + [~ζn+1],−~ξn+1,

1√
2
v2,

1√
2
~z2

)

×H2

(
λ,

1√
2
(v1 − v2),

1√
2
(~z1 − ~z2)

)
dwϕ(x)dσ1(v1)dσ2(v2)dρ1(~z1)dρ2(~z2)

by Theorem 2.3, where H1 and H2 are given by (2.3) and (2.4), respec-
tively. Now, we have

Iλ1

[(Ψ1∗Ψ2)λ|Xn+1](·,~ξn+1)
(y, ~ζn+1)

=
∫

Rr

∫

Rr

∫

L2[0,t]

∫

L2[0,t]

∫

C
H1

(
1√
2
y,

1√
2
(~ζn+1 + ~ξn+1), v1, ~z1

)

×H1

(
1√
2
y,

1√
2
(~ζn+1 − ~ξn+1), v2, ~z2

)
H2

(
λ,

1√
2
(v1 − v2),

1√
2
(~z1 − ~z2)

)

×H3

(
λ1,

1√
2
(v1 + v2),

1√
2
(~z1 + ~z2), x

)

dwϕ(x)dσ1(v1)dσ2(v2)dρ1(~z1)dρ2(~z2),

where H3 is given by (2.6). By Lemma 2.1, we obtain that

Iλ1

[(Ψ1∗Ψ2)λ|Xn+1](·,~ξn+1)
(y, ~ζn+1)(4.2)

=
∫

Rr

∫

Rr

∫

L2[0,t]

∫

L2[0,t]
H1

(
1√
2
y,

1√
2
(~ζn+1 + ~ξn+1), v1, ~z1

)

×H1

(
1√
2
y,

1√
2
(~ζn+1 − ~ξn+1), v2, ~z2

)
H2

(
λ,

1√
2
(v1 − v2),

1√
2
(~z1 − ~z2)

)
H2

(
λ1,

1√
2
(v1 + v2),

1√
2
(~z1 + ~z2)

)
dσ1(v1)

dσ2(v2)dρ1(~z1)dρ2(~z2).

By (2.5), the Morera’s theorem and the dominated convergence theorem,
we have the analytic extension Tλ1 [[(Ψ1 ∗ Ψ2)λ|Xn+1](·, ~ξn+1)|Xn+1](y,
~ζn+1) of (4.2) as function of λ1 ∈ C+. Let T

(p)
q [[(Ψ1 ∗ Ψ2)λ|Xn+1](·,

~ξn+1)|Xn+1](y, ~ζn+1) be given by the right hand side of (4.2), where λ1
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is replaced by −iq, and let 1
p + 1

p′ = 1. By (2.5)

‖Tλ1 [[(Ψ1 ∗Ψ2)λ|Xn+1](·, ~ξn+1)|Xn+1](·, ~ζn+1)

−T (p)
q [[(Ψ1 ∗Ψ2)λ|Xn+1](·, ~ξn+1)|Xn+1](·, ~ζn+1)‖p′

≤
∫

Rr

∫

Rr

∫

L2[0,t]

∫

L2[0,t]

∣∣∣∣H2

(
λ1,

1√
2
(v1 + v2),

1√
2
(~z1 + ~z2)

)
−

H2

(
−iq,

1√
2
(v1 + v2),

1√
2
(~z1 + ~z2)

)∣∣∣∣d|σ1|(v1)d|σ2|(v2)d|ρ1|(~z1)d|ρ2|(~z2)

which converges to 0 as λ1 approaches to −iq through C+ by the dom-
inated convergence theorem. This shows the existence of T

(p)
q [[(Ψ1 ∗

Ψ2)λ|Xn+1](·, ~ξn+1)|Xn+1](y, ~ζn+1). Now, we have by (4.2)

T (p)
q [[(Ψ1 ∗Ψ2)q|Xn+1](·, ~ξn+1)|Xn+1](y, ~ζn+1)

=
∫

Rr

∫

Rr

∫

L2[0,t]

∫

L2[0,t]
H1

(
1√
2
y,

1√
2
(~ζn+1 + ~ξn+1), v1, ~z1

)
H1

(

1√
2
y,

1√
2
(~ζn+1 − ~ξn+1), v2, ~z2

)
H2(−iq, v1, ~z1))H2(−iq, v2, ~z2)

dσ1(v1)dσ2(v2)dρ1(~z1)dρ2(~z2)

which completes the proof by Theorem 2.2.

Note that by the same method as used in the proof of Theorem 4.3,
we can obtain (4.1), where −iq is replaced by λ ∈ C+.

Now, we have the final result of our work.

Theorem 4.4. If Xn+1, ~ξn+1 and ~ζn+1 in Theorem 4.3 are replaced

by Xn, ~ξn ∈ Rn+1 and ~ζn ∈ Rn+1, respectively, then the conclusion given
by (4.1) is still true.

Proof. Let λ ∈ C∼+. For λ1 > 0, wϕ-a.e. y ∈ C[0, t] and PXn-a.e.
~ξn, ~ζn ∈ Rn+1,

Kλ1

[(Ψ1∗Ψ2)λ|Xn](·,~ξn)
(y, ~ζn)

=
∫

Rr

∫

Rr

∫

L2[0,t]

∫

L2[0,t]
H1

(
y, 0,

1√
2
(v1 + v2),

1√
2
(~z1 + ~z2)

)
H2

(
λ1,
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1√
2
(v1 + v2),

1√
2
(~z1 + ~z2)

)
H4

(
~ζn,

1√
2
(v1 + v2),

1√
2
(~z1 + ~z2)

)
H5

(
λ1,

1√
2
(v1 + v2),

1√
2
(~z1 + ~z2)

)
H2

(
λ,

1√
2
(v1 − v2),

1√
2
(~z1 − ~z2)

)

H4

(
~ξn,

1√
2
(v1 − v2),

1√
2
(~z1 − ~z2)

)
H5

(
λ,

1√
2
(v1 − v2),

1√
2
(~z1 − ~z2)

)

dσ1(v1)dσ2(v2)dρ1(~z1)dρ2(~z2)

by Lemma 3.1, Theorems 3.2 and 3.3, where H1, H2, H4 and H5 are
given by (2.3), (2.4), (3.1) and (3.2), respectively. By (2.5), the Morera’s
theorem and the dominated convergence theorem, we have the analytic
extension Tλ1 [[(Ψ1 ∗ Ψ2)λ|Xn](·, ~ξn)|Xn](y, ~ζn) of Kλ1

[(Ψ1∗Ψ2)λ|Xn](·,~ξn)
(y,

~ζn) as function of λ1 ∈ C+. Let T
(p)
q [[(Ψ1 ∗Ψ2)λ|Xn](·, ~ξn)|Xn](y, ~ζn) be

given by the right-hand side of the above equality, where λ1 is replaced
by −iq, and let 1

p + 1
p′ = 1. Then we have

‖Tλ1 [[(Ψ1 ∗Ψ2)λ|Xn](·, ~ξn)|Xn](·, ~ζn)

−T (p)
q [[(Ψ1 ∗Ψ2)λ|Xn](·, ~ξn)|Xn](·, ~ζn)‖p′

≤
∫

Rr

∫

Rr

∫

L2[0,t]

∫

L2[0,t]

∣∣∣∣H2

(
λ1,

1√
2
(v1 + v2),

1√
2
(~z1 + ~z2)

)

×H5

(
λ1,

1√
2
(v1 + v2),

1√
2
(~z1 + ~z2)

)
−H2

(
−iq,

1√
2
(v1 + v2),

1√
2
(~z1 + ~z2)

)
H5

(
−iq,

1√
2
(v1 + v2),

1√
2
(~z1 + ~z2)

)∣∣∣∣
d|σ1|(v1)d|σ1|(v2)d|ρ1|(~z1)d|ρ2|(~z2)

which converges to 0 as λ approaches to −iq through C+ by the dom-
inated convergence theorem. This shows the existence of T

(p)
q [[(Ψ1 ∗

Ψ2)λ|Xn](·, ~ξn)| Xn](·, ~ζn). By (2.3) and (3.1), it is not difficult to show

H1

(
y, 0,

1√
2
(v1 + v2),

1√
2
(~z1 + ~z2)

)

= H1

(
1√
2
y, 0, v1, ~z1

)
H1

(
1√
2
y, 0, v2, ~z2

)

and
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H4

(
~ζn,

1√
2
(v1 + v2),

1√
2
(~z1 + ~z2)

)

×H4

(
~ξn,

1√
2
(v1 − v2),

1√
2
(~z1 − ~z2)

)

= H4

(
1√
2
(~ζn + ~ξn), v1, ~z1

)
H4

(
1√
2
(~ζn − ~ξn), v2, ~z2

)
.

Furthermore, by (2.4) and (3.2),

H2

(
λ,

1√
2
(v1 + v2),

1√
2
(~z1 + ~z2)

)

×H2

(
λ,

1√
2
(v1 − v2),

1√
2
(~z1 − ~z2)

)
= H2(λ, v1, ~z1)H2(λ, v2, ~z2)

and

H5

(
λ,

1√
2
(v1 + v2),

1√
2
(~z1 + ~z2)

)

×H5

(
λ,

1√
2
(v1 − v2),

1√
2
(~z1 − ~z2)

)
= H5(λ, v1, ~z1)H5(λ, v2, ~z2).

Now, we have the result by Theorem 3.2.

Note that by the same method as used in the proof of Theorem 4.4, we
can show the same equality in the above theorem, where −iq is replaced
by λ ∈ C+.
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